
Maintenance of Long-Living Smart Contracts
Matthias Lohr

CCRDMT, University of Koblenz-Landau
Koblenz, Germany

matthiaslohr@uni-koblenz.de

Sven Peldszus
University of Koblenz-Landau

Koblenz, Germany
speldszus@uni-koblenz.de

Abstract—In recent years, blockchains became widely known
for offering immutable and trust-free storage of arbitrary in-
formation. Blockchains also leverage smart contracts, a concept
for executing program code for modifying the blockchain state.
While the characteristics of a blockchain, especially immutability,
enable reliability in a trust-free environment, it hinders the
maintenance of smart contracts itself.

With the increasing number, size, and lifetime of smart
contracts, they could be considered to be long-living software.
Therefore, it might become necessary to apply common tech-
niques from software engineering to maintain smart contracts.
However, updating smart contracts residing within the immutable
blockchain data raises an interesting challenge.

In this work, we analyze whether the assumption of smart
contracts being long-living is true, study how immutable smart
contracts are maintained in practice and elaborate the challenges
appearing due to these maintenance practices.

Index Terms—blockchain, smart contract, software engineer-
ing, maintenance, security

I. INTRODUCTION

Blockchains are considered to offer an immutable storage
for arbitrary data in a decentralized manner. In addition to
the widely known use case as crypto currency, it is also
possible to store the code and the result of executable programs
called smart contracts. Due to the property of immutability of
blockchains and thus also of the smart contracts stored, and
due to the determinism of the execution of smart contracts, it is
possible to validate execution results, which is the underlying
concept of a blockchain. The immutable storage of smart con-
tracts on a blockchain makes the contracts available forever.
The fact of smart contracts being available and executable
forever might qualify them as long-living software. However,
a system is not necessarily long living only because of its
implementation being stored and executable over a long period
of time. There are additional factors like maintenance and
active usage that have to be considered.

One of the biggest issues most long-living systems in
the software context have to deal with, is structural decay
due to software aging [1] resulting in the formation of de-
sign flaws [2]. Usually, long-living systems are subject to
continuous changes due to bug fixes, adoption to changing
environments, or extension with new features. When using
the blockchain for storing smart contracts, resulting from the
immutability property, it is not possible to update or delete
smart contracts. Therefore, there is no chance of fixing bugs
or adding new features once a smart contract is deployed to
the blockchain. However, this implies that a smart contract has

to be bug free and feature complete starting from the first time
it is deployed on the blockchain.

While the two challenges of implementing bug free and
feature complete smart contracts could theoretically be solved
for very small and finalized functionalities, changes in the
environment might require a change in the software system
but can neither be foreseen nor planned. These environmental
changes might include legal changes (e. g. GDPR [3]), changes
of underlying system (e. g. changes of how smart contracts are
executed on the respective blockchain instance), new attacks
against security mechanisms that have been assumed to be
secure (e. g. DES [4]), etc. To keep the smart contract legal or
secure it has to be changed.

In this work, we discuss the challenges in maintaining long-
living smart contracts. We first elaborate the assumption that
smart contracts can be considered as long-living software. We
then discuss, which mechanisms are available to update smart
contracts and how developers can deal with the urge to update
smart contracts.

The remainder of this work is structured as follows. At first,
we provide a brief background on blockchain and smart con-
tracts in Sec. II. In Sec. III, we discuss whether smart contracts
can be considered as long-living software, the update mecha-
nisms provided by the different smart contract platforms, and
how smart contracts are updated in practice. Afterwards, we
discuss related work in Sec. IV and conclude in Sec. V.

II. BACKGROUND

For a better understanding of the concerns of this paper,
we provide some general and some blockchain environment
specific background information on smart contracts.

A. General Background on Smart Contracts

In the context of blockchains, a smart contract is a software
program which is executed by several nodes participating in
the respective blockchain network. A smart contract contains
instructions on how the state of the blockchain should be
modified depending on the set of provided input parameters.
Furthermore, depending on the actual implementation, it is
also possible for a smart contract to trigger external actions
which are not observable by the blockchain. Since on-chain
state changes are observable by the blockchain, i. e. by all
participating nodes, each node can validate and accept or
ignore proposed state changes if their own computation result
equals or differs to the previously published result.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



One of the main properties utilized by smart contracts is
the concept of being free of trust. As blockchains allow us to
trace everything that happened on a blockchain, there is no
need to trust someone as we can proof everything ourselves.

There are different approaches for the implementation of
smart contracts. In this paper, we focus on the most important
blockchain platform in terms of market capitalization1, the
Ethereum blockchain [5]. To give an impression about the
possible variety of implementations, we compare Ethereum
to Hyperledger Fabric [6], a blockchain concept which signifi-
cantly differs from Ethereum in several properties, but supports
Turing-complete smart contracts as Ethereum does.

In the following subsections we give more background
information about Ethereum and Hyperledger Fabric and de-
scribe identified properties regarding smart contract implemen-
tation on blockchains.

B. Ethereum Smart Contracts
Bitcoin[7], the crypto currency that made blockchains be-

came widely known, already offered support for a simple set
of rules for unlocking account balances. Ethereum [5] is the
second most important public blockchain platform in terms
of market capitalization after Bitcoin, but the most important
one that offers support for Turing-complete smart contracts. In
Ethereum, smart contracts can be written in Solidity2 which is
compiled into bytecode. For deployment, the bytecode is writ-
ten to the Ethereum blockchain (using a create transaction). A
deployed smart contract can be identified by its address, which
is calculated using a cryptographic hash function. Once a smart
contract is deployed, Ethereum does not allow for modification
or deletion of the smart contract code. However, according to
the rules defined in the smart contract, it is possible to modify
the state of the smart contract by invoking smart contract
methods (using call transactions). Ethereum smart contracts
can implement a selfdestruct method, which allows the owner
to mark a contract as obsolete. Selfdestruction results in not
being able to use the smart contract anymore and is not
reversible.

When a user wants to call a smart contract method, he cre-
ates a call transaction with the address of the Smart Contract
and all input parameters. This transaction is published to the
network and processed by so-called mining nodes, which will
execute transaction and create a new block with the outcome.
Since the order of the transaction and the bytecode of the
smart contract is publicly known, everybody can validate the
transaction. For including the result into a new block, miners
have to execute the code. Besides the inherent consensus algo-
rithm of the Ethereum blockchain there is no need for conflict
resolution for transaction results, since – assuming correct
execution – each mining node will come to the same result.
This way, state changes are deterministic and unambiguous.
The execution pattern of Ethereum is called Order-Execute.

For our analysis, we used Ethereum data dumps provided
by Blockchair.com [8]. Since the Ethereum main network was

1CoinMarketCap Ranking – http://coinmarketcap.com [accessed Dec19]
2Solidity Documentation – http://solidity.readthedocs.io [accessed Dec19]

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

N
um

be
r o

f c
re

at
es

 in
 th

ou
sa

nd
s

Days since the start of Ethereum

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

Nu
m

be
r o

f c
all

s i
n 

m
illio

n

Fig. 1. Number of calls (solid line) and creates (dashed line) over time

Fig. 2. Contract size over time

started in July 2015 until end of October 2019 2,988,133
contracts have been deployed so far. According to Fig. 1 the
number of created and executed smart contracts per day has
continuously increased. The same holds for the size of the
smart contracts, which is visualized in Fig. 2.

C. Hyperledger Fabric Smart Contracts

Hyperledger Fabric [6] is a framework for creating busi-
ness grade permissioned blockchains. The main differences
between permissioned and public blockchains are that a
permissioned blockchain requires authorized access to the
blockchain while public blockchains allow users to create
an unlimited number of pseudonyms. In Hyperledger Fabric,
smart contracts can be written in any programming language
and run as standalone software. The code of a smart contract
is not part of the blockchain but can be developed and
distributed using established software deployment and delivery
architectures. When a smart contract program is started, it

http://coinmarketcap.com
http://solidity.readthedocs.io


TABLE I
COMPARISON OF SMART CONTRACT PLATFORM CHARACTERISTICS REGARDING ETHEREUM AND HYPERLEDGER FABRIC

Property Name Ethereum Hyperledger Fabric

a) Programming Language specific arbitrary
b) Code Deployment on-chain custom
c) Code Distribution on-chain custom
d) Executing Peers mining and validating nodes endorsing nodes
e) Execution Environment Ethereum Virtual Machine arbitrary
f) External Communication not possible possible
g) Result Distribution on-chain on-chain

listens to incoming transactions, calculates the result according
to the input parameters and the code and sends back the result
to the blockchain infrastructure.

When a user wants to call a smart contract, he creates a new
transaction containing the name of the smart contract and all
input parameters. This transaction is published to the network
and processed only by nodes having access to the smart con-
tract program (called endorsing nodes). All endorsing nodes
send their results to an ordering service, which defines the
order in which the transactions are applied to the blockchain.
After the transaction results have been ordered, each node in
the network applies the outcomes following predefined policies
for that specific environment. These policies can define, how
many and which kind of nodes have to present a certain result
before it gets accepted to be appended to the blockchain.

D. Smart Contract Platform Characteristics

We identified the following characteristics regarding smart
contract execution. For a comparison between Ethereum and
Hyperledger Fabric see Table I.

a) Programming Language: Depending on the smart
contract platform, smart contract developers are limited in
choosing programming languages.

For example, Solidity was influenced by existing program-
ming languages like C++, Python and JavaScript, but is
designed for use with Ethereum only. In Hyperledger Fabric, a
smart contract runs as individual application, so it is possible
to use any programming language for software development.

b) Code Deployment: Code deployment denotes how the
blockchain network is informed about a new smart contract.
Other nodes can use this information for creating transactions
to request smart contract execution.

In Ethereum, this is done by creating a transaction which
contains the smart contract and registers it with the blockchain.
In Hyperledger Fabric, this is done by publishing some meta
information (smart contract name, smart contract version, ...)
to the network. The actual code is not part of this information.

c) Code Distribution: This property describes, how the
smart contract code is distributed to the nodes which want to
execute the smart contract.

In Ethereum, since the smart contract code is deployed
to the blockchain, it is distributed along with the block
data. In Hyperledger Fabric, distribution is up to the smart
contract operator, which can use common software distribution
mechanisms (e. g. a website, package repository, etc.).

d) Executing Peers: In a blockchain network, executing
smart contracts could be a bottleneck if all nodes are obliged
to execute any smart contract, e. g. for verification. The whole
network would have to wait for the slowest node. For this
reason, only a subset of nodes in a network is actually
executing smart contract code.

In Ethereum, since the smart contract code is part of the
publicly available blockchain data, any node could execute
smart contracts. But only the one node, which “finds” a
new block is getting paid for executing smart contracts by
receiving transaction fees. Other nodes, which want to verify
the execution result can, but do not have to, execute the
smart contract on their own. In Hyperledger Fabric, nodes can,
depending on the smart contract, have the endorser role. Only
endorsing nodes will execute smart contracts. However, before
a node can become an endorsing node, the node operator has
to get the smart contract code.

e) Execution Environment: The execution environment
defines the limits in which a smart contract can run regarding
both functionality and resource consumption.

In Ethereum, smart contracts are executed in the Ethereum
Virtual Machine (EVM), which supports Turing-complete pro-
grams provided, but with a limited subset of available libraries.
Each bytecode instruction has an assigned cost value (Gas),
which has to be payed for executing the smart contract.
This way, the Ethereum Virtual Machine protects executing
nodes from high computational load, since the execution will
abort if the Gas limit is reached. In Hyperledger Fabric the
execution environment is not constrained. Nevertheless, smart
contract code is usually executed in a virtual environment
(e. g. Docker) for protecting the host from possible malicious
actions. However, it is still possible to induce high loads to
the host system, if the virtual environment is not properly
configured for limiting available hardware resources.

f) External Communication: Depending on the applica-
tion, a smart contract may need additional data, which is not
provided by the contract call. In this case, a smart contact
needs access to external data sources (e. g. weather sensor).

In Ethereum, it is not possible to query off-chain data
sources. Instead, it is possible to create so-called Oracles.
An Oracle is a smart contract, which contains a certain
information and can be updated from another source using
smart contract method calls. However, the process for updating
the information contained in the oracle can not be initialized by
a smart contract. In Hyperledger Fabric, since a smart contract



is realized as a standalone software program, it can access
any data source it wants to. Depending on the data source
(e.g. random value generator) this might result in different
results for multiple smart contract invocations with the same
input parameters provided in the call transaction. Therefore, a
method for result conflict resolution is required.

g) Result Distribution: Smart contract execution would
be useless if the execution results are ignored. Therefore, all
blockchain environments known to us use the blockchain as a
log for the results.

On Ethereum, every node can validate the result since input
parameters, code and result are written to the blockchain. In
Hyperledger Fabric, predefined policies decide how consensus
is reached if endorsing peers offer different possible results.

III. DISCUSSION

In this section, we discuss the state of the art regarding the
usage and update mechanisms of smart contracts. This covers
an analysis whether smart contracts can be considered as long-
living software and a summary of the update mechanisms
provided by different smart contract platforms. From the state
of the art and practical usage of update mechanisms we derive
issues in the development of long-living smart contracts and
discuss how software engineering can address those issues.

A. Are Smart Contracts Long-Living Systems?

As we described before, the immutability of the Ethereum
blockchain seems to automatically result in every smart con-
tract to be long-living as it cannot be removed or updated.
However, only being stored on the blockchain does not nec-
essarily imply longevity. In the context of smart contracts we
consider longevity as the active use of a smart contract over
a long period of time. However, even for traditional long-
living software systems this period of time is not precisely
defined [9]. As smart contracts are a comparably young
technology we cannot consider the long period of usage in
terms of decades like e. g. the software used by financial
institutes. For this reason, the goal is to study whether the
current usage of smart contracts indicates a potential use
similar to traditional long-living software.

To study the usage and longevity of smart contracts we
analyzed the Ethereum blockchain between its creation in mid
2015 and end of October 2019 (in total 1,555 days) using
the data provided by Blockchair [8]. All in all, this time
frame covers the creation of 2,988,133 smart contracts of
which 1,048,835 smart contracts have been called at least once.
606,821 smart contracts have been called more than once. For
the following discussion, we excluded the smart contracts that
have never been called.

To answer the question whether smart contracts are long-
living, we calculated the lifespan of each contract created by
determining the time between the creation of the contract on
the blockchain and its last execution.

In Fig. 3 we plotted how many smart contracts have been
deployed that reach a certain lifespan (measured in days). We
can see that many smart contracts are used immediately after

Fig. 3. Lifespan of smart contracts

Fig. 4. Amount of contracts that have been redeployed x times

creation and get inactive after a few days. The majority of
smart contracts has a lifespan between a couple and about 800
days. Nevertheless, there are still many smart contracts with a
lifespan higher than 800 days up to being alive for nearly the
entire time frame considered. Those smart contracts might be
considered as long-living.

Also smart contracts which have been used for a short
period of time could be considered as long-living if they
are deployed multiple times, distributed over a longer period
of time. For this reason, we counted how often exactly the
same code is redeployed to the block chain. In fact, the
2,988,133 smart contract creations considered only contain
596,229 different smart contract implementations. From these,
45,107 implementations have been deployed more than once
with exactly the same code. In Fig. 4 we show the number of
smart contracts with multiple redeployments.

Due to the young age of the Ethereum blockchain the figures
presented are heavily biased by recently created contracts that



Fig. 5. Relation between date of contract creation and lifespan of the contract

can not yet be considered as long-living. This gets even worse
due to the increase of contract creations per month as shown in
Fig. 1. To get a feeling about the distribution of the contracts
lifespan in relation to the date of their creation, we plotted
the lifespan of contacts in relation to the date of their creation
in Fig. 5. Early after the release of the Ethereum (at x=0)
a few long-living and some only short living smart contracts
have been created. For later creation dates more and more
long smart contacts with higher lifespans are created. It is
interesting that there are points of time where large amounts
of short, medium, and long lifespans have been created. The
two most obvious ones are after 200 and 600 days.

In summary, compared to the lifetime of the Ethereum
blockchain, a significant amount of smart contracts deployed
to the Ethereum blockchain can be considered as long-living
within the Ethereum ecosystem. However, in relation to time
frames traditionally considered for long-living software sys-
tems, it has to be observed if the future lifespan and usage pat-
terns of smart contracts converge to the general understanding
of long-living software systems. Regarding this, our findings
indicate that smart-contracts might become long-living. For
long-living smart contracts, we have to evaluate blockchain
characteristics colliding with smart contract maintenance.

B. Update Patterns

If a blockchain is used for smart contract deployment and
distribution, a smart contract can neither be updated nor
deleted once it is deployed. However, most systems need
to provide update functionality e. g. to deal with changing
environments. This holds especially for long-living systems
which, according to the previous subsection, smart contracts
can be.

We discovered two main patterns used to update smart
contracts on the Ethereum blockchain

a) Redeployment: The simplest update pattern is the
creation of a new smart contract where all changes are applied.
Here, we have to distinguish between smart contracts that are

created for single-use, and smart contracts which can be used
multiple times with a single deployment.

Deployment per use. In this case the recreation of the smart
contract is part of the concept and allows to maintain the smart
contracts code in between the single uses. While for smart
contracts without changes a simple comparison of the byte
code of an existing contract known to behave as expected
is enough the updated contract has to be checked in detail.
However, the same mechanism can be applied here as for a
smart contract where no version known to be secure exists.

Single deployment. It is possible to implement smart con-
tract with some kind of session management to enable the use
for multiple parallel sessions. Once the address of the smart
contract is publicly known, users can be certain to commu-
nicate with the same smart contract on each interaction. The
redeployment of such a smart contract, which will technically
result in a new smart contract with a new address, raises the
issue of distributing the new address since the fixed address
is part of the contract usage design.

One approach to tackle this issue are centralized places
for the exchange of the current address for a specific smart
contract. E.g. this can be smart contract market places, the
website of the contract deployer, or a client software used for
the execution of the smart contract. Each of these solution
contains some kind of Single-Point-of-Failure.

To avoid the usage of the old deprecated smart contract
the deployer has to revoke the old one. This step might not be
executed by the deployer due to various reasons, like expecting
too high cost for the self destruct or due of laziness. If this
self destruct does not happen or is not possible, e.g. because
required authentication data has been lost, users unaware of
the new smart contract might continue using the old one
containing bugs or security issues.

b) Proxy Smart Contracts: A pattern frequently used is
to deploy a pair of smart contracts where one of the contracts
functions as a proxy for the other smart contract. The proxy
contract has a changeable variable containing the address of
the actual smart contract doing the work. Whenever a newer
smart contract version is released, the value of this variable is
updated. If the proxy is called, it calls the newest version of the
smart contract that has been released. While this pattern seems
to behave very well in practice, it violates the assumption that
every time the same address is called with the same input, the
smart contract at this address behaves the same.

As there is currently no update mechanism that provides a
trust-free redirect to the new smart contract, updates should
be only performed for security critical changes and should be
well documented.

C. Challenges and Future Work

Based on the previous discussions we identified challenges
that should be tackled in the future. The overall challenge
is how to tackle the maintenance problem of long-living
smart contracts. To deal with this challenge, we identified the
subchallenges present in the following.



While we have already been able to extract much informa-
tion from the Ethereum blockchain there are still more things
to be studied in detail.

At first, we have to provide a more precise definition of
a long-living smart contract. In this work, we only discussed
informally, based on quantitative data, if there exist long-living
smart contracts on the Ethereum blockchain. A more formal
definition would allow to explicitly select the long-living smart
contracts and to study them in depth.

Second, we need more detailed information on the versions
of long-living smart contracts. In this work, we searched for
smart contracts that have been redeployed without changes.
However, we expect many contracts to be redeployed with
small changes, reflecting an iterative development process. The
challenge is to detect and analyze them. I.e., we have to study
which changes have been made between different versions of a
smart contract. This can allow us to get a deeper understanding
of the reasons for maintenance and allow us to reduce the
amount of redeployments by developing best practices and
tool support for reducing the probability for errors.

Extracting usage patterns from the smart contracts and
studying their pros and cons is a first step for applying mature
software engineering to smart contracts. While there is already
some work on this issue, the challenge is still to get a deeper
understanding of good patterns for smart contracts. Also these
usage patterns should be compared to the usage patterns of
traditional software with the aim of a knowledge transfer.

Another challenge is to search and identify more update pat-
terns and to quantify their usage. While we already identified
two update patterns there might be more that we are currently
not aware of. The open question is if we will find always
the same patterns to be used frequently or a larger variety
of update patterns. Again, a deeper understanding on update
patterns for smart contracts will increase the understanding on
how smart contracts are deployed and developed. Furthermore,
there are well-proven update patterns in traditional, non-
blockchain software systems. It has to be checked if these
patterns could be applied to smart contracts stored on a
blockchain. Particular attention should be payed to software
systems providing the possibility to be updated while being
handle long-running transactions.

In general, one has to follow the Ethereum community
discussions to learn in which direction smart contracts will
evolve and which concepts should get part, e.g. of Ethereum,
to allow maintenance of smart contracts. One solution to
ease the maintenance of smart contracts could be to allow
the specification of additional information when executing
a selfdestruct, e.g. by adding a pointer which points to the
succeeding version of the smart contract to be destructed.

IV. RELATED WORKS

Besides us also other researchers are studying the usage of
smart contracts. In this section we discuss their works and
relate them to our work.

Chen et al. analyze the Ethereum blockchain for occurrences
of ponzi schemes [10]. For this purpose they utilize a pattern

detection on the contracts available on the Ethereum block
chain. A similar approach could be used by us to detect
versions of contracts.

Bartoletti manually classified contracts published on the
Ethereum blockchain into different categories [11]. Further-
more, they studied which patterns have been implemented in
the contracts, e.g. an authentication.

Parizi et al. studied the effectiveness of open source security
testing tools for smart contracts on ten contracts taken from
the Ethereum blockchain [12]. Effective tools for detecting
issues early and avoiding them can help to also avoid the
issues arising from the need to update already published smart
contracts discussed in this work.

While we discuss update patterns for smart contracts,
Wohrer et al. are discussing security patterns in their
work [13]. They are presenting a collection of patterns de-
scribing solutions to typical issues.

Liu et al. discuss design patterns for smart contracts and
even identified two patterns categorized as creational pat-
terns [14]. Unfortunately, those creational patterns do not
consider maintenance and updates of the contract.

V. CONCLUSION

In this work we conducted an initial study of smart contracts
deployed on the Ethereum blockchain and discussed whether
smart contracts can or should be considered to be long-living
software. We show, that there is a conflict between the idea
of having immutable smart contract code and the need for
updates as part of a software’s life cycle.

Despite lacking a formal definition of long-living smart
contracts, we discovered that a significant amount of smart
contracts could be considered to be long-living. In general,
long-living software needs the capability of updates, e.g. for
adoption to unforeseen changes in the environment. This also
applies for software in blockchain context, like smart contracts.
For the smart contract code itself well known maintenance
principles can be applied. However, we are currently not aware
of e. g. refactoring approaches for smart contracts [15].

More challenging is the secure update of the deployed smart
contracts. While proxy smart contracts seem to work very well
in practice, it might raise the issue of smart contract address
distribution for securely informing clients about an updated
smart contract version. The key principle of an identical
behavior per invocation might be violated by the use of proxy
smart contracts. Unfortunately, for now we can not recommend
a better solution if the contract should stay available under the
same address. However, we see a high need for mechanisms to
update the code of smart contracts. For this reason, we want
to motivate discussions and research to address the conflict
between reliable and and secure smart contract platforms and
the need for updating the smart contract code.

As changes in long-living systems cannot always be pro-
hibited and smart contracts can be long-living systems, smart
contracts platforms should provide transparent ways to update
the code of smart contracts and allow everyone interested in
calling the contract to trace the changes.



In our future work we are going to get a deeper under-
standing on the versioning of smart contracts as well as in
update mechanisms. Based on this understanding we are going
to develop best practices and additional tool support.

REFERENCES

[1] D. L. Parnas, “Software Aging,” in ICSE. IEEE, 1994, pp. 279–287.
[2] S. Peldszus, G. Kulcsár, M. Lochau, and S. Schulze, “Continuous

Detection of Design Flaws in Evolving Object-Oriented Programs using
Incremental Multi-pattern Matching,” in ASE, Sep. 2016.

[3] European Parliament and Council of the European Uninon, “Regulation
(EU) 2016/679 – General Data Protection Regulation (GDPR),” in
Official Journal of the European Union, 2016.

[4] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryp-
tion Standard. Springer Science & Business Media, 2012.

[5] G. Wood et al., “Ethereum: A Secure Decentralised Generalised Trans-
action Ledger,” Ethereum Project Yellow Paper, 2014.

[6] C. Cachin, “Architecture of the Hyperledger Blockchain Fabric,” in
DCCL, vol. 310, 2016.

[7] S. Nakamoto et al., “Bitcoin: A Peer-to-peer Electronic Cash System,”
2008.

[8] “Blockchair Database Dumps,” online, https://blockchair.com/dumps,
[accessed Feb 20].

[9] J. Bürger, “Recovering Security in Model-Based Software Engineering
by Context-Driven Co-Evolution,” Ph.D. dissertation, 2019.

[10] W. Chen, Z. Zheng, E. C. . Ngai, P. Zheng, and Y. Zhou, “Exploiting
Blockchain Data to Detect Smart Ponzi Schemes on Ethereum,” IEEE
Access, vol. 7, pp. 37 575–37 586, 2019.

[11] M. Bartoletti and L. Pompianu, “An Empirical Analysis of Smart
Contracts: Platforms, Applications, and Design Patterns,” in Financial
Cryptography and Data Security, 2017, pp. 494–509.

[12] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh, “Empirical
Vulnerability Analysis of Automated Smart Contracts Security Testing
on Blockchains,” in CASCON, 2018, pp. 103–113.

[13] M. Wohrer and U. Zdun, “Smart Contracts: Security Patterns in the
Ethereum Ecosystem and Solidity,” in IWBOSE, 2018, pp. 2–8.

[14] Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao, Applying Design Patterns in
Smart Contracts, Jun. 2018, pp. 92–106.

[15] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 2018.

https://blockchair.com/dumps

	Introduction
	Background
	General Background on Smart Contracts
	Ethereum Smart Contracts
	Hyperledger Fabric Smart Contracts
	Smart Contract Platform Characteristics

	Discussion
	Are Smart Contracts Long-Living Systems?
	Update Patterns
	Challenges and Future Work

	Related Works
	Conclusion
	References

