

 © Matevska, Noack, Reinhold, Diekmann 2020

Decentralised Avionics and Software Architecture
for Sounding Rocket Missions

Jasminka Matevska
Hochschule Bremen
Bremen, Germany

jasminka.matevska@hs-bremen.de

Manuel Reinhold
Hochschule Bremen
Bremen, Germany

mreinhold@stud.hs-bremen.de

Enrico Noack
Airbus Defence and Space GmbH

Bremen, Germany
enrico.noack@airbus.com

Eike-Kristian Diekmann
Hochschule Bremen
Bremen, Germany

ediekmann@stud.hs-bremen.de

Abstract — This paper describes our ongoing work in the
context of the TEXUS/MAXUS sounding rocket program.
Based on analysis of requirements, technologies and tools, we
propose a solution to cope with increasing number of software
applications and hardware components due to decentralisation
of the communication system based on the OPC UA
communication standard for distributed services. Our main
goal is to provide an efficient avionics and software architecture
configuration for both the initial development and the
maintenance while assuring consistency and increasing
availability and reliability of the system for different experiment
and mission scenarios.

Keywords — decentralised avionics and software architecture,
sounding rockets, hardware / software interfaces, sensor data,
experiment control, decentralised / distributed services, “Industrie
4.0”, OPC UA, configuration, monitoring, error handling,
availability, and reliability

I. INTRODUCTION

Since April 2017, the flight of the MAXUS 9 rocket, a
framework from the „Industrie 4.0“agenda [1] is used to
control the spacecraft experiments. This agenda provides a
platform for automation and data exchange in industrial
context. Similar tasks are required for spacecraft operation.
For example, on-board each TEXUS/MAXUS sounding
rocket, a control of three to five experiments is performed. The
responsible scientists from various disciplines and experiment
engineers monitor these experiments. Each experiment has to
be connected to the system and its sensor data has to be
collected in order to establish the appropriate control. That is
why it is obvious that an „Industrie 4.0“platform is a good
candidate as a reference system for spacecraft control [2]. The
transition to the new system enables features that are very
useful and reasonable, but it is challenging since it requires
new concepts as shown in this paper.

In the conventional TEXUS/MAXUS sounding rocket
system (since December 1977), a purely centralised data
exchange between space and ground was in use. There was no
network connection between the flight and ground computer.
For the data exchange, a proprietary communication protocol
was in use, which required specialised hardware. It was not
possible to operate a single experiment without the specialised
hardware.

The replacement of the proprietary communication with
the standardised Ethernet/IP (Internet Protocol)-based
interface and OPC UA (Open Platform Communications
Unified Architecture) [3], [4] enables the operation of an
experiment with just one standard laptop (or PC). The decision

Fig. 1. TEXUS/MAXUS Avionics and Software Architecture

for implementing OPC UA is based on different trade-offs
performed by experts and students documented within the
master thesis [5]. The reference avionics and software
architecture is presented in Fig. 1.

Furthermore, now it is possible to perform the experiment
on various execution platforms such as parabolic flight, drop
tower and even in the laboratory from the scientists
themselves. However, this decentralisation is leading to two
basic challenges [6], [7], and [8].

The first challenge arises when the experiment goes on a
campaign on its own. Some of the “home” services must be
also available during this campaign. That can be as well

REMA164
Schreibmaschinentext
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

simple services like DHCP/DNS (Dynamic Host
Configuration Protocol / Domain Name System), NTP
(Network Time Protocol), as also some more sophisticated
services like backup services or telemetry data storage.
Therefore, parts of the services must join the campaign or
must be globally available. Another important point at this
scenario is the consistency of the overall system. The
telemetry data / software produced during the particular
campaign must be re-integrated into the system that stayed at
home.

The second challenge is the growing number of
computers. Due to distribution of services, the different
functions are deployed on different hardware platforms.
Even the Ground System Equipment has today a separate data
interface. While in the past, only two computers where used
(one on-board and one on ground) to control the experiment,
today more than six computers are common. Three are in use
in the flight system (experiment control, data services, video
services) and three on ground (Ground Support Equipment
with an own data interface, separate control stations for
scientists and engineers). The overall network is hosting today
more than 30 computers, whereby each single is important for
the mission success. We need to keep track of each single
service. Additionally, the system configuration is changing
quickly. Every two years three sounding rockets with different
experiments are launched, each having its own configuration
adapted to the specific scientific needs. The growth of
hardware and software hast to be managed without decreasing
availability and at the same time without increasing the effort
to maintain such a system.

This paper presents our ongoing work on appropriate
concepts in order to answer these requests.

II. REQUIREMENTS ON THE REFERENCE ARCHITECTURE

In order to meet the increased requirements on the ground
system a reference decentralised avionics and software system
architecture is developed. By keeping the effort for
configuration, maintenance and update of the system as low
as possible, we can guarantee a permanent stability and
consistency thus providing high availability and reliability of
the system. .

The requirements include several criteria that shall be met
by the reference architecture. These are listed as follows.

A. Controlled Environment / Scenarios

The system functions shall stay stable and comprehensible
in the following scenarios:

1) Ground testing with an experiment in the laboratory

2) Scientific tests with an experiment on a parabolic
flight

3) System tests with different experiments

4) TEXUS/MAXUS Flight Operations

5) Post-Flight Evaluation

B. Modular Architecture

Changes to a configuration in a particular scenario (e.g.
software updates) shall not affect the correctness,
functionality and executability of other configurations.

C. Recovery

“An error is that part of the system state that can cause a
subsequent failure. An error is detected if its presence is
indicated by an error message or error signal” [9]. If an error
occurs in the system, this shall be recognized and a
corresponding action should be proposed or executed in
order to prevent any failure. Furthermore, if certain software
is no longer functional, it shall be possible to easily and
quickly recover from the failure and set up a new system.
This system shall be identical to the initial system before its
failure.

D. Transparent Interface

After recovery, the user shall have an unmodified interface
(hardware & software configuration). Windows 10 is used as
the operating system. The reason for this is that users can
operate and manage Windows machines themselves. In
addition, software is used that is only available for Windows.

E. Mobile Systems

It shall be possible for the ground system to be used on
different locations (for different scenarios) with a full
functionality. The system and also the required services must
be available offline during a mission

F. Effort

The effort for the configuration and maintenance of new
system shall be as low as possible. The resulting costs can be
considered secondary. Here the trade-off between costs and
effort has to be considered. The reduced effort can save
working hours, which the employees can use efficient for
other engineering work. This finally reduces the overall costs.

G. Availability / Reliability

“Availability is a system’s readiness for correct service.
Reliability is a system’s ability to continuously deliver correct
service” [9]. In order to carry out any space and thus a
sounding rocket mission, many different sub-systems have to
be available and properly work together. Starting with an
appropriate mission, spacecraft and sub-system design to the
space mission operation, the avionics and software system
components are the link between the spacecraft and the
Ground Utilities. Therefore, we have to ensure that they are
available and reliable operating as specified.

III. PROPOSED CONCEPT

We performed an analysis of the requirements, suitable
technologies and tools in order to find an appropriate solution.
We decided that a DevOps (Development/IT-Operations)
toolchain/pipeline is suitable for fulfilling the criteria, as it is
capable of automating the setup of user instances as far as
possible. In a trade-off, we compared several concepts. We
analysed the advantages and disadvantages of the considered
concepts and their suitability for meeting the requirements.
Subsequently, a decision was made in favour of the proposed
concept. For the TEXUS/MAXUS specific environment, a
pipeline built of the tools mainly from HashiCorp
(https://www.hashicorp.com/) is considered suitable.
HashiCorp provides products for the provisioning and
configuration of individual systems up to system landscapes.
An optimal solution can be achieved with the tools Packer,
Vagrant and Ansible. Ansible was not developed by
HashiCorp, but is an important part of the pipeline.

A. Tools

 Packer is used to create machine images. These
images can be created from a single source
configuration for multiple platforms such as Amazon
Machine Images (AMI) for Amazon Elastic Compute
Cloud (EC2), VMDK (virtual discs) and VMX
(configuration files) for VMware or OVF (Open
Virtualization Format) exports for VirtualBox.

 Vagrant is an application for creating and managing
virtual machines (VM). With Vagrant it is possible to
create and manage complete virtual machine
environments with a single workflow. This drastically
reduces the setup time of the development
environment.

 Ansible is a tool that automates the configuration and
administration of systems. This ranges from simple to
highly complex tasks. Only SSH (secure shell) access
is required to access remote systems and the system
can be managed without any additional software.

B. Architecture

For the implementation, a server is set up for configuration
and deployment. The server has the tools for provisioning,
configuration, execution, and testing of VM images as
mentioned in the previous section. The required software and
the fully set up VM images are made available to the servers,
laptops and computers in the network, using file share service.
The provisioning of the VM images is handled by the tool
Packer. Packer uses files in JSON (JavaScript Object
Notation) and XML (Extensible Markup Language) format
for the description. The subsequent configuration of the
provisioned VM images is done with Ansible.

Depending on the component, different playbooks are
used, which support the required software installations and
execute them. After completion of the VM Images, this can be
tested with Vagrant. Using the command line, the Vagrant tool
can start and run a virtual machine in Virtualbox in minutes.
This allows the engineer to test the functionality of the virtual
machine. Since no automated tests are available for
Infrastructure as Code, the only way to do this is to manually
review the built virtual machine. The effort for this is limited
to a minimum. Once the virtual machine has been tested, it can
be made available to the other engineers and scientists. For
this purpose the image is released in the file share. The written
code is also committed and pushed into the Git repository for
versioning. The underlying concept of this architecture is also
called Immutable Infrastructure. A schematic procedure is
presented in presented in Fig. 2.

The chosen concept ensures that the requirements are met
very well. The controlled environment can be guaranteed by
using Infrastructure as Code, because the state of the system
is always identical, as it is never modified after deployment,
thus ensuring the transparent interface.

Since configurations are encapsulated in a virtual
machine, it can be ensured that other configurations are not
affected. This also makes it easier to recover failed systems
and configurations. In addition, online services have been
avoided as far as possible for the use of the concept, so that
offline operation is possible.

Due to a high degree of automation and the use of open source
tools, the resulting effort can be kept low.

Fig. 2. Concept Immutable Infrastructure

C. Other considered Architectures

Another approach was to outsource all systems and
services to a public cloud. From a technological point of view
it would be a good approach. Provisioning and configuration
would also be a lot better and easier. The shortcoming of this
option is that the system would no longer function or be
accessible in offline mode.

The On Premise Configuration was also considered. Only
the tool Ansible would be necessary. The disadvantage of this
approach is that the actually consistent setup is disturbed by
manual actions of users (installation of additional software,
misconfigurations). Correcting these actions individually
would be very time-consuming.

IV. IMPROVING AVAILABILITY / RELIABILITY

A high level of availability of all systems is required to
operate the ground station. System errors and lack of resources
must be recognized in a short time or even predicted in order
to be able to take countermeasures and prevent a system
failure. To assess the system status, information about the
systems have to be recorded and evaluated according to
predefined rules.

The collected information has to be integrated into the
system communication interface concept in use. The
TEXUS/MAXUS project uses the open “Industrie 4.0”
standard OPC UA to provide, for example, telemetry data and
the data from scientific experiments. We are working on
extending the existing monitoring system, in order to integrate
it into the OPC UA infrastructure and include monitoring data
analysis. Fig. 3 shows the proposed components extending the
existing system.

Fig. 3. TEXUS/MAXUS Error Detection Architecture

A. Information Collection

The telemetry data and data from the experiments are
already provided as OPC UA nodes. Additional necessary
information shall be collected from infrastructure,
development stations and other PC systems. At
TEXUS/MAXUS, these systems are mainly operated with
Windows operating systems. On these systems, so-called
agents, that implement Windows Management
Instrumentation (WMI), are used to collect necessary
information. Furthermore, our systems collects information on
processes, services, resources such as CPU, RAM, hard disk
space, network status, etc. They aremade available as OPC
UA nodes shown as “Services & Resources” as well as
“Adapter OPC UA” in Fig. 3.

B. Information Rating

The information provided can be fetched centrally from
the Health Status Server via the OPC UA gateway. This
information is then called up by pre-processing, where error
detection and error evaluation is performed. If necessary,
measures for problem solving are proposed or carried out.
Furthermore, a distinction hast to be made between different
application scenarios in order to select the corresponding
method.

C. Relevant Scenarios

We consider the application scenarios 1) Ground testing
with an experiment in the laboratory, 3) System tests with
different experiments and 4) TEXUS/MAXUS Flight
Operations from section II.A for the monitoring and analysis
of the system.

V. ERROR HANDLING

According to the requirements, we propose the following
rule based error handling approach.

A. Error Detection

The approach of an expert system based on a knowledge
database filled by specialists was chosen for error detection.
Since a rocket launch is a rare event, AI (Artificial
Intelligence) approaches such as neural networks or deep
learning are only suitable to a limited extent, since many
training data is required there. In addition, operators and
developers are required to ensure that errors are under the
control of specialists. A distinction is made between error
scenarios because the different scenarios run different systems
and processes and intentionally show different behaviour.

B. Error Rating

An error evaluation takes place depending on the
application scenario. The criticality differs depending on the
application scenario and is divided into the following
categories according to VDMA (Verband Deutscher
Maschinen- und Anlagenbau e. V.) standard sheet 24582 [10]:

 Defect / error

 Critical condition

 Warning

 Good

 No status statement

C. Error / Fault / Failure Occurrence, Scenario Definition
and Classification

TEXUS/MAXUS developers store error, fault and failure
occurrences, identified scenarios and their classification using
common tools such as Microsoft Excel. The assessment of the
monitoring and analysis system is based on these entries.

D. Recovery Actions

If an error announces itself by a fault or a failure has
already occurred, the monitoring system reports this event
with the corresponding criticality and recommends actions to
remedy the problem. In addition, the failure will be traceable
hierarchically to the fault as the origin of the error. This helps
to narrow down the errors and correct them. Measures and
rules for detecting and correction errors are provided by
experts in the knowledge and rule set database.

By continuous monitoring of all systems with appropriate
recovery actions in the case of errors and failures, we can
achievehigh availability and reliability of the system.

SUMMARY

This paper shows a work in progress within the
TEXUS/MAXUS sounding rocket program. A standardised
reference system based on “Industrie 4.0” OPC UA
communication platform is facing new challenges due to
distribution of services, and increasing number of software
applications and hardware components (mainly PCs and
laptops). The configuration and maintenance of the systems
for different experiments and mission scenarios shall be
provided in an efficient and consistent way, monitoring,
information collection and error handling including recovery
mechanisms shall be implemented in order to improve the
availability of the systems. Based on requirements,
technology and tool analysis we propose an appropriate
avionics and software architecture for sounding rocket
systems and missions. Currently we are working on
implementation of the proposed solutions.

REFERENCES
[1] Bundesministerium für Wirtschaft und Energie, Bundesministerium

für Bildung und Forschung. Plattform Industrie 4.0.
https://www.plattform-i40.de.

[2] E. Diekmann, M. Reinhold, J. Matevska, E. Noack. „Idustrie 4.0 in der
Raumfahrt“. Deutscher Luft und –Raumfahrt Kongress 2018. „Luft-
und Raumfahrt – Digitalisierung und Vernetzung“. Sep. 2018.

[3] OPC Unifed Architecture Foundation. url: https://opcfoundation.org/

[4] Freeopcua Project. OPCUA Server and Client implementation. Aug.
2017. url: http://freeopcua.github.io/.

[5] P. Kathmann, J. Scheichel. Masterthesis: „IP-Kommunikation auf
Forschungsraketen“. Hochschule Bremen. Sep. 2017

[6] J. Matevska, “ibacus (IP-BAsed CommUnication in Space)”,
Presentation ESC Kiruna, Mai 2018.

[7] P. Grashorn, A. Stein, E. Noack, „TEXUS 2.0: Neue Konzepte für
Raketenexperimente in der Zukunft“, Presentation ESC Kiruna, Mai
2018.

[8] E. Noack, J. Matevska. “TEXUS made in Bremen - Neues Datensystem
für TEXUS kommt aus Bremen“, Presentation, Sternstunden 2018.

[9] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. In: IEEE
Transactions on Dependable and Secure Computing 1, 2004, Nr. 1, S.
11 – 33

[10] VDMA Verband Deutscher maschinen- und Anlagenbauer e. V.
Einheitsblatt 24582: Feldbusneutrale Referenzarchitektur für
Condition Monitoring in Fabrikautomation, Berlin: Beuth Verlag
GmbH, April 2014

