
Towards More Intelligent SPARQL Querying
Interfaces

Hashim Khan

Data Science Group, Paderborn University, Germany
hashim.khan@uni-paderborn.de

Abstract. Over years, the Web of Data has grown significantly. Various
interfaces such as SPARQL endpoints, data dumps, and Triple Pattern
Fragments (TPF) have been proposed to provide access to this data.
Studies show that many of the SPARQL endpoints have availability is-
sues. The data dumps do not provide live querying capabilities. The
TPF solution aims to provide a trade-off between the availability and
performance by dividing the workload among TPF servers and clients.
In this solution, the TPF server only performs the triple patterns ex-
ecution of the given SPARQL query. While the TPF client performs
the joins between the triple patterns to compute the final resultset of
the SPARQL query. High availability is achieved in TPF but increase
in network bandwidth and query execution time lower the performance.
We want to propose a more intelligent SPARQL querying server to keep
the high availability along with high query execution performance, while
minimizing the network bandwidth. The proposed server will offer query
execution services (can be single triple patterns or even join execution)
according to the current status of the workload. If a server is free, it
should be able to execute the complete SPARQL query. Thus, the server
will offer execution services while avoiding going beyond the maximum
query processing limit, i.e. the point after which the performance start
decreasing or even service shutdown. Furthermore, we want to develop a
more intelligent client, which keeps track of a server's processing capa-
bilities and therefore avoid DOS attacks and crashes.

Keywords: Availability, Performance, Intelligent TPF Server

1 Problem Statement

The problem we want to address focuses on the trade-off between the availability
and performance in Linked Data interfaces.

A large amount of Linked Data is available on the web and it keeps on in-
creasing day by day. According to LODStats1, a total of ∼ 150 billion triples
available from 9960 datasets. Querying this massive amount of data in a scal-
able way is particularly challenging. SPARQL is the primary query language to
retrieve data from RDF linked datasets [28]. The true value of these datasets
1 LODStats: http://lodstats.aksw.org/

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

http://lodstats.aksw.org/


2 Hashim Khan

becomes apparent when users can execute arbitrary queries over them, to re-
trieve precisely those facts they are interested in [28]. Various interfaces have
been proposed to provide access to this data:

SPARQL endpoints offer a public interface to execute SPARQL queries over
the underlying RDF data hosted by endpoints. In this interface, the client sends
a complete SPARQL query to the server (i.e., SPARQL endpoint). The server
executes the complete query and returns the final results. The responsibility of
query execution is completely on the server side, while the client is idle most of
the time. Here, better performance in query execution is ensured due to the use
of indexes for query plan generation. Also, the network overhead is reduced as
compared to the TFP server because in a case of SPARQL endpoint, only the
final result of the query need to be transferred over the network. However many
of the current SPARQL endpoints suffer from low availability rates due to its
expressiveness towards query execution of all types [28,8]. A recent study [26]
shows that more than 60% of endpoints are offline.

Triple Pattern Fragments interface tries to tackle the problem of SPARQL
endpoints and aims to provide a trade-off between the availability and perfor-
mance. The TPF interface divides the workload among servers and clients. In
this solution, unlike SPARQL endpoints, the TPF server does not execute the
complete SPARQL query. Rather, the server only performs the triple patterns
execution of the given SPARQL query. While the TPF client performs the joins
between the triple patterns to compute the final resultset of the SPARQL query.
Study [28] shows the TPF interface achieves high availability at the expense of
increased bandwidth and slower query execution times. This is because the client
fetches the results of the complete triple patterns of the query and performs local
joins. As such, it is possible that most of the triple pattern results are excluded
after performing joins with the results of another triple pattern. Furthermore,
in the case of TPF, the server selects and fetches the triples according to the
triple patterns given in the query. After that, the server transfers these triples
to the client for further execution, that is, to apply joins on it and to generate
the final results. The approach is inefficient because the server’s only job is to
fetch the triples but not to execute the actual query. Also, transferring a large
number of triples towards the client, makes the network overloaded which is an
obvious reason for its low performance.

Data dumps offer another option to provide access to Linked Data. In this
interface, the data is made publicly available as data dumps. The data dumps
first need to be downloaded and later be processed on local machines to execute
SPARQL queries. But this way of accessing data goes against the real aim of
Semantic Web, i.e. it is not live querying.

Our Proposal: The main objective of this research is to provide a more in-
telligent TPF interface in which the server and client negotiate first, and then
divide the task of query processing, according to the current status of the server.



Towards More Intelligent SPARQL Querying Interfaces 3

Thus, it is not hard coded that TPF server will only execute triple patterns and
TPF client will perform the joins between triple patterns. In the proposed in-
terface, the server can even execute the complete SPARQL query, provided that
current workload is not reaching beyond its processing capabilities. In this pro-
posed work, we aim to achieve high availability as well as good query runtime
performance.

2 Preliminaries

In this section, we formally define key definitions and basic concepts, which are
used in this research proposal and my future PhD work .
Definition 1 (RDF Term, RDF Triple and Data Source). Assume there
are pairwise disjoint infinite sets I, B, and L (IRIs, Blank nodes, and Literals,
respectively). Then the RDF term RT = I ∪ B ∪ L. The triple (s, p, o) ∈ (I ∪
B) × I × (I ∪ B ∪ L) is called an RDF triple, where s is called the subject, p
the predicate and o the object. An RDF data set or dataset d is a set of RDF
triples d = {(s1, p1, o1), . . . , (sn, pn, on)}.
Definition 2 (Query Triple Pattern and Basic Graph Pattern). By using
Definition 1 and assume an infinite set V of variables. A tuple tp ∈ (I ∪L∪V ∪
B)× (I ∪ V )× (I ∪ L ∪ V ∪B) is a triple pattern. A Basic Graph Pattern is a
finite set of triple patterns.

Definition 3 (Solution Mapping). A mapping µ from V to RT is a partial
function µ : V → RT where RT = (I ∪ B ∪ L). For a triple pattern pattern
obtained by replacing the variables in tp according to µ. The domain of µ, denoted
by dom(µ), is the subset of V where µ is defined. We sometimes write down
concrete mappings in square brackets, for instance, µ = [?X → a, ?Y → b] is the
mapping with dom(µ) = {?X, ?Y } such that, µ(?X) = a and µ(?Y ) = b.

Definition 4 (Triple Pattern Matching). Let d be a dataset (we call it data
source as well) with set of RDF as the set of mappings [[tp]]d = {µ : V →
RT | dom(µ) = var(P ) andµ(P ) ⊆ d}. If µ ∈ [[tp]]d, we say that µ is a solution
for tp in d. If a data source d has at least one solution for a triple pattern tp,
then we say d matches tp.

Definition 5 (Linked Data Fragment). According to [28], “a Linked Data
Fragment (LDF) of a dataset is a resource consisting of those triples of this
dataset that match a specific selector, together with their metadata and hyper-
media controls to retrieve other Linked Data Fragments. We define a specific type
of ldfs that require minimal effort to generate by a server, while still enabling
efficient querying on the client side”.

Definition 6 (Triple Pattern Fragment). According to [28], “a Triple Pat-
tern Fragment (TPF) is a Linked Data Fragment with a triple pattern as selector,
count metadata, and the controls to retrieve any other triple pattern fragment
of the dataset. Each page of a triple pattern fragment contains a subset of the
matching triples, together with all metadata and controls”.



4 Hashim Khan

Now we explain the query execution process in TPF interfaces. For basic
graph patterns (BGPs), the algorithm works as follows:

1. For each triple pattern tpi in the BGP B = {tp1, . . . , tpn}, fetch the first
page φi

1of the triple pattern fragment fi for tpi, which contains an estimate
cnti of the total number of matches for tpi. Choose ∈ such that cnt∈ =
min(cnt1, . . . , cntn). f∈ is then the optimal fragment to start with.

2. Fetch all remaining pages of the triple pattern fragment f∈. For each triple
t ∈ LDF , generate the solution mapping µt such that µt(tp∈) = t. Compose
the subpattern Bt = {tp|tp = µt(tpj)∧tpj ∈ B}\{t}. If Bt 6= ∅, find mappings
ΩBt by recursively calling the algorithm for Bt. Else, ΩBt = {µ∅} with µ∅
the empty mapping.

3. Return all solution mappings µ ∈ {µt ∪ µ′|µ′ ∈ ΩBt}.

2.1 Use Case Scenario

Consider the following SPARQL query to be executed on TPF interface of the
DBpedia TPF 2, to find countries and their capitals of Europe:

PREFIX dbo:<http://dbpedia.org/ontology/>
PREFIX dct:<http://purl.org/dc/terms/>
PREFIX dbr:<http://dbpedia.org/resource/>

SELECT ?countries ?city
WHERE {

?countries dbo:capital ?city . #tp1 = 111
?countries dct:subject dbr:Category:Countries_in_Europe. #tp2 = 1741

}

In case of TPF server it only performs the triple patterns execution, that
is, it has returned 111 triples which matched with the triple pattern 1 (tp1)
while that of 1741 with triple pattern 2 (tp2). After the server fetches these 111
+ 1741 = 1851 triples in total, the client performs the join between the triple
patterns to compute the final resultset of the SPARQL query, which has only 48
results 3. Fetching so many triples to generate such a small result, clearly shows
that the high availability benefits of the TPF come at the expense of increased
bandwidth and slower query execution times.

The proposed TPF server will offer query execution services (can be single
triple patterns or even join execution) according to the current status of the
workload. If a server is free, it should be able to execute the complete SPARQL
query. Thus, the server will offer execution services while avoiding reaching the
maximum query processing limit, i.e. service shutdown. This type of service is
possible with coordination between server and client in an intelligent way, which
2 DBpedia TPF: http://fragments.dbpedia.org/
3 As a result of this query, we got 48 number of result rows.

http://fragments.dbpedia.org/


Towards More Intelligent SPARQL Querying Interfaces 5

is the aim of this research. In the motivating example, if the server is able to
execute the complete query, then only the final query result (i.e., 48 in total)
will be fetched across the network.

3 Relevancy

Performance can be defined as the rate at which a task can be completed. In our
case, performance is the number of querying executed by the proposed interface
in a time interval. Availability is the characteristic of a server where it can listen
to client request and respond well in time. Due to the increasing trend of the
Semantic Web, developers of the applications care about a reliable source which
can ensure the provision of linked data in a live queryable form.

High performance with high availability is the requirement of almost every
data consumer. Whenever there is a large amount of data, people will want to
query it - and nothing is more intriguing than the vast amounts of Linked Data
published over the last few years [5]. Application developers require Linked Data
which should be available and can be queried in an efficient way.

As discussed in section 1, existing interfaces offer either good performance or
availability but not both. In this research our aim is to make a trade-off between
performance and availability, which is shown in Fig. 1.

Fig. 1. An abstract placement of the proposed interface on the trade-off spectrum line

4 Related Work

The easiest way to publish the Linked Data knowledge graph is to upload an
archive, usually called Data dumps, in an RDF format such as N-Triples or
N-Quads. Clients download these files through HTTP and use it according to
their needs. Advantage of using Data dump is its universality, i.e. client obtains
whole of the knowledge graph and then makes it available online through any
access point of its choice locally [29]. The issue here is that this is not live



6 Hashim Khan

querying. Some initiatives have been taken to ease the usage of data dumps. For
example, the LOD Laundromat [4] obtains data dumps from the Web, cleans
up quality issues like serialization, and then republishes the dumps in the same
RDF format. However, this effort still does not handle the issue that data is not
live queryable: clients are still bound to download data dumps and upload them
in a SPARQL-based system before SPARQL queries can be executed.

SPARQL endpoint uses the SPARQL protocol, which follows the First-Come-
First-Served principle, therefore the queries have to wait in queue for execution
by the server 4.Many triple stores, like Virtuoso [10] and Jena TDB [1], offer a
SPARQL interface.While serving queries concurrently by a SPARQL endpoint,
it has to restrict the size of the result-set returned to the end user or to generate
a time-out error message in a case where a query spends too many resources [8].
Therefore, we may not get the complete result-set which we should expect from
the query. Also, a characteristic of SPARQL endpoints is that, in addition to
the uncertainty of the total number of requests to be made by different users,
the execution cost per request varies significantly due to the relatively high
expressiveness of SPARQL [20]. In 2013 a survey disclosed that most of the
public SPARQL endpoints had an uptime of less than 95% [27].

In order to tackle these issues, most public LOD providers introduced a
policy for the fair utilisation of the endpoint resources. As an example, DBpe-
dia administrator shared the specifications relating to public SPARQL endpoint
utilization. According to this specification, a query can have a maximum of 120
seconds execution time, 10000 results and 50 parallel connections per IP ad-
dress5. Since every data provider configures the endpoint of their own, thus it
will be difficult for application developers to rely on it.

Another strategy in this regard is to decompose a query into sub-queries and
then to execute it under quotas [3]. The main shortcomings of this approach are
(i) knowing the quotas configured by the data provider is not always possible
and (ii) these quotas can not be applied to all the SPARQL queries to get the
correct evaluation result.

Many other approaches exist to apply queries over Linked Data documents [13].
One type of approach makes use of pre-populated index structures [25] and
another focuses on live exploration by the use of traversal-based query execu-
tion [15]. Typically, these query execution approaches have longer query execu-
tion times compared to SPARQL endpoints, but—unlike data dumps—permit
for live querying. The required bandwidth is generally less than that of the
data dumps, but the efficiency can still be low depending on the type of query.
Moreover, completeness with respect to a knowledge graph cannot be ensured,
and some of the queries are difficult or impossible to evaluate without the use
of an index [13]. As an example, queries for patterns with unbound subjects
(e.g., ?s foaf:made <o>) show problems because Linked Data documents, by its
definition are subject-centric.

4 https://www.w3.org/TR/sparql11-overview/
5 https://wiki.dbpedia.org/public-sparql-endpoint

https://www.w3.org/TR/sparql11-overview/
https://wiki.dbpedia.org/public-sparql-endpoint


Towards More Intelligent SPARQL Querying Interfaces 7

The Triple Pattern Fragments (TPF) approach [29] is an implementation
of the Linked Data Fragments (LDF) [16], where the server's only job is to
evaluate triple pattern queries. In this approach, the triple pattern queries can
be executed in bounded time [17], therefore the TPF server does not face a
convoy effect [7]. However, as joins have to be performed on the client side, a
huge amount of triples transfer from the server to the client leading to poor
SPARQL query execution performance.

Hartig et al. further extended the idea of basic TPF in brTPF [14], where
by the use of well-known bind join strategy [12], it allows clients to attach in-
termediate results to TPF requests. The response to such a brTPF request is
expected to contain RDF triples from the underlying dataset, that do not only
match the given triple pattern (as in the case of TPF), but also guarantees the
contribution in join with the given intermediate result. Hence, given the brTPF
interface, it becomes possible to distribute the execution of joins between client
and server. Due to this approach the overall throughput of the client-server sys-
tem is significantly reduced.

Minier et al. proposed a SPARQL query engine based on Web preemp-
tion [18]. It allows SPARQL queries to be suspended by the web server after a
fixed time quantum and resumed upon client request. This approach has solved
the problem of partial result generation but the server may not perform well,
when all the parallel queries are of high cost at a time.

The related work discussed here shows that, for the application developers
to rely on linked open data, there exists a gap between the live availability and
the efficient query execution. Therefore, in this the author aims to fill this gap.

5 Research Questions

In order to balance the trade-off between availability and performance, through
intelligent TPF server and client, we have to answer the following research ques-
tions:

I- How can we define a Workload Threshold (WT) beyond which the server
query execution performance starts decreasing?

II- How to avoid the WT?
III- How the server should communicate with the client to convey its current

status? What services it can provide to the client?
IV- How the client will break the query into blocks according the the current

capabilities of the server?

6 Hypothesis

Our hypotheses are directly related to the performance and high availability:



8 Hashim Khan

H1. Performance: The null hypothesis pertaining to query runtime perfor-
mance states that the proposed approach would not lead to significant perfor-
mance improvements with respect to the state-of-the-art triple pattern fragment
interfaces. The alternative hypothesis states that the proposed approach would
lead to a significant performance improvement with respect to the state-of-the-
art triple pattern fragment interfaces.

H2. Availability: The null hypothesis pertaining to server availability states
that the proposed approach would not lead to availability comparable to the
state-of-the-art triple pattern fragment interfaces. The alternative hypothesis
states that the proposed approach would be able to achieve availability, compa-
rable to the state-of-the-art triple pattern fragment interfaces.

7 Approach

The approach proposed in this research work aims to provide a trade-off between
availability and performance by dividing the workload among the servers and
clients. Therefore, it is important to discuss the responsibilities of the client and
server.

7.1 Server’s Responsibility

The main functions of the proposed server are:

1. Workload Monitoring: As discussed, the proposed server offers services
according to the current workload status. Therefore, the server should be
able to monitor its current status of the workload and avoid reaching the
maximum WT limit.

2. Workload-aware Services: The server provides query execution services
according to the current status of the workload. As such, it is possible that
the server will execute the complete SPARQL query (like SPARQL end-
points) or only execute individual triple patterns (like TPF), depending on
the current status of the workload. Thus, it is also possible that the query
execution plan is divided among the server and client, i.e., some of the query
joins are performed by the server while others are executed by the client.

3. Coordination: As the proposed server provides adaptive query execution
services, it is important to first negotiate a connection with client and coor-
dinate the current execution services that are available for the given connec-
tion. The client then needs to decompose the given input query according to
the available services.

7.2 Client’s responsibility

The main functions of the client are:



Towards More Intelligent SPARQL Querying Interfaces 9

1. Coordination: As discussed previously, the client has to take updates of
server's current available services and decompose the given SPARQL query
accordingly.

2. Query Planning The query execution plan will be generated on the client’s
side according to the current available services from the server. The partial
query execution can also be done by the client.

At present, we are working on devising algorithms to perform the above men-
tioned responsibilities. The first step is to know the WT for the different avail-
able interfaces. To this end, we are conducting experiments by using Iguana [9], a
benchmark execution framework to analyze the performance of triplestores using
multiple parallel agents with/without updates. The goal of these experiments is
to calculate the maximum WT limit. We are increasing workload by using mul-
tiple querying agents and analyzing the overall throughput until it reaches the
maximum limit. Once, we know the maximum WT limit for the proposed server,
the next step would be to make the server more intelligent, able to avoid reaching
the maximum WT limit.

8 Evaluation Plan

In this section, we briefly explain our evaluation plan to compare the pro-
posed approach with state-of-the-art approaches. Please note that this plan may
changes according to the availability of new benchmarks, performance metrics,
and new solutions for SPARQL query processing.

Benchmark Selection: The first important step in our evaluation is the se-
lection of the most relevant and representative SPARQL benchmark. To this
end, SPARQL benchmarks such as BSBM [6], LUBM [11], DBpedia SPARQL
benchmarks [19], WatDiv [2], SP2Bench [23], and FEASIBLE [21] are gener-
ally used in state-of-the-art evaluations of SPARQL querying interfaces. Recent
study [22] shows that synthetic benchmarks can be used to test the scalability
of the systems. However, they often fail to contain important SPARQL query
constructs such UNION, FILTER, OPTIONAL etc. Furthermore, the study reveals
that the DBpedia benchmark generated by FEASIBLE [21] framework is the
most diverse SPARQL benchmark on the specified SPARQL features. We plan
to use the most state-of-the-art WatDiv (synthetic) and FEASIBLE (real data
and queries) benchmarks in our evaluation.

Metrics: In general, a SPARQL querying benchmark comprises of three main
components: (1) a set of RDF datasets, (2) a set of SPARQL queries, and (3) a set
of performance metrics [22]. The first two components are directly provided by
the selected benchmark. There can be many performance metrics as discussed
in [22]. We will mostly focus on the metrics relevant to the availability and
performance of the SPARQL querying interfaces.

The metrics relevant to the query runtime performances are: (1) query run-
time, (2) Query Mix per Hour (QMpH), (3) Queries per Second (QpS), (4)



10 Hashim Khan

Number of intermediate results and (5) Network traffic generated by the in-
terfaces [21,19,6]. The metrics relevant to the availability of the systems are:
(1) Query processing overhead in terms of the CPU and memory usage (this
also includes the number of disk/memory swaps), (2) Parallelism with/without
Updates which measure the parallel query processing capabilities of the query-
ing interfaces by simulating workloads from multiple querying agents with and
without dataset updates [9,30,6].

Systems: SAGE [18] and Communica [24] are state-of-the-art HDT-based in-
terfaces which we will compare with the proposed solution. In addition, SPARQL
endpoints interfaces backed by triplestores such as Virtuoso, BlazeGraph, GraphDB
etc. will also be considered in the evaluation.

Best Practices: We will follow the standard best practices such as running
benchmark queries multiple times and presenting their average results, starting
with a warm up phase where certain test queries will be run before starting
the actual evaluation etc. Furthermore, we will use various significance tests
such as T-Test, Wilcoxon signed-rank test etc. to measure the significance of the
performance improvements. To ensure the reproducibility of our results, we will
make sure to provide public access to the complete data, queries, and the results
used in our evaluation. Furthermore, we will create a user manual to help in
reproducing the results.

9 Reflections

We believe that the real essence of the Semantic Web will be felt when semanti-
cally Linked Data is available, and applications can easily and reliably access the
very specific part of that data, in an efficient manner. Our proposed approach
takes into account providing not only availability of Linked Data or efficient
execution of the queries, but providing both at the same time, by balancing
trade-offs between the two aspects.

10 Acknowledgments

This work has been supported by the German Federal Ministry of Transport
and Digital Infrastructure (BMVI) in the projects LIMBO (no. 19F2029I) and
OPAL (no. 19F2028A), the H2020 Marie Sk lodowska-Curie project KnowGraphs
(GA no. 860801), and the German Federal Ministry of Education and Research
(BMBF) within the program ’KMU-innovativ: Forschung für die zivile Sicher-
heit’ in the project SOLIDE (no. 13N14456).

I am thankful to my PhD supervisors Prof. Dr. Axel-cyrille Ngonga Ngomo
and Dr. Muhammad Saleem.



Towards More Intelligent SPARQL Querying Interfaces 11

References

1. SIGUCCS ’09: Proceedings of the 37th Annual ACM SIGUCCS Fall Conference:
Communication and Collaboration. ACM, New York, NY, USA (2009), 459091

2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress test-
ing of RDF data management systems. In: ISWC, pp. 197–212 (2014).
https://doi.org/10.1007/978-3-319-11964-9 13, https://doi.org/10.1007/
978-3-319-11964-9_13

3. Aranda, C.B., Polleres, A., Umbrich, J.: Strategies for executing federated queries
in sparql1.1. In: International Semantic Web Conference (2014)

4. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: Lod
laundromat: A uniform way of publishing other people’s dirty data. In: Mika, P.,
Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P.,
Noy, N., Janowicz, K., Goble, C. (eds.) The Semantic Web – ISWC 2014. pp.
213–228. Springer International Publishing, Cham (2014)

5. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

6. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semantic Web Inf.
Syst. 5(2), 1–24 (2009). https://doi.org/10.4018/jswis.2009040101, https://doi.
org/10.4018/jswis.2009040101

7. Blasgen, M., Gray, J., Mitoma, M., Price, T.: The convoy phenomenon. SIGOPS
Oper. Syst. Rev. 13(2), 20–25 (Apr 1979). https://doi.org/10.1145/850657.850659,
http://doi.acm.org/10.1145/850657.850659

8. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: Sparql web-
querying infrastructure: Ready for action? In: International Semantic Web Con-
ference. pp. 277–293. Springer (2013)

9. Conrads, F., Lehmann, J., Saleem, M., Morsey, M., Ngomo, A.N.: IGUANA: A
generic framework for benchmarking the read-write performance of triple stores.
In: ISWC. pp. 48–65. Springer (2017). https://doi.org/10.1007/978-3-319-68204-
4 5, https://doi.org/10.1007/978-3-319-68204-4_5

10. Erling, O., Mikhailov, I.: Virtuoso: RDF Support in a Native RDBMS, pp. 501–
519. Springer Berlin Heidelberg, Berlin, Heidelberg (2010), https://doi.org/10.
1007/978-3-642-04329-1_21

11. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL
knowledge base systems. J. Web Sem. 3(2-3), 158–182 (2005).
https://doi.org/10.1016/j.websem.2005.06.005, https://doi.org/10.1016/j.
websem.2005.06.005

12. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across
diverse data sources. In: Proceedings of the 23rd International Conference on Very
Large Data Bases. pp. 276–285. VLDB ’97, San Francisco, CA, USA (1997), http:
//dl.acm.org/citation.cfm?id=645923.670995

13. Hartig, O.: An overview on execution strategies for linked data queries. Datenbank-
Spektrum 13(2), 89–99 (Jul 2013). https://doi.org/10.1007/s13222-013-0122-1,
https://doi.org/10.1007/s13222-013-0122-1

14. Hartig, O., Aranda, C.B.: brtpf: Bindings-restricted triple pattern fragments (ex-
tended preprint). CoRR (2016), http://arxiv.org/abs/1608.08148

15. Hartig, O., Bizer, C., Freytag, J.C.: Executing sparql queries over the web of linked
data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,
Motta, E., Thirunarayan, K. (eds.) The Semantic Web - ISWC 2009. pp. 293–309.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.1145/850657.850659
http://doi.acm.org/10.1145/850657.850659
https://doi.org/10.1007/978-3-319-68204-4_5
https://doi.org/10.1007/978-3-319-68204-4_5
https://doi.org/10.1007/978-3-319-68204-4_5
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
http://dl.acm.org/citation.cfm?id=645923.670995
http://dl.acm.org/citation.cfm?id=645923.670995
https://doi.org/10.1007/s13222-013-0122-1
https://doi.org/10.1007/s13222-013-0122-1
http://arxiv.org/abs/1608.08148


12 Hashim Khan

16. Hartig, O., Letter, I., Pérez, J.: A formal framework for comparing linked data
fragments. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux,
P., Sequeda, J., Lange, C., Heflin, J. (eds.) The Semantic Web – ISWC 2017. pp.
364–382. Springer International Publishing, Cham (2017)

17. Heling, L., Acosta, M., Maleshkova, M., Sure-Vetter, Y.: Querying large knowl-
edge graphs over triple pattern fragments: An empirical study. In: Vrandečić, D.,
Bontcheva, K., Suárez-Figueroa, M.C., Presutti, V., Celino, I., Sabou, M., Kaffee,
L.A., Simperl, E. (eds.) The Semantic Web – ISWC 2018. pp. 86–102. Springer
International Publishing, Cham (2018)

18. Minier, T., Skaf-Molli, H., Molli, P.: Sage: Web preemption for public sparql query
services. In: The World Wide Web Conference. pp. 1268–1278. WWW ’19, ACM,
New York, NY, USA (2019). https://doi.org/10.1145/3308558.3313652, http://
doi.acm.org/10.1145/3308558.3313652

19. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.N.: DBpedia SPARQL bench-
mark - performance assessment with real queries on real data. In: ISWC. pp.
454–469. Springer (2011). https://doi.org/10.1007/978-3-642-25073-6 29, https:
//doi.org/10.1007/978-3-642-25073-6_29

20. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of
sparql. ACM Trans. Database Syst. 34(3), 16:1–16:45 (Sep 2009).
https://doi.org/10.1145/1567274.1567278

21. Saleem, M., Mehmood, Q., Ngomo, A.N.: FEASIBLE: a feature-based SPARQL
benchmark generation framework. In: ISWC. pp. 52–69. Springer (2015)

22. Saleem, M., Szárnyas, G., Conrads, F., Bukhari, S.A.C., Mehmood, Q.,
Ngonga Ngomo, A.C.: How representative is a sparql benchmark? an
analysis of rdf triplestore benchmarks. In: The World Wide Web Con-
ference. pp. 1623–1633. WWW ’19, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3308558.3313556, http://doi.acm.org/10.1145/
3308558.3313556

23. Schmidt, M., et al.: SP2Bench: A SPARQL performance benchmark. In: Semantic
Web Information Management - A Model-Based Perspective, pp. 371–393 (2009),
https://doi.org/10.1007/978-3-642-04329-1_16

24. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: A
modular sparql query engine for the web. In: Vrandečić, D., Bontcheva, K., Suárez-
Figueroa, M.C., Presutti, V., Celino, I., Sabou, M., Kaffee, L.A., Simperl, E. (eds.)
The Semantic Web – ISWC 2018. pp. 239–255. Springer International Publishing,
Cham (2018)

25. Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data sum-
maries for processing live queries over linked data. World Wide Web 14(5), 495–
544 (Oct 2011). https://doi.org/10.1007/s11280-010-0107-z, https://doi.org/10.
1007/s11280-010-0107-z

26. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.: Spar-
qles: Monitoring public sparql endpoints. Semantic web 8(6), 1049–1065 (2017)

27. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.:
Sparqles: Monitoring public sparql endpoints. Semantic Web 8, 1–17 (01 2017).
https://doi.org/10.3233/SW-170254

28. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Sande,
M.V., Cyganiak, R., Colpaert, P., Mannens, E., Van De Walle, R.: Low-cost
queryable linked data through triple pattern fragments. In: Proceedings of the
2014 International Conference on Posters &#38; Demonstrations Track - Vol-
ume 1272. pp. 13–16. ISWC-PD’14, CEUR-WS.org, Aachen, Germany, Germany
(2014), http://dl.acm.org/citation.cfm?id=2878453.2878457

https://doi.org/10.1145/3308558.3313652
http://doi.acm.org/10.1145/3308558.3313652
http://doi.acm.org/10.1145/3308558.3313652
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/3308558.3313556
http://doi.acm.org/10.1145/3308558.3313556
http://doi.acm.org/10.1145/3308558.3313556
https://doi.org/10.1007/978-3-642-04329-1_16
https://doi.org/10.1007/s11280-010-0107-z
https://doi.org/10.1007/s11280-010-0107-z
https://doi.org/10.1007/s11280-010-0107-z
https://doi.org/10.3233/SW-170254
http://dl.acm.org/citation.cfm?id=2878453.2878457


Towards More Intelligent SPARQL Querying Interfaces 13

29. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-
cost knowledge graph interface for the web. JOURNAL OF WEB SEMANTICS
37-38, 184–206 (2016), http://dx.doi.org/10.1016/j.websem.2016.03.003

30. Wu, H., et al.: BioBenchmark Toyama 2012: An evaluation of the per-
formance of triple stores on biological data. J. Biomedical Semantics 5,
32 (2014). https://doi.org/10.1186/2041-1480-5-32, https://doi.org/10.1186/
2041-1480-5-32

http://dx.doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1186/2041-1480-5-32
https://doi.org/10.1186/2041-1480-5-32
https://doi.org/10.1186/2041-1480-5-32

	Towards More Intelligent SPARQL Querying Interfaces

