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This volume contains the contributed papers selected of
the AAAI 2020 spring symposium on “Combining Artificial
Intelligence and Machine Learning with Physics Sciences.”
The symposium was held on 23 to 25 March 2020 in a vir-
tual form because of the SARS-CoV-2 virus (Covid-19) out-
break.

This symposium aimed to present the current state of
the art and identify opportunities and gaps in AI/ML-based
physics modeling and analysis. With recent advances in
scientific data acquisition and high-performance comput-
ing, Artificial Intelligence (AI) and Machine Learning (ML)
have received significant attention from the applied mathe-
matics and physics science community. From successes re-
ported by industry, academia, and the research community
at large, we observe that AI and ML hold great potential for
leveraging scientific domain knowledge to support new sci-
entific discoveries and enhance the development of physical
models for complex natural and engineered systems.

Despite this progress, there are still many open questions.
Our current understanding is limited regarding how and why
AI/ML work and why they can be predictive. AI has been
shown to outperform traditional methods in many cases, es-
pecially with high-dimensional, inhomogeneous data sets.
Areas where deep learning methods have been demonstrated
to outperform traditional numerical schemes include:

• Meshless methods. Deep Neural Networks (DNNs) do not
require a grid and can directly map a spatial coordinate
(x, y, z) to an output. This is critical in applications where
meshing is difficult or the domain of interest is not clearly
defined (e.g., for certain inverse modeling problems).

• Global schemes. DNNs allow approximating the solution
without resorting to a local scheme based for example on
piecewise polynomial approximation methods. In that re-
spect, deep learning is closely related to spectral methods
such as the Fourier decomposition.
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• High-order and adaptive methods. The depth in DNNs has
been associated with highly accurate representations of
high-order schemes. For example, deep networks can effi-
ciently represent high-order polynomials using relatively
few layers. In addition, DNNs have also shown great ac-
curacy when approximating functions with rapid changes
or even discontinuous jumps.

• High-dimensional problems. DNNs are also very effective
in representing high-dimensional problems, for example
in certain applications in probability which represent the
evolution of high-dimensional probability distributions.
Applications to high-dimensional parabolic PDEs such
as the nonlinear Black–Scholes equation, the Hamilton–
Jacobi–Bellman equation, and the Allen–Cahn equation
have also been demonstrated.

• Finally, Generative Adversarial Networks offer new av-
enues to approximate complex probability density func-
tions to model stochastic processes and for uncertainty
quantification. They allow going beyond Gaussian pro-
cess approximations and model more complex dependen-
cies and distributions.
However, a rigorous understanding of when AI/ML is the

right approach is largely lacking. That is, for what class of
problems, underlying assumptions, available data sets, and
constraints are these new methods best suited? The lack of
interpretability in AI-based modeling and related scientific
theories makes them insufficient for high-impact, safety-
critical applications such as medical diagnoses, national se-
curity, as well as environmental contamination and remedi-
ation. Some of the main limitations include:
• Difficulty to train a network. This requires solving a com-

plex non-convex optimization problem. For example, the
accuracy of the solution often depends on the choice of
initial conditions.

• Difficulty to assess the accuracy of deep learning predic-
tions. DL is notoriously accurate when the input data re-
sembles similar points in the training data. However, there
is less control over the accuracy when the test point moves
away from the training set. Quantifying this error and be-
ing able to predict the accuracy of DL is currently poorly
understood.



• Tuning a DNN remains an art. Relatively few guidelines
exist to determine the architecture of the network and tune
the hyperparameters (number of layers, depth, choice of
activation function).
With transparency and a clear understanding of data-

driven mechanisms, the desirable properties of AI should
be best utilized to extend current methods in modeling of
physics and engineering problems. At the same time, han-
dling expensive training costs and large memory require-
ments for ever-increasing scientific data sets is becoming
more and more important to guarantee scalable science ma-
chine learning.

The symposium focused on challenges and opportuni-
ties for increasing the scale, rigor, robustness, and reliabil-
ity of physics-informed AI necessary for routine use in sci-
ence and engineering applications. The symposium also dis-
cussed bridging AI and engineering research to significantly
advance diverse scientific areas and transform the way sci-
ence is done.

The accepted papers were presented over 3 days with two
invited talks each day. The symposium was broadcast live
and camera-ready presentations were posted on Youtube.

As editors of the proceedings we are grateful to everyone
who contributed to the symposium. We would like to thank
the invited speakers:
• Lexing Ying, Stanford University
• Paris Perdikaris, University of Pennsylvania
• Maziar Raissi, University of Colorado, Boulder
• Marco Pavone, Stanford University
• Stefano Ermon, Stanford University
• Kevin Carlberg, University of Washington
for presenting their work to the audience of AAAI-
MLPS2020. We thank all authors who submitted their pa-
pers for consideration. AAAI-MLPS Program Committee
includes
• Peter Sadowski, University of Hawaii at Manoa, USA
• Mario Putti, University of Padova, Italy
• Hongkyu Yoon, Sandia National Laboratories
• Nathaniel Trask, Sandia National Laboratories
• Hojat Ghorbanidehno, Cisco Systems
• Mojtaba Forghani, Stanford University, USA
• Mohammadamin Tavakoli, University of California

Irvine, USA
We also thank all Program Committee members and anony-
mous referees for their reviewing of the submissions. The
work was carried out using the EasyChair system supported
by AAAI, and we gratefully acknowledge AAAI.
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