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ABSTRACT
Deep learning has made many exciting applications possible and
given the popularity of social networks and user generated content
everyday there is no shortage of data for these applications. The
content generated by the users is written or spoken in natural lan-
guage which needs to be processed by computers. Recurrent Neural
Networks (RNNs) are a popular choice for language processing due
to their ability to process sequential data. On the other hand, this
data is some of the most privacy sensitive information. Therefore,
privacy-preserving methods for natural language processing are
crucial. In this paper, we focus on settings where a client has private
data and wants to use machine learning as a service (MLaaS) to
perform classification on the data without the need to disclose the
data to the entity offering the service. We employ homomorphic
encryption techniques to achieve this. Homomorphic encryption
allows for data being processed without it being decrypted thereby
protecting the users privacy. Although homomorphic encryption
has been used for privacy-preserving machine learning, most of the
work has been focused on image processing and convolutional neu-
ral networks (CNNs), but RNNs have not been studied. In this work,
we use homomorphic encryption to build privacy-preserving RNNs
for natural language processing tasks. We show that RNNs can be
run over encrypted data without loss in accuracy compared to a
plaintext implementation by evaluating our system on a sentinment
classification task on the IMDb movie review dataset.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Nat-
ural language processing; Neural networks;

KEYWORDS
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1 INTRODUCTION
Artificial neural networks have been very successful and popular
over the last few years in a variety of domains. CNNs have shown
better than human performance in image classification tasks [13,
38] and have also been applied to language processing tasks[16].
RNNs, another type of neural networks, are specifically designed
to work with sequences. Unlike other types of networks, RNNs
take the output of the previous sequence step into consideration.
There are different types of RNN architectures such as Long Short
Term Memory (LSTM), Gated Recurrent Unit (GRU) and a simple
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fully connected variant or Elman Network [15]. In this work we
work with Elman Networks and unless specified otherwise will use
the term RNN instead of Elman Network. Recurrent architectures
are very popular in natural language processing (NLP) due to the
sequential nature of language. There aremany different sub-fields in
NLP. In this work we investigate the task of sentiment classification.

Many companies have built a business around offering MLaaS.
In MLaaS the model is hosted in the cloud. The service provider has
the infrastructure and know-how to build the models. The client
owns the data and sends it to the provider (also called server) for
processing.

A concern for the client of MLaaS is the privacy of the data.
To process the data the server needs access to the data. This is
often unwanted or unacceptable depending on the sensitivity of the
data. There are three main techniques for preserving the privacy of
the data while still allowing for ML algorithms to work: 1) Secure
Multiparty Computation (SMC), 2) Differential Privacy (DP) and 3)
Homomorphic Encryption (HE).

In previous work a variety different machine learning algorithm
have been adapted for privacy preserving processing such as linear
regression [29], linear classifiers [4, 17], decision trees [1, 4] or
neural networks [14, 29, 32]. Solutions based on SMC [29, 32] come
with a huge communication overhead.

We propose an approach that is based on homomorphic encryp-
tion and recurrent neural networks. It does not require interactive
communication between client and server like SMC approaches
but in the case of longer sequences, we use interactive communica-
tion to control the noise introduced by HE. Very little prior work
deals with recurrent neural networks. Much of the work is done
on CNNs in the image domain [10, 14, 22] and more. [39] perform
encrypted speech recognition which is an NLP task but the model
used is also a CNN. Badwai et al. [2] research privacy preserving
text classification which is the task that we also us in the this paper
but the authors do not use an RNN. To the best of our knowledge,
there is only one prior paper working with a recurrent architecture.
Qian and Lei propose a system [26] that is capable of implementing
LSTM networks based on TFHE [7]. Their LSTM model suffers
from a small drop in accuracy though when running on encrypted
data. Our solution is able to maintain the same accuracy as the
plain text model. We present a solution that can process RNNs with
arbitrary length input sequences in a privacy preserving manner
and introduce a way of using word embeddings with encrypted
data. To ensure the privacy of the data we rely on the CKKS [6]
crypto scheme. We evaluate our system on a text classification task.
The basic idea of our proposed approach is running RNNs on the
encrypted data by taking advantage of HE schemes. The server
hosts the trained model, the client transmits the encrypted data for
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processing and receives an encrypted result. The training of the
model is done on plaintext. In this work, we make the following
main contributions:

• We propose an approach that combines RNNs, specifically
Elman Networks, and homomorphic encryption to perform
inference over encrypted data in natural language processing
tasks.

• We present an innovative approach to work with word em-
beddings for encrypted data.

• We perform thorough benchmarking of our system both
with respect to run time performance and communication
cost. Our results demonstrate that we are able to run RNNs
over encrypted data without sacrificing accuracy and with
reasonable performance and communication cost.

1.1 Threat Model and Problem Statement
In this paper, we apply privacy preserving machine learning tech-
niques based on HE to RNNs. We focus on a client server setting
such as MLaaS in which the client has full control over the data
and the server has full control over the model. We assume that
the model has been trained on plaintext data and the server offers
inference as a service to the clients. The clients want to use the
inference service and wish to keep their data private while the
server wishes to keep its model private .

Threat Model: We assume that all parties are honest but curios.
They will not deviate from the protocol but will attempt to learn
any information possible in the process. The server does not share
information about the architecture of the model with the client. The
client encrypts the data and sends it to the server for processing. If
it is possible, the server will process the data and send back the final
result in encrypted format. In some cases data will be sent back
to the client where it is decrypted, encrypted again to remove the
built-up noise and sent back to the server to continue processing.
In addition to the privacy of the data we have the goal to achieve
accurate predictions. This means the predictions made on encrypted
data should be as close as possible to predictions made on plaintext
data.

2 BACKGROUND
2.1 Homomorphic Encryption
Homomorphic encryption (HE) schemes are similar to other asym-
metric encryption schemes as in they have a public key pk for
encrypting (Enc) data and a private or secret key sk for decryp-
tion (Dec). Additionally, HE schemes also have a so-called eval-
uation function, Eval . This evaluation function allows the eval-
uation of a circuit C over encrypted data without the need for
decryption. Given a set of plaintexts {mi }

n
0 and their encryption

{ci }
n
0 = Enc(pk, {mi }

n
0 ) the circuit C can be evaluated as:

Dec(sk, Eval(pk,C, c0, · · · , cn )) = C(m0, · · · ,mn ).

Most modern HE schemes are based on the ring learning with
errors problem (RLWE). Roughly speaking to encrypt a plaintext
some noise is added and the decryption process is the removal
of that noise. For more details see Brakerski et al. [5] and Cheon
et al. [6]. When operations are performed on the ciphertexts the
noise grows and when it passes a certain threshold the ciphertext
can not be decrypted correctly anymore. Multiplications add much

more noise than additions. A way of controlling the noise is to use
so-called leveled homomorphic encryption (LHE). LHE allows a for
certain number of multiplications based on the parameters chosen
for the encryption scheme and evaluating circuits of a known depth.
Computation cost can be mitigated in some cases by using single
instruction multiple data (SIMD) techniques introduced by Smart
and Vercauteren [34].

2.2 Recurrent Neural Networks
In contrast to fully connected or convolutional neural networks,
which are feed forward only, recurrent neural networks feed some
part of their hidden state back into themselves.

There are many different types of recurrent neural network cells
with Long short-term Memory (LSTM) [23] and Gated Recurrent
Unit (GRU) [8] being the most popular ones. These cells are more
complex than simple RNNs which we are focusing on this paper.
While LSTM and GRU lead to better performance we focus on the
simpler RNN type due to lower computational complexity.

The RNN used in this paper consists of three main components
input (xt ), hidden state (st ) and output (o) of the network at time
step t . The st for one neuron is calculated by following formula:
st = f (xt · w + st−1 · v) where f is the activation function and
· is the vector dot product. Tanh ( e

−x−e−x
e−x+e−x ) is the most common

activation functions used in RNNs.

2.3 Polynomial Approximation: Theoretical
Foundation

One of the major limitations of homomorphic encryption is the
limited set of operations that can be performed. CKKS supports
addition and multiplication. Division is supported only for plaintext
divisors. Basically this allows us to evaluate only polynomials. Tanh,
a popular activation function in RNNs, can not be expressed as a
polynomial. This means we can not evaluate it over encrypted data.
A way to circumvent this is to find a polynomial approximation.

Hesamifard et al. [21] use an approach that is based on Cheby-
shev polynomials. Given the family of all continuous real valued
functionsX on a non-empty compact space C(X ) and let µ be a finite
measure on X . The authors define f ,д ∈ C(X ) as ⟨f ,д⟩ =

∫
X f дdµ.

To generate Chebyshev polynomials they use dµ = dx√
1−x 2 as the

measure on [−1, 1]. For better computational performance we want
to stick to low degree polynomials.

2.4 NLP with Neural Networks
Recurrent neural networks are widely used for addressing chal-
lenges in Natural Language Processing. Recurrent neural network
reached state-of-the-art performance for different tasks such as:
Speech Recognition, [19] and [18], Generating Image Descriptions,
[25] and [36], Machine Translation, [3] and [11], Language Model-
ing, [28] and [35]. The implementation of an NLP pipeline using
RNNs can be broken done into four major parts: 1) Designing the
network, 2) Encoding the data, 3) Training the model and 4) Infer-
ence of new instances.

In the next section we will look at the individual steps in detail
and describe the changes that are necessary for computation in a
privacy preserving setting.
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3 THE PROPOSED PRIVACY-PRESERVING
CLASSIFICATION FOR RECURRENT
NEURAL NETWORKS

Looking at the components of the RNN pipeline described in Section
2.4 we determine what changes need to be made to adhere to the
constraints of homomorphic encryption.

Network Design. As long as we only use fully connected and
recurrent layers the only consideration we need to make are the
activation functions that are being used. All other operations inside
an RNN can be performed over encrypted data using HE schemes.
However, it is not possible to implement common activation func-
tions within current HE schemes. We aim to find the best low de-
gree polynomial approximation to replace the activation functions
within the RNN.

Data Encoding. In this paper, we use word embeddings as an
encoding scheme for textual data. We describe our approach to
handling embeddings in more detail in Section 3.1.

Model Training. In this paper, we assume that the training of
the model is performed by the server on plain training data.

Inference. This is the part of the pipeline in our system that
is run on encrypted data. At no point during this process is the
data decrypted on the server thus ensuring its privacy is protected.
During processing by the model, the encrypted data accumulates
noise. We describe a way of circumventing the problem of the noise
crossing the threshold after which correct decryption is no longer
possible in Section 3.2. Once the data has been processed by the
entire network, the result of the classification is sent back to the
client. The result of the classification is still encrypted and needs
to be decrypted by the client.

A variety of activation functions have been proposed as replace-
ments for common activation functions used in NNs. Dowlin et. al
[14] use polynomials of degree 2 to substitute the Sigmoid function
in CNNs and Shortell and Shokoufandeh [33] use polynomial of
degree 3 to approximate the natural logarithm function. Hesamifard
et. al [21] use Chebyshev polynomials to approximate activation
functions such as ReLU, Sigmoid and Tanh. We will be using the
approach of [21] to approximate Tanh which is the most popular
activation function in RNNs. The Softmax function can not be per-
formed over encrypted data but since it is typically used as the very
last function of neural network, we move it to the client side. The
server computes the neural network all the way to the inputs of
the Softmax function. The the Softmax function is performed by
the client after decryption to obtain the classification results.

3.1 Encrypted word embeddings
Word embeddings are a way to turn words into real valued vectors.
The embedding layer basically is a lookup table that maps any word
in a dictionary to a real valued vector. The lookup of an embedding
for a given word cannot be performed efficiently in HE schemes.
We address this problem by moving the embedding layer out of
the RNN and to the client where it can be performed in plaintext.
After performing the embedding lookup, the client encrypts the
embeddings and sends the result to the server. To enhance the the
privacy of the model, the model owner can use one of the many
pretrained embeddings such as GloVe [30], Elmo [31], Bert [12] or
XLNet [37] and share those with the client .

3.2 Noise growth in HE
In an RNN architecture, a sequence is processed by feeding its
entries into a fully connected layer which also takes the output of
that layer produced for the previous sequence entry. The current
output and the previous output are combined into the new output.
Due to the noise build-up in HEwe need to keep track of the number
of operations performed on ciphertexts. To process a sequence
of length n with an RNN layer the resulting ciphertext needs to
pass the layer n times. That means n dot products and activation
functions are applied. It is not always possible to process all of the
sequence entries due to the noise that is accumulated. Our approach
is to send the encrypted data back to the client where it is decrypted
and re-encrypted thereby removing the built up noise.

3.3 Implementation
We use CKKS to protect the privacy of the client data. The server
trains a plaintext model and shares the embedding matrix with the
client. The activation in the model needs to be compatible with
HE. This is achieved by approximating Tanh using the method by
Hesamifard et al. [21]. The client performs the embedding process
and encrypts the result. The encrypted embeddings are sent to the
server where it is processed. When the noise, built up during com-
putation, reaches the limit it the data is sent back to client where it is
decrypted, thereby removing all noise, rencrypted and sent back to
the server. Once the model is completed processed the server sends
the still encrypted resutl back to the client where it can be decrypted.
We implement our proposed solution in C++11. We train the model
usingKeras [9] and the homomorphic encryption primitives are pro-
vided by HElib [20]. On the plaintext, we tried different activation
functions and found out that Tahn and Tanh approximations work
best. Other activation functions such as x2 or the linear function
cause the model not to train properly. We find that best replacement
for our purposes is:−0.00163574303018748x3+0.249476365628036x .

4 EXPERIMENTAL RESULTS
The experiments were performed on a Ubuntu 18.04 64bit machine
with an AMD Ryzen 5 2600 @ 3.5GHz processor and 32GB of RAM.
The IMDb [27] dataset contains 50,000 movie reviews labeled as
either positive or negative of which 25,000 are used as training
and 25,000 as test data. The tokenization is performed by Keras.
We train a model to perform sentiment classification which is clas-
sifying a review as either positive or negative. Out of the 25,000
training instances we use 2,000 as validation data for hyperparame-
ter tuning. We use a vocabulary of the top 20,000 words. We pad or
truncate the reviews to be 200 words long. Our model consists of
an embedding layer that turns words in the reviews into real val-
ued vectors of dimension 128. The embedding matrix is randomly
initialized and updated during the training process. The embedding
layer is followed by and RNN layer with 128 units. We use the
Tanh approximation from Section 3.3 as activation function. The
last layer is a fully connected layer with two units and Softmax
activation. The training is performed on the plain data using Keras
and yields 86.47% accuracy on the unseen test data. We achieve the
same accuracy on the encrypted data.

We extract the learned weights and run experiments with differ-
ent batch sizes. In our experiments the noise growth exceeds the
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Table 1: Data transferred during encrypted classification
Batchsize Embeddings Noisy Refreshed Batch

ciphertext ciphertext

1 125MB 0.939MB 0.623MB 135MB
4 287MB 2.2MB 1.5MB 312MB
32 1,843MB 14MB 9MB 2,004MB
64 3,548MB 27MB 18MB 3,863MB
128 7,065MB 54MB 35MB 7,869MB
256 14,336MB 106MB 70MB 15,568MB

workable threshold after 27 timesteps. This means we need to add
communication between client and server seven times to refresh
the noise in order to classify the IMDb sequences of length 200.

The amount of data that needs to be transmitted depends on the
batch size. The encrypted embeddings are larger than the plaintext
data by a factor of 1,280. See Table 1 for different batch sizes. The
Embeddings column is the amount of data that is initially transferred
from the client to server. Noisy ciphertext gives the size of the data
the server sends to the client to be refreshed and Refreshed ciphertext
is the reencrypted answer. These are the values for only one refresh
operation. The Batch column is the total amount of data transferred
between client and server during classification of one batch which
requires seven refresh rounds.

The amount of data that needs to be transmitted initially makes
up the largest portion of the transfer. To run our network seven
noise removal communications are required. At a batch size of 256
the server sends 106MB to the client and the client responds with
70MB. One round of noise removal therefore requires 176 MB to
be transferred. All seven rounds take 1,232MB. Which is less than
10% of the initial transfer. The increase in size of the ciphertexts
is nearly linear. Smaller ciphertexts sizes carry more overhead per
instance than larger ones.

Table 2 lists the execution time for different batch sizes. The
times are given for encrypted, plain data and for the actual time
it takes to processes the batch as well as the resulting time per
instance. The noise removal is not performed by the client though.
It is simulated on the server. The measurements also do not include
the encryption and transfer of the embeddings. We can see that
increasing the batch size leads to lower per instance classification
time. The effect is lost when increasing the batch size from 128 to
256. On the plain data we still can see improvement after that point.
To get an accurate comparison the plain text measurements are per-
formed on the same implementation as the encrypted experiments.
It looks like the growth in execution time for the encrypted values
is exponential while the plain version appears to be logarithmic.
Our implementation performs best on encrypted data with a batch
size of 128 and worst with a batch size of one if we look at the
time per sample. The overhead is smallest though for one instance
per batch. Here the encrypted version is 40 times slower than the
plain version. For our optimal batch size of 128 the encrypted ver-
sion is 92 times slower. This is due to the different growth rates of
execution time for the encrypted and plain data.

Table 2: Run times of inference on IMDb test set.
Batch Encrypted Plain
Size (sample/batch) (sample/batch)

1 70.6s / 70.6s 1.83s / 1.8s
4 20.2s / 80.7s 0.496s / 1.99s
32 5.8s / 184.6s 0.072s / 2.30s
64 4.3s / 272.7s 0.055s / 3.52s
128 4.2s / 547.6s 0.046s / 5.89s
256 6.5s / 1658.7s 0.039s / 9.96s

5 RELATEDWORK
Badwai et al. [2] presented PrivFT a system for privacy preserv-
ing text classification built on Facebooks fasttext [24] (Joulin et al.
[24]). The main difference to our work is that we use a recurrent
architecture. In PrivFT the embedding operation is also not out-
sourced to the client. The client needs to one-hot encode each word,
encrypt it and send it to server where the embedding operation is
performed as a matrix multiplication. The message size is similar.
The inference time for single instance on the IMDb is higher in our
scenario but using larger batch sizes allows us to get a lower per
instance time. In contrast to our work, PrivFT features schemes for
training on encrypted data and a CKKS implementation with GPU
acceleration. Lou and Jiang created SHE [26] a privacy preserving
neural network framework based on TFHE. It offers support for
LSTM cells. The authors replace the computationally expensive
and high noise introducing matrix operations normally required
by LSTMs with much cheaper shift operations. Zhang et al. [39]
perform a different NLP task namely encrypted speech recognition
based on a CNN. The last step of the network that matches the
output to actual text is performed on the client side.

6 CONCLUSION
In this paper, we present an approach that allows the use of recur-
rent neural networks on homomorphically encrypted data based
on the CKKS scheme. We present a solution to perform NLP tasks
over encrypted data using recurrent neural networks, in our case
sentiment analysis on the IMDb dataset. We are able to achieve
this with no loss in accuracy compared to the plaintext model. This
is made possible by introducing communication between client
and server to refresh the noise. We trade network traffic for the
ability efficiently use word embeddings. Our future work aims at
investigating other recurrent architectures such as LSTM and GRU.
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