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Abstract

In order to continuously represent molecules, we propose a
generative model in the form of a VAE which is operating on
the 2D-graph structure of molecules. A side predictor is em-
ployed to prune the latent space and help the decoder in gen-
erating meaningful adjacency tensor of molecules. Other than
the potential applicability in drug design and property predic-
tion, we show the superior performance of this technique in
comparison to other similar methods based on the SMILES
representation of the molecules with RNN based encoder and
decoder.

Introduction
Using machine learning to predict molecular structure prop-
erties is a challenging problem [7, 3]. While the governing
equations (e.g. Schrodinger equation) are difficult and com-
putationally expensive to solve, the fact that an underlying
model exists is appealing for machine learning techniques.
However, this problem is difficult from a technical point of
view. The space of molecules is discrete and non-numerical.
Thus, “how to best represent molecules and atoms for ma-
chine learning problems?” is still a question.

Despite having numerous ways to represent molecules
such as methods introduced in [18, 1], all the representations
are suffering from a few shortcomings, such as 1) discrete
representation, 2) lengthy representation, 3) non-injective
mapping, and 4) non-machine readable representation.

Here, we proposed a new method that borrows the main
idea from [5] and [12] and overcomes all the aforementioned
shortcomings. Our method which takes the graphical struc-
ture of the molecule as the inputs consists of a variational
framework with a side predictor to better prune the structure
of the latent space. Then an inner product decoder transfers
the samples of latent space into meaningful adjacency ten-
sors. To compare with the main benchmark which is a text-
based encoding of molecules [9] we performed two exper-
iments on the QM9 dataset [16, 15] and ZINC [11]. Both
experiments show the success of this method. Although this
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Figure 1: Outline of the model. As depicted above, the model
inputs are both node-feature and adjacency tensor, while the
model is only outputting the adjacency tensor. The side pre-
diction network is simply using the data points in the latent
space as its input.

work is presenting preliminary results of Graph VAE, further
experiments and comparisons are left to future work.

Method
Molecules and Graphs A molecule can be represented by
an undirected graph G = (V,E,R), with nodes (atoms) vi
∈ V and labeled edges (bonds) (vi, e, vj) ∈ E where r ∈ R
is an edge type. Since we focus on small molecules with four
bond types, R is equal to 4. An n by d node-feature matrix
H is also carrying more information about each node. These
two tensors, together, represent a molecular structure.

Variational Autoencodes To help ensure that points in the
latent space correspond to valid realistic molecules, and to
minimize the dead areas of the latent space, we chose to use
a variational autoencoder (VAE). To further ensure that the
outputs of the decoder are corresponding valid molecules we
employed the open-source cheminformatics suite RDKit30
to validate the chemical structures of output molecules in
terms of atomic valence. All invalid outputs are discarded.
It is necessary to mention that the ordering of the nodes as-
sumed to be unchanged.



VAE and Side Prediction To better learn the graph struc-
ture of the molecules, the encoder part of the VAE consists
of GCN layers. The same method as [17] has been employed
to perform relational update which can be formulated as:
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where N i
r denotes the set of nodes connected to node i

through the edge type r ∈ R. Since we are focusing on small
molecules, we applied three layers of GCN in our encoder
model to gather information from 3-hop neighbors of each
atom. The structure of encoder consists of two, three-layer
GCNs for both mean and the covariance. GCNs of the en-
coder share the filters of the first two layers. Here we can
formulate the encoding and sampling scheme as follows:

q(Z|H,A) =
N∏
1

qi(zi|H,A),

qi(zi|H,A) = N (zi|GCNµ, GCNσ)
The GCNµ and similarly GCNσ are: GCN(H,A) =

Âσ(Âσ(ÂHW0)W1)W2, where the Â is the normalized ad-
jacency tensor, Wi is the filter parameter of each layer, and
σ is the activation function [2]. Finally, as suggested in [12]
we use the simplest form of the decoder which can be seen
as graph deconvolution network. The output of the encoder
is simply the inner product between latent variable:

p(A|Z) =
N∏
1

N∏
1

p(Aij |zi, zj),

p(Aij = 1|zi, zj) = σ(zi
T zj)

For the side prediction part, we employ a simple regres-
sion model in the form of a multilayer perceptron (MLP) to
the network that predicts the properties from the latent space
representation. The input of the side predictor is a vector ob-
tained through a pooling mechanism of the latent represen-
tation as follows:

G(H(L)) =

N∑
i=1

softmax(hLi .Wp)

Where WP is the pooling weight matrix and H(L) is the
output of the GCNµ.

Finally, the autoencoder is trained jointly on the recon-
struction task and a property prediction task; The joint loss
function is the summation of the two losses, as follows:

L = ELBO + negative log likelihood
= Eq(Z|H,A)−KL(q(Z|H,A)||p(Z))
+MSE(sidenetwork)

Experiments
We performed two experiments to show the usefulness of
continuous representation. In the first experiment, we focus
on the prediction of property and the generation of the valid
molecules. In the second experiment, we use this continuous
representation to propose a new metric for measuring the
molecular similarity.
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Figure 2: Drugs compare to Aspirin

Table 1: Three models trained with three different side prop-
erty. As shown below, using Druglikeliness better helps pre-
dicting Solubility and Synthesizability

Side property Valid outcome Sol Synt Druglikeliness
Solubility 75.3 97.03 88.7 84.2

Synthesizability 73.0 89.8 98.21 86.3
Druglikeliness 74.6 91.0 90.7 95.11

Property Prediction
Using a subset of QM9 dataset [15] as the training set,
we extract 48,000 molecules covering a broad range of
molecules. Each molecule in the training set is chosen to
have up to 20 atoms. The training objective on the side pre-
dictor was set to be one of the Solubility, Druglikeliness,
and Synthesizability. We employ the continuous representa-
tion of molecules using each network to predict the other
two unseen properties. The performance of each model plus
the percentages of validly generated molecules are summa-
rized in Table 1. In order to check the validity of the out-
come, we only check for the validity of the atomic valence.
As it is shown in Table 1 the accuracy of each property is
comparable to the state of the art property predictions men-
tioned in [8]. Although Graph VAE is not outperforming the
predictions based on [8], it shows that using a property as a
heuristic to prune the latent space, can help with predicting
other molecule properties.

Molecular Similarity Measure
Numerous similarity or distance measures have been used
widely to calculate the similarity or dissimilarity between
two samples. Since metrics are focusing more on 2-
dimensional representation rather than 3-dimensional struc-
ture, our model as a “2D structure-aware representation”
is an accurate metric for the similarity measure. Normal-
ized Euclidean distance between the latent representation of
two molecules after pooling operation is the metric we de-
fine to capture the similarity. Here we compare three well-
known similarity measures with our technique and also to
the methods introduced in [9]. This method which is us-
ing the SMILES representation of the molecules as the in-
put employs a VAE with a side predictor. Both encoder



Table 2: Similarity measures between Aspirin and four dif-
ferent drugs. Using Graph VAE as a new metrics, shows con-
sistency with other metrics. The GVAE is trained with the
solubility as the side property.

metric Amphetamine Ecstasy (MDMA) Nicotine Caffeine
Tanimoto 0.398 0.324 0.229 0.258

Dice 0.569 0.490 0.373 0.410
Cosine 0.607 0.490 0.374 0.434

Graph VAE 0.363 0.199 0.147 0.176
SMILES VAE [9] 0.724 0.489 0.340 0.321

and decoder parts of the VAE are based on RRN and se-
quence to sequence model. Although all the graphical in-
formation of the molecule is encoded within the SMILES
representation, inferring the graphical structure (e.g., adja-
cency tensor) from the SMILES string is an exhausting pro-
cess that is based on several rules. Despite the numerous
techniques built upon using the SMILES representation of
the molecules [6, 10, 4, 14, 13], it has been shown that it
is more efficient to take advantage of the graph structures
and employ GCNs to process molecular structures. Here,
we chose Aspirin as a sample drug and compare its simi-
larity with four different drugs with four different similarity
measures. We compare the performances of our technique
with [9], which is using a similar approach but operating on
text representation of molecules. Our experiment shows that
graph-based hidden representation is carrying more infor-
mation than only text. Table 2 is summarizing the result of
the similarity measure experiment.

As it is shown in table 2, our metric is very well aligned
with all other well-known metrics which is another proof for
the applicability of our model.

Experiment Details

GVAE consists of two GCNs for the encoder, a pooling
mechanism, and a multi-layer perceptron for the side pre-
diction. Both GCNs are three-layer networks with filter ma-
trices W0,W1, and W2 of 32*32, 32*32m and 32*16 re-
spectively. The pooling weight matrix Wp is of size 1*64
which outputs a vector of length 64 to represent the whole
molecule. A two-layer MLP with 32 and 1 hidden units is
employed to perform the regression task.
In Table 2, we use our own implementation of the SMILES
VAE. Both GVA and SMILES VAE are trained using a
dataset of 70,000 molecules which are randomly selected
from ZINC.
In Table 2, all measures except the continuous representa-
tions are calculated with the same fingerprinting algorithm.
It identifies and hashes topological paths (e.g. along with
bonds) in the molecule and then uses them to set bits in a
fingerprint of length 2048. The set of parameters used by
the algorithm is - minimum path size: 1 bond - maximum
path size: 7 bonds - number of bits set per hash: 2 - target
on-bit density 0.3.

Conclusion
We proposed a generative model through which we can find
continuous representation for molecules. As shown in the
experiments section, this technique can be used in different
chemoinformatics tasks such as drug design, drug discovery
and property prediction. As future work, one can think of at-
tention based graph convolutions and more complicated de-
coders. These two extensions can be studied in future works.
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