
FPGA-Based Debugging with Dynamic Signal
Selection at Run-Time

Gernot Fiala
Graz University of Technology

Graz, Austria
gernot.fiala@student.tugraz.at

Tobias Scheipel
Graz University of Technology

Graz, Austria
tobias.scheipel@tugraz.at

Werner Neuwirth
AVL List GmbH
Graz, Austria

Werner.Neuwirth@avl.com

Marcel Baunach
Graz University of Technology

Graz, Austria
baunach@tugraz.at

Abstract—For the development of FPGA-based automotive
systems, debugging of internal signals is necessary to detect errors
or to analyze/visualize the operation of the field programmable
gate array (FPGA) at runtime. Often, so called ”debug cores”
of the FPGA vendor are used for debugging. Xilinx Vivado is a
development environment offering an integrated logic analyzer
for statically selected signals. However, each time these input sig-
nals shall be changed, the whole workflow (synthesis, placement,
routing and generation of the bit stream) must be repeated, which
is very time consuming.

The scope of the present work is to develop a custom
and more flexible FPGA-based logic debugger: The Advanced
Inverter Debugger (AID) is a logic component, integrated into
the system under development, that can dynamically select signals
for the debugging process at run-time. The debugging process is
controlled by a user interface at a workstation, communicating
via UDP/IP over Ethernet. The AID is configurable with regard
to start/stop triggers and sample rate for each signal, and allows
long-term recording as well as visualization at the workstation.
For convenient use in the development of automotive control
systems, the AID is available as Matlab component for integration
into and synthesis with the target system.

Index Terms—automotive, debugging, FPGA

I. INTRODUCTION

In the automotive industry, electric engines are becoming
more and more important. For testing synchronous and asyn-
chronous engines, complex test benches are used, which are
able to set up different test conditions. These test benches use
FPGA-based inverters and controllers, which provide several
functionalities, e.g., pulse width modulation (PWM), phase-
locked loop (PLL), voltage and current control to power
the different synchronous and asynchronous engines. During
the development process, these inverters and controllers must
continuously be checked for correct operation, which is done
by debugging internal signals of the FPGA design.

For debugging, standard debug cores of the FPGA vendor
like the integrated logic analyzer (ILA) [1] provided by Xilinx
Vivado [2] are commonly used. The ILA core uses statically
selected input signals and settings for the debugging process. If
the input signals or the debugging settings need to be changed,
the internal structure of the ILA core is updated in the FPGA
design. Therefore, the whole workflow (synthesis, placement,
routing and generation of the bit stream) must be repeated,
which is very time consuming (especially for large FPGA
designs) and requires to stop and restart the system. To be more

flexible and not to interrupt running tests, improved debug
cores are required.

The present work introduces a custom FPGA-based logic
debugger, the Advanced Inverter Debugger (AID). The AID
can dynamically select signals for the debugging process
at run-time. The debugging process is controlled by a
user interface at a workstation. The debugging parameters
are sent from the workstation to the debug core on the
FPGA. The communication is done with UDP/IP (user
datagram protocol/internet protocol). The debug core decodes
the command information from the user interface and
autonomously starts the debugging process with the given
configuration. The sampled signal data is then sent from
the FPGA to the workstation and monitored with the user
interface. Optionally, the signal data can be logged in
comma-separated values (csv) files for long-term observation
and delayed analysis.

This paper is organized as follows: Section II shows related
work on debug cores. Section III gives an overview on
different concepts to implement such debug cores. Section IV
explains the structure and operation of the AID debug core.
Section V shows the resource usage of the debug core on
the FPGA. Section VI shows the test hardware on which the
debug core was tested. Section VII shows the user interface,
which controls the debug core and tests. Finally, Section VIII
concludes the paper.

II. RELATED WORK

Xilinx Vivado provides the ILA core, which allows
developers to put an integrated logic analyzer into their
FPGA designs. An ILA can monitor signals during the
execution of the system at a predefined sampling rate if
the signals meet predefined trigger conditions. The logic
overhead varies depending on the selected number of samples
and the defined input signals. The samples are stored on the
FPGA and sent via a JTAG interface to the workstation for
monitoring with Xilinx Vivado.

Debugging and validation of logic in FPGA designs was
also considered by various researchers. In [3], a method of
run-time debugging and monitoring of FPGAs is shown. An
embedded microprocessor is used to monitor internal signals

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



of the FPGA design. The connection between the signals and
the microprocessor works via the on-chip memory (OCM)
bus and the processor’s local bus (PLB) through the shared
memory.

Another method uses a scan-chain based approach [4]. A
watch-point capability is provided by inserting a scan-chain
into the FPGA design, which is configured as shift register.
With this method it is possible to change the watch-point
conditions at run-time without a recompilation of the FPGA
design. However, the monitored signals can not be changed
at run-time.

III. COMMUNICATION CONCEPTS FOR THE DEBUG CORE

The debug core was initially designed to debug internal
signals of inverters and voltage and current controller for
automotive test benches. To debug these internal signals
and to visualize the inverter and controller behavior, the
AID provides an interface for up to 300 possible input
signals. Out of these, 4 can be selected dynamically for
the debugging process at run-time. The 300 input signals
were chosen to have a large selection of the internal signals
of the controller. Due to the high number of signals, big
multiplexers are required. To lower the resource usage on
the FPGA, only 4 signals can be selected concurrently for
the debugging process. The debug core sends the sampled
signal data continuously to the user interface, depending on
the sampling frequency. Once started, this allows infinite
debugging processes.

For the inclusion of the debug core into the FPGA design,
3 different methods are discussed in this section.

A. Communication with UDP/IP and the ARM Processor
With this approach, the communication between the debug

core and the user interface at the workstation is done via
UDP/IP and the processing system (PS) [5] of an ARM
processor, shown in Fig. 1. The Ethernet interface of the
ARM processor is used for the communication with the
user interface. An UDP echo server is running as standalone
application on the ARM processor, which is responsible for
receiving and sending the UDP packages. This application uses
the Lightweight Internet Protocol (lwIP) library, which is a
network stack for embedded systems.

To connect the programmable logic (PL) with the PS of the
ARM processor, the Advanced eXtensible Interface (AXI) [6],
a general purpose input output (GPIO) [7] port, an interrupt
system (enabled interrupt controller), and the direct memory
access (DMA) are used. The processor RAM is used for
transferring data between the PS and the PL. The AXI GPIO
port enables the read operation from the RAM on the PL side.
The AXI-DataMover [8] reads the debugging parameters from
the RAM and routes them to the DebugCore block.

The connection from the PL to the PS is done with interrupts
and DMA. The sampled signal data is written via AXI-
DataMover into the RAM and the interrupt is set. The PS

processes the corresponding interrupt and reads the signal data
from the RAM, builds the UDP package and sends it to the
workstation with the user interface.

The lwIP library also allows to use the transmission control
protocol (TCP) for the connection between the ARM processor
and the workstation. However, due to lower communication
overhead with UDP/IP, smaller data packages can be sent
faster from the ARM processor to the workstation. Therefore,
UDP/IP was selected.

Fig. 1. Communication between the debug core and the user interface with
UDP/IP and the ARM processor.

B. Communication with UDP/IP and the AXI-Ethernet IP core

This approach uses the AXI-Ethernet [9] IP core for the
communication between the debug core and the user interface,
shown in Fig. 2. The debugging parameters are adjusted with
the user interface and sent with UDP/IP to the media access
control (MAC) interface. The AXI-Ethernet IP core from
Xilinx is used to receive the data and route it via an AXI-
Stream (AXIS) [6] bus to the DebugCore block. The sampled
signal data can be stored in registers to collect enough samples
for a UDP package. Then the collected signal samples are sent
via the AXIS bus to the AXI-Ethernet block, which converts
the AXIS data into data for the Ethernet transceiver and builds
and sends the UDP package to the workstation. The user
interface processes and monitors the signal data.

With this approach no PS and ARM processor is required.
There is also no need for the DMA to access the RAM
because the signal samples can be collected for a UDP package
in registers on the FPGA. This might slightly increase the
resource usage on the FPGA but can be accepted.

Fig. 2. Communication between the debug core and the user interface with
UDP/IP and the AXI-Ethernet IP core.



C. Communication with TCP/IP and the AXI-Ethernet IP core

This approach also uses the AXI-Ethernet IP core for the
communication between the debug core and the user interface,
shown in Fig. 3. The debugging parameters are sent with
TCP/IP from the user interface to the MAC interface. The
AXI-Ethernet IP core receives the data and routes it via
AXIS bus to the DebugCore block. TCP/IP allows bigger data
packages and more signal data can be sent to the user interface.
Therefore, sampled signal data can be stored in the RAM for
the TCP package payload. To write the signal data into the
RAM, the AXI-DataMover is used. When enough samples are
collected, the data is read from the RAM and transferred to
the AXI-Ethernet IP core. The Ethernet transceiver sends the
TCP package to the user interface at the workstation.

With this approach, no PS and ARM processor is required.
The RAM can be accessed with the AXI-DataMover and DMA
to collect the signal samples for the TCP package. This re-
quires a unit, which controls the write and read operations via
the AXI-DataMover. This concept is more complex compared
to the others, because memory access and the inclusion of the
AXI-Ethernet IP core is required.

Fig. 3. Communication between the debug core and the user interface with
TCP/IP and the AXI-Ethernet IP core.

To use the AXI-Ethernet IP core, a licence for the Xilinx
Tri-Mode Ethernet Media Access Control (TEMAC) [10] is
necessary.

D. Decision for the Implementation

The idea was to send the sampled signal data as fast as
possible to the workstation to minimize the used memory
resources on the FPGA. With UDP/IP, packages can be sent
faster compared to TCP/IP and potential package loss with
UDP was not an issue during our evaluations and in-field tests.
Both concepts with the AXI-Ethernet IP core are processor
independent, which is a big advantage for the integration of
the AID into different FPGA designs. Unfortunately, due to
the missing TEMAC licence during the development time,
the AXI-Ethernet IP core couldn’t be used and both concepts
with the AXI-Ethernet IP core were not possible for the
implementation. To evaluate the functionality of the AID and
to analyze the communication with UDP/IP, the decision was
made to implement the first concept, ”Communication with
UDP/IP and the ARM processor”.

IV. DESIGN AND IMPLEMENTATION OF THE DEBUG CORE

A. Structure of the Debug Core

The debug core was developed in VHDL (very high speed
integrated circuit hardware description language). It is built
with different units shown in Fig. 4. The MM2S-Datamover
interface is the AXIS interface for the Memory Mapped to
Stream (MM2S) transfer. The interface is used, when the AXI-
DataMover reads the debug parameters from the RAM and
transfers it to the debug core. With the unpackage (UNPKG)
Module, the AXIS data is decoded into the different param-
eters to set up the debugging process. The decoded signals
are routed to the Debug Core Module, which is the heart
of the debug core. It is responsible for the trigger, signal
selection and signal sampling. The Debug Core Module unit
was developed with Matlab [11] SIMULINK [12]. The VHDL
code was generated with the Matlab model and included into
the Vivado project. The sampled signal values are transferred
to the package (PKG) Samples unit, which builds the AXIS
data stream. The AXIS data stream is transferred via the
Stream to Memory Mapped (S2MM) Datamover interface to
the AXI-DataMover, which writes the data into the RAM. The
Datamove control (CTL) unit controls the AXI-DataMover
operations. It sets an interrupt, when the debug parameters are
successfully read from the RAM and transferred to the debug
core. It also signals the PS with an interrupt when signal data
can be read from the RAM to build the UDP package and
send it to the workstation.

Fig. 4. Debug core structure on the FPGA

B. Implementation of the debug core

The debug core has up to 300 possible input signals, each
32 bits wide. They are combined to a signal interface and 4
signals of them can be selected for the debugging process.

The signal selection is part of the Debug Core Module
block. To select the 4 signals, 4 big multiplexers are used. In
Matlab SIMULINK, a 300:1 multiplexer can be built very eas-
ily, but when the VHDL code is generated and synthesized, the
multiplexers are built with the available F7 and F8 multiplexers
of the FPGA. Since these multiplexers are commonly needed
for the main functions of the controllers and inverters, our



300:1 multiplexers are designed to us Look-up Tables (LUT).
This was done by using bit wise logical disjunction.

To select the signals for the debugging process, the control
information from the user interface is decoded and routed as
selection signals into the signal selection blocks. Depending
on the value, one of the 300 input signals is selected as output
signal. The structure of the signal selection is shown in Fig.
5. The signal selection can be done at run-time.

Fig. 5. Structure of the signal selection

The selected signals can be sampled with the adjusted
sample frequency. The operation frequency is 1 MHz for debug
core but all modules using the AXIS interface are operating
at a frequency of 100 MHz. The maximum sample frequency
is limited to 1 MHz and the lowest sample frequency is 1
kHz. Overall, there are 25 different sampling frequencies for
the debugging process available, which can be selected in the
user interface. An internal counter controls the sample points
depending on the adjusted sample frequency. The functionality
is comparable to a frequency divider.

The number of samples defines how long the debugging
process is active. The selectable values are between 1024 and
999424 samples. The step size is 1024. An internal counter
increases with each sample and when the adjusted number
of samples is reached, an internal reset occurs, which stops
the debugging process and resets all of the debug core sub
modules. This operation mode is called normal mode. There
is a second operation mode, the infinity mode, in which the
sampling process is active until the stop command information
is sent from the user interface to the FPGA.

To influence the start condition, a trigger can be enabled.
There is a pre- and a post-trigger available. The post-trigger
activates the sampling process immediately when the trigger
condition is met and the sampled signal data is sent to the user
interface. The pre-trigger continuously saves 100 samples per
signal into a ring buffer. Once the trigger condition is met, the
signal data is sent from the ring buffer to the user interface.
This allows to also analyse the signals before the actual trigger
event.

To access the Block RAMs (BRAM) of the ring buffer,
counters are used as write and read addresses. When the start
debugging command was received, the write address increases
with each sample point. If no trigger event happens and 100

signal values are written into the BRAMs, the write address
overflows and starts at 0 to overwrite the old signal values. The
read address starts to increase and follows the write address
with a constant gap. The read address also increases, when the
trigger condition is met. Then, the values of the ring buffer
are used to build the UDP packages. This gives information
about the signal behaviour before the trigger event occurs.

Trigger condition can be set for the post- and pre-trigger.
The available trigger conditions are above, lower or equal
to the trigger value, shown in Table I. The trigger signal is
always the first selected signal. When no trigger is active,
the sampling process starts directly after sending the start
debugging command information from the user interface to
the FPGA.

TABLE I
TRIGGER TYPES OF THE DEBUG CORE

Trigger Type Trigger condition
above value signal value is above trigger value
lower value signal value is lower than trigger value

equal to signal value is equal to trigger value

C. Communication between the Programmable Logic and the
Processing System of the ARM processor

The communication from the PS to the debug core on
the FPGA is done with AXI-GPIO ports, shown in Fig. 4.
They support a configurable I/O channel width of up to 32
bits. These AXI-GPIO ports can be addressed with driver
files from the PS. AXI-GPIO ports are used to initialize the
read operation from the RAM with the AXI-DataMover. To
configure the transfers between the AXI-DataMover and the
RAM also AXI-GPIO ports are used.

The communication from the debug core to the PS is done
with interrupts. The first interrupt signals the PS that the debug
parameters were successfully read from the RAM and the
AXI-GPIO port for initializing the read operation can be reset.

The second interrupt signals the PS, that the sampled
signal values were successfully written into the RAM and
can be read with the PS, to build the UDP package and
send it to the workstation. To prevent simultaneous memory
access, 2 memory addresses are used alternately to write the
sampled signal data into the RAM. The DataMoveCTL block
controls the alternating address change. Multiple samples can
be collected for the UDP transfer, before the interrupt is set.
The adjustments for this can be made in the IP settings of
the DataMoveCTL block or with the PS and AXI-GPIO ports.
Currently 32 samples are used to build the UDP package. One
sample contains the package type, sample number (timestamp)
and the 4 signal values.

D. Communication between the user interface and the ARM
processor

The communication between the user interface and the
ARM processor is done with UDP/IP. Different package
types are defined, to distinguish between control information,



version number and signal data. The package type defines,
which information are transmitted with the UDP package. The
different package types are shown in Table II. A standalone
application with a UDP echo server is running on the ARM
processor. It receives and sends the UDP packages.

If a UDP package is received and the command data are
written into the RAM, the AXI GPIO port to enable the read
operation is set. The corresponding interrupt is processed by
the interrupt system and the program waits for the interrupts to
read the signal data from the RAM to build the UDP package
and send it to the workstation.

The version number request is directly processed by the PS,
which sends the version number back to the user interface.

TABLE II
DEFINITION OF THE PACKAGE TYPES FOR THE UDP CONNECTION

Package Type Description
0 command information to start the debugging process
1 signal data
3 command information to reset the debugging process
5 request for the version number
6 version number acknowledgement

V. RESOURCE USAGE OF THE DEBUG CORE ON THE FPGA

The signal selection logic is the biggest part of the debug
core. The multiplexers with 300 input signals, each 32 bits,
need a significant amount of resources on the FPGA in order to
allow selection flexibility. To lower the resource usage, a debug
core with 40 possible input signals was created. A comparison
between the AID300 and AID40 is shown in Table III. The
FPGA on the ZedBoard [13] was used to get an overview
of the used resources. The biggest differences between the
AID40 and AID300 are visible at the ”Slice LUT”, ”Slice”
and ”LUT as Logic” counters. This differences are caused by
the reduction of the input signals. However, no F7 and F8
multiplexers are required, because the signal selection logic
was developed to avoid them.

TABLE III
RESOURCE USAGE OF THE AID40 AND AID300 ON THE ZEDBOARD

Resource ZedBoard AID40 AID300
Slice LUT 53200 2055 5616

Slice Register 106400 1420 2500
Slice 13300 755 1730

LUT as Logic 53200 2055 5616
LUT Flip Flop Pairs 53200 257 257

Brock RAM Tile 140 2 2
DSP 220 1 1

VI. TEST-HARDWARE

The debug core was tested with the ZedBoard [13]. The
ZedBoard is a development board for the Xilinx Zynq-7000
System on Chip (SoC) [14]. It contains a dual-core ARM
Cortex-A9 processor and a Z-7020 FPGA [15]. Several inter-
faces like, e.g., Universal Asynchronous Receiver Transmitter

(UART), Universal Serial Bus (USB), JTAG, High Definition
Multimedia Interface (HDMI), Video Graphics Array (VGA),
Audio I/O, Ethernet are supported and can be used for
different kinds of applications. It also includes Double Data
Rate Random-Access Memory (DDR3-RAM), an interface
for Secure Digital (SD) memory card, Light-Emitting Diodes
(LEDs), switches and I/O interfaces. With the processing
system the different components can be activated and the
programmable logic of the FPGA can be configured.

VII. USER INTERFACE AND TESTS

The user interface controls the debug core on the FPGA.
All adjustments for the UDP connection and the debugging
process can be made here. The UDP connection is set up
with the IP address, incoming and outgoing port numbers.

To get the signal names from the FPGA design, which
are connected to the debug core, a signal configuration file
generator was implemented with C#. This file generator
extracts the input signal names with the interface name of
the debug core of the FPGA design and maps them to the
input port numbers to generate a csv configuration file. This
configuration file can be loaded into the user interface to
display the signal names, which can be selected for the
debugging process.

The user interface was programmed with C# and tested with
the ZedBoard. Fig. 6 shows the user interface with the different
settings for the debugging process. The debugging process
was started with 8192 samples and a sample frequency of
1 MHz. The post-trigger is selected as trigger condition and
data logging is enabled, which generates a csv file and saves
the signal data with the debugging settings.

Fig. 6. Testing the debug core with the ZedBoard and the signal generator

After each received 999424 samples, a new file is
automatically created. This is important, when the debugging
process is running in infinity mode. The csv files with the



logged signal data can also be loaded and monitored with the
user interface for delayed analysis.

To test the debug core, a signal generator is used to simulate
a complex FPGA-based automotive system. It generates 300
test signals, which are used as input signals for the debug
core. The first 20 test signals are simple counters, which start
at different values and increase with different frequencies. The
other test signals are constants to test the signal selection
of the debug core. The test setup is a hardware in the
loop test by running the FPGA design on the FPGA of the
ZedBoard. The debugging process is started with the adjusted
debugging settings of the user interface. A receiving thread
and a processing thread are used to receive the UDP packages
and to process, log and monitor the signal data. It works well
for lower sample frequencies and high sample frequencies with
lower sample numbers shown in Fig. 7. The sample frequency
is adjusted to 1 MHz and the number of samples is set to
60416. However due to UDP/IP, small packages can be sent
very fast from the FPGA to the workstation and when a large
number of samples and a high sample frequency (1 MHz or
500 kHz) are adjusted, sample loss occurs. During the tests, the
incoming UDP packages were analyzed with Wireshark [16].
Each UDP package arrived successfully at the workstation but
the receiving thread gets blocked sometimes by other threads
and can not process the incoming UDP packages fast enough
and the samples are lost. This is shown in Fig. 8 with the
adjusted sample frequency of 1 MHz and 100352 samples.
UDP packages can also arrive in the wrong order because UDP
does not support packet sequencing. Therefore, the packages
are numbered by the AID upon transmission.

Fig. 7. Testing the debug core with the ZedBoard with 1 MHz sampling rate
and 60416 samples

VIII. CONCLUSION

This paper shows a custom FPGA-based debug core, the
Advanced Inverter Debugger (AID), which was initially devel-

Fig. 8. Testing the debug core with the ZedBoard with 1 MHz sampling rate
and 100352 samples

oped to debug FPGA-based inverters and controllers. The AID
is able to dynamically select signals for debugging FPGA-
based embedded automotive systems at run-time. In order to
be flexible with the signal selection, the possible number of
input signals has to be large. However, the multiplexers for the
signal selection requires more resources on the FPGA, which
might not be available.

The AID is controlled by a user interface at a workstation.
The communication is done with UDP/IP and the processing
system (PS) of the ARM processor. To transfer the data be-
tween the programmable logic (PL) and the PS, the processor
RAM is used.

The limitations of this approach are the receiver of the
workstation and the PS of the ARM processor. With UDP/IP,
packages can be sent very fast but the user interface at the
workstation has problems to process the data at high sample
frequencies. The receiving thread of the user interface is
blocked sometimes, which leads to sample loss. There are also
limitations when the PS is used for other operations beside the
AID. Some interrupts of the debug core might no longer be
processed, UDP packages are not sent, and samples get lost.

For the future, the TEMAC license can be acquired to use
the AXI-Ethernet IP core. With this IP core, the communica-
tion can be done without the PS but the flexibility of the AID
remains the same. Also, the communication can be changed
to TCP/IP. With TCP/IP, bigger packages can be sent and the
receiver has more time to process the received data.

ACKNOWLEDGMENT

This research was supported by AVL List GmbH, Graz,
Austria.

REFERENCES

[1] Xilinx, “Integrated logic analyzer v6.1,” Xilinx, Apr. 2016.
[Online]. Available: https://www.xilinx.com/support/documentation/ip
documentation/ila/v6 1/pg172-ila.pdf



[2] ——, “Xilinx vivado,” Xilinx. [Online]. Available: https:
//www.xilinx.com/products/designtools/vivado.html

[3] A. Penttinen, R. Jastrzebski, R. Pöllänen, and O. Pyrhönen, “Run-time
debugging and monitoring of fpga circuits using embedded microproces-
sor,” in 2006 IEEE Design and Diagnostics of Electronic Circuits and
systems. Prague, Czech Republic: IEEE, Apr. 2006, 1-4244-0185-2.

[4] A. Tiwari and K. A. Tomko, “Scan-chain based watch-points for
efficient run-time debugging and verification of fpga designs,” in 2003
Proceedings of the ASP-DAC Asia and South Pacific Design Automation
Conference. Kitakyushu, Japan: IEEE, Jan. 2003, 0-7803-7659-5.

[5] Xilinx, “Processing system 7 v5.5,” Xilinx, May 2017. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip documentation/
processing system7/v5 5/pg082-processing-system7.pdf

[6] ——, “Axi reference guide,” Xilinx, July 2017. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip documentation/
axi ref guide/latest/ug1037-vivado-axi-reference-guide.pdf

[7] ——, “Axi gpio v2.0,” Xilinx, Oct. 2016. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip documentation/
axi gpio/v2 0/pg144-axi-gpio.pdf

[8] ——, “Axi datamover v5.1,” Xilinx, Apr. 2017. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip documentation/

axi datamover/v5 1/pg022 axi datamover.pdf
[9] ——, “Axi 1g/2.5g ethernet subsystem v7.0,” Xilinx, Apr. 2017.

[Online]. Available: https://www.xilinx.com/support/documentation/ip
documentation/axi ethernet/v7 0/pg138-axi-ethernet.pdf

[10] ——, “Tri-mode ethernet mac v9.0,” Xilinx, Apr. 2018. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip documentation/
tri mode ethernet mac/v9 0/pg051-tri-mode-eth-mac.pdf

[11] MathWorks, “Matlab.” [Online]. Available: https://de.mathworks.com/
products/matlab.html

[12] ——, “Simulink.” [Online]. Available: https://de.mathworks.com/
products/simulink.html

[13] AVNET, “Zedboard.” [Online]. Available: http://zedboard.org/product/
zedboard

[14] Xilinx, “Zynq-7000 soc data sheet: Overview,” Xilinx, July. 2018.
[Online]. Available: https://www.xilinx.com/support/documentation/
data sheets/ds190-Zynq-7000-Overview.pdf

[15] ——, “Zynq-7000 soc z-7020 data sheet,” Xilinx, July. 2018. [Online].
Available: https://www.xilinx.com/support/documentation/data sheets/
ds187-XC7Z010-XC7Z020-Data-Sheet.pdf

[16] Wireshark-Community, “Wireshark.” [Online]. Available: https:
//www.wireshark.org/


