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Abstract. The problems of determining the fractal dimension of a time series 

obtained using a self-similar traffic generator based on Markov chains with a 

controlled fractal dimension are stated. Based on numerical experiments to de-

termine the fractal dimension of the generated numerical sequences, statistically 

significant changes are shown at different scales. The insufficient development 

of high-performance algorithms and methods for generating self-similar numer-

ical sequences for procedure of traffic simulation in telecommunication systems 

and networks is indicated. The directions of further research on the manage-

ment of the multifractality in generators based on Markov chains are proposed. 
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1 Introduction 

Mathematical models of a self-similar time series are used to describe telecommuni-

cation processes. In the graphs showing the load of the computer’s network channel, 

self-similarity is determined by the presence of outliers, the amount of which exceeds 

the classical statistical theory predictions (see Fig. 1). The horizontal axis shows time 

in arbitrary units, and the vertical shows network load to the maximum throughput 

ratio. 

In most cases, analytical expressions for self-similar traffic predicted QoS parame-

ters cannot be formed, or such transformations can be formed for individual specific 

situations, therefore, analytical calculations are inadvisable. For this reason, to deter-

mine the main indicators of QoS, such as jitter, lateness, average number of failures 

and others, the simulation with self-similar traffic generators is used. This leads to 

reducing and simplifying the number of calculations for generators of self-similar 

traffic with controlled fractal properties, which would allow numerical sequences to 
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have properties as close as possible to the properties of the telecommunication net-

work’s real traffic, which is being studied. 

 

Fig. 1. Self-similar traffic example [3] 

Given the relevance of managing the generated traffic’s fractal properties, this paper 

is devoted to determining the dependence of the traffic model’s fractal properties on 

the used scale. 

2 Background and related work 

The analysis of research and publications on the subject revealed the following. In [1], 

general methods of fractal and multifractal analysis of time series are considered. 

Methods for determining the main indicators of numerical sequences usage for traffic 

analysis in telecommunication systems and networks are described. In [4], basic defi-

nitions and concepts of the fractal measurement theory and fractal analysis are also 

formulated. 

Importance of multifractal analysis for information exchange processes in comput-

er networks is described in [2]. An analysis of the Internet traffic, which was collected 

for more than fourteen years, is shown. The development of a global network, which 

has changes in fractal properties at all levels of scaling, is described by the authors. 

The article contains proofs of a different nature self-similarity existence on separate 

time scales. 

In [3], the main attention is devoted to the usage of a trained neural network to au-

tomate the classification of traffic according to its fractal and multifractal properties. 



 

 

Presented in the paper results are successfully used to determine DDoS attacks. This 

proves the existence of difference in traffic’s multifractal metrics for different types 

of data. The idea of a significant impact on the fractality of traffic is confirmed in [5], 

where information on the successful use of fractal analysis to identify flows of P2P 

and gaming traffic, transmission information into the clouds services, scanning of 

ports or botnet actions is also given. 

In [6], multifractal modeling of numerical sequences is used to restore lost frag-

ments of time series. Multifractal interpolation gives better results than random filling 

and classical interpolation methods. In [8] fractal interpolation is used to restore traf-

fic with known fractal properties on different time scales. 

The results obtained in [7] show that the modeling of complex networks becomes 

possible when hierarchical self-similarity is taken into account in the adjacency ma-

trix. In fact, this approach makes it possible to classify large networks and to carry out 

modeling. The theory is also applicable for broader content networks, for example, to 

hierarchical relationships between structural units of different orders or scaling. 

Subsequent works [8-17] are related to the modeling of information exchange pro-

cesses in computer networks aiming to recover lost data, to the simulate telecommu-

nications network at different scales and with various data types, to analyze network 

traffic for several applications. All these tasks require a simulated source of multifrac-

tal traffic with controlled properties. The number of publications [17-23] describing 

simulating the multifractal traffic emphasize the relevance of the development and 

improving both the accuracy of reproducing given properties and reducing the compu-

tational complexity of multifractal traffic generators. Developing of such methods and 

algorithms will make it possible to increase the speed or potential complexity of pro-

cess modeling without using systems that are more expensive in telecommunication 

networks [24-26]. 

3 Problem statement 

The main task of the paper is to analyze the properties of a binary numerical series, 

which is obtained using a generator based on a graph model of states and the transi-

tions’ probability between them. Such a traffic generator is a typical Markov chains 

based generator (see Fig. 2). 

 

Fig. 2. Fractal Traffic Generator Model 

The model contains a number of states that set the initial generated value. The next 

value is obtained by random transitions, where 𝜆0 and 𝜆1 are the probabilities of 

changing the state to the next time quantum, and the probabilities 1 − 𝜆0 and 1 −



 

 

𝜆1define chance of staying in the current state. The specified generator does not use 

heavy-tail distributions and does not require complex calculations. Any standard veri-

fied pseudorandom number generators in the interval [0;  1) with uniform distribu-

tioncan be used. Reduced number of operations for calculation is a significant ad-

vantage for practical application in simulation modeling systems of telecommunica-

tion networks and allows saving computation time for traffic formation [27-30]. 

The fractal dimension of a numerical series can be described by various metrics, 

which can lead to getting different misleading values. Using a separate metrics on the 

model and real data also allows comparing their fractal properties. Therefore, for a 

generator model that is shown in Fig. 2, a separate numerical series metric is con-

structed. The coverage width is considered unitary if all 𝑛 consecutive values are not 

equal, and zero if all 𝑛 consecutive values are equal to 1 or 0. It is easy to obtain an 

analytical form for calculating the probability of encountering a zero-span segment 

with 𝑛 elements, which is equal:𝜆1(1 − 𝜆0)𝑛 + 𝜆0(1 − 𝜆1)𝑛.  

Based on statistical modeling of generator’s operation, the expected value of the 

random walk’s magnitude with 𝑛 steps is obtained, which allows determining the 

fractal dimension of the series analytically. Moreover, the fractal dimension depends 

on the resulting numerical sequence length 𝑛as given by (1). 

 

𝑑(𝑛, 𝜆0, 𝜆1) = 2 +
𝜆1(1−𝜆0)𝑛 ln(1−𝜆0)+𝜆0(1−𝜆1)𝑛 ln(1−𝜆1)

𝜆0+𝜆1−𝜆1(1−𝜆0)𝑛−𝜆0(1−𝜆1)𝑛                       (1) 

 

For the transition probability values 𝜆0 = 𝜆1 = 0.5, which corresponds to the clas-

sical random process, a graph of the fractal dimension 𝐷dependence on the generated 

series number of elements 𝑛 obtained by formula (1) is shown in Fig. 3. 

The presence of different values of fractal dimension in mathematical objects at 

different scaling levels is called multifractality. The presence of multifractality in the 

traffic of computer networks is shown in [3]. 

 

 



 

 

Fig.3. Theoretically determined fractal dimension 𝐷(𝑛) with the probability of state 

change𝜆0 = 𝜆1 = 0.5. 

Additional research is needed to use the time series fractal analysis methods based on 

the Minkowski–Bouligand dimension or R/S analysis. 

4 Methods of calculating fractal dimension 

The definition in Minkowski's interpretation can be used to determine the fractal di-

mension [4], as shown by (2). 

 

𝐷 = lim𝑠→0
ln(𝑁)

− ln(ε)
                                                 (2) 

 

where 𝜀 – size or diameter of the subset, that is covering the set which dimension is 

being determined; 

𝑁 – the minimum number of subsets𝜀, that should be used to cover the whole set, 

which dimension is being determined. 

It is not possible to directly apply (2) to a discrete set because a minimum ε exists. 

Therefore, fixed values of ε should be used. 

Let coverings with sizes 𝜀 and 𝑘𝜀be used to cover the main set (𝑘 - for a discrete 

system is a given natural number; 𝜀 is an unknown coefficient characterizing the se-

lected discrete system). Then, according to the selected subsets, the number of such 

subsets to cover is𝑁(𝜀)and 𝑁(𝑘𝜀). The method for calculating the metric 𝑁(𝑘𝜀) is 

quite arbitrary, and is selected according to the values studied in a particular process. 

For a discrete system, if the definition of the limit is rejected,(3) is obtained from 

equation (2). 

 

−𝐷 ln(𝑘) − 𝐶 = ln(𝑛(𝑘𝜀)), 𝐶 = 𝐷 ln(𝜀)                           (3) 

 

where ln(𝑘), ln(𝑁(𝑘𝜀)) are calculated for several values of 𝑘; 𝐷and 𝐶 are obtained as 

a result of applying linear regression to the points (ln(𝑘) , ln(𝑁(𝑘𝜀))).  

Given the randomness of the numerical series, 𝑁(𝑘𝜀)is also a random variable, 

with a certain expected value and dispersion. Hence, the obtained points 

(ln(𝑘) , ln(𝑁(𝑘𝜀)))will approach the line, but not necessarily belong to it. 

In order to reduce additional calculations and transformations, the process of gen-

erating “0”is changed to generate “-1”.As a result, for 𝜆0 = 𝜆1, the expected value of 

the generated sequence becomes 0 and the standard deviation equals 1. In addition, 

the created sequence {𝑎1, 𝑎2, … , 𝑎𝑛} is replaced by a cumulative series corresponding 

to a random walk {𝑏1, 𝑏2, … , 𝑏𝑛|𝑏𝑖 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑖}. For such series, the covering 

width 𝑁(𝑘𝜀) for a segment with length of 𝑘 discrete elements can be calculated by 

(4): 

 

𝑁(𝑘𝜀) = ∑ (max(𝑏𝑖∙𝑘+1 … 𝑏𝑖∙(𝑘+1)) − min(𝑏𝑖∙𝑘+1 … 𝑏𝑖∙(𝑘+1)))
𝑛/𝑘−1
𝑖=0                      (4) 



 

 

 

We propose using the power of two as 𝑛, because then 𝑘 can also be doubled when 

constructing reference points for linear approximation. The indicated process for 

𝑘 = 8,16,32,64,128 made it possible to construct five points for which a linear ap-

proximation determines the Hurst exponent of the test sequence at 0.53 as the inclina-

tion angle of the straight line (see Fig. 4): 

 

Fig. 4. Diagram for Hurst exponent𝐻 = 0.53 with corresponding fractal dimension 𝐷 = 1.47 

and probabilities to change state𝜆0 = 𝜆1 = 0.5. 

Theoretical calculations for a random sequence shows that the values should be 

𝐻 = 0.5with𝐷 = 1.5. This is close to the obtained results. 

Classical theory states that for curves on the plane the covering width 𝑁(𝑘𝜀) 

should be expressed by the number of squares with sidesize equals𝑘𝜀, which cover the 

whole random walk curve. However, the adopted measure (4) is asymptotically equal 

to the Minkowski–Bouligand dimension. Moreover, with the same values being cho-

sen for𝑘, the Hurst exponent matches with the one obtained using R/S analysis, for 

which the relation to the fractal dimension is already known. 

5 Impact analysis of scale selection to the fractal 

dimension  

For the purpose of experimental confirmation eleven generated sequences containing 

1024 samples (“-1” and “1”, as described in previous paragraph) were used to show 

the dependence of the numerical series’ fractal dimension on the selected scale. For 

each of those, the Hurst exponent was calculated forsets of 𝑘 

ues:{1024, 512, 256, 128, 64}; {512, . . . , 32}; {256, . . . , 16}; {128, . . . , 8}. The results 

of these experiments are shown in Tables 1-3. 



 

 

An independent measurement of the Hurst exponent on an appropriate scale is 

formed for each of the generation modes, which allows evaluating the statistical pro-

cessing of the result. The mean of the Hurst exponent and the standard deviation 𝜎 of 

that mean, which is inversely proportional to the root of the sample length, are found 

for that result. Based on the standard deviation, a confidence interval of 99% reliabil-

ity is calculated, which is provided for deviations from the mean ±3𝜎. The bounda-

ries of the calculated reliability interval are respectively shown in the table columns 

−3𝜎and +3𝜎. 

The results from all three tables indicate a change in the Hurst exponent while 

shifting the scale, which confirms the assumption made in the previous paragraph 

based on the analytical formula (1) for a simplified metric for calculating fractal di-

mension. 

Table 1. Hurst exponents for generating a sequence with 𝜆0 = 𝜆1 = 0.95 

k 1 2 3 4 5 6 7 8 9 10 11 Mean -3σ +3σ 

1024..64 0.38 0.23 0.48 0.44 0.34 0.29 0.42 0.46 0.40 0.26 0.40 0.37 0.30 0.45 

512..32 0.40 0.33 0.52 0.50 0.34 0.38 0.45 0.44 0.41 0.31 0.48 0.41 0.35 0.48 

256..16 0.42 0.35 0.53 0.48 0.38 0.41 0.41 0.45 0.45 0.39 0.47 0.43 0.38 0.48 

128..8 0.42 0.35 0.46 0.40 0.40 0.39 0.41 0.42 0.43 0.41 0.43 0.41 0.39 0.44 

Table 1 shows that, with a high probability of changing the previous state value to the 

opposite, traffic modulation occurs almost constantly, which leads to a significantly 

lower probability of outliers. This is reflected in the Hurst exponent values, which 

differs from 0.37 to 0.41 for various scales. Fig. 5 shows the signal generated with 

such parameters. 

As a result of random walk based on the obtained sequence, the distance from the 

beginning of the movement will change much slower, because for each step to the 

side there will be a significantly higher probability of getting the opposite direction in 

the next time quantum. 



 

 

 

Fig. 5.Histogram of the signal obtained by generator with 𝜆0 = 𝜆1 = 0.95. 

The following Table 2 contains results of a numerical experiment with the generator 

being set to keep or change the current state with an equal probability 𝜆0 = 𝜆1 =
0.50. In this mode the generator must correspond to the classical random process with 

the Hurst exponent𝐻 = 0.5. 

Table 2.Hurst exponents for generating a sequence with 𝜆0 = 𝜆1 = 0.50 

k 1 2 3 4 5 6 7 8 9 10 11 Mean -3σ +3σ 

1024..64 0.41 0.46 0.39 0.41 0.50 0.37 0.40 0.54 0.35 0.41 0.42 0.42 0.37 0.47 

512..32 0.48 0.48 0.53 0.47 0.54 0.48 0.45 0.60 0.47 0.52 0.46 0.50 0.46 0.54 

256..16 0.52 0.55 0.58 0.52 0.52 0.55 0.52 0.56 0.56 0.59 0.55 0.55 0.52 0.57 

128..8 0.55 0.59 0.61 0.57 0.57 0.57 0.56 0.59 0.60 0.66 0.59 0.59 0.56 0.61 

 

It is noted from Table 2 that four times change of the parameter 𝑘gives estimated 

values of the Hurst exponent with a reliability of 99%. Which is equal to the numeri-

cal series on 1024 samples giving lower values for the Hurst exponent than on 256 

samples with a reliability of 99%. This indicates the difference in the fractal proper-

ties of the numerical sequence at different scales. Using the fact, the appropriate 

queue length of the service system for which the Hurst exponent will have a value 

close to 0.5can be chosen and the theory of random Poisson flow can be used without 

taking into account self-similarity using classical statistics to determine the character-

istics of such a service system. 

Fig. 6 shows a fragment of the obtained sequence with the generation parameters 

𝜆0 = 𝜆1 = 0.50. 



 

 

 

Fig. 6. Histogram of the signal obtained by generator with 𝜆0 = 𝜆1 = 0.50. 

The results of the last experiment with the state change probabilities𝜆0 = 𝜆1 =
0.05are shown in Table 3. From the obtained results, it can be concluded that the 

numerical series has low probability of changing the trends. 

Table 3.Hurst exponents for generating a sequence with 𝜆0 = 𝜆1 = 0.05 

k 1 2 3 4 5 6 7 8 9 10 11 Mean -3σ +3σ 

1024..64 0.48 0.58 0.45 0.54 0.61 0.58 0.51 0.37 0.64 0.39 0.64 0.53 0.44 0.61 

512..32 0.52 0.63 0.56 0.60 0.66 0.61 0.58 0.49 0.69 0.45 0.69 0.59 0.52 0.66 

256..16 0.66 0.77 0.72 0.77 0.67 0.69 0.62 0.65 0.79 0.58 0.76 0.70 0.64 0.76 

128..8 0.78 0.83 0.83 0.84 0.73 0.82 0.73 0.79 0.86 0.73 0.80 0.80 0.75 0.84 

 

The numerical sequence is persistent and is able to store trends for some time. How-

ever, at the same time, the observed mean value of the Hurst exponent is close to 

𝐻 = 0.5 at intervals of 1024 samples. This means that at large distance, the range of 

the cumulative series does not differ from the classical random sequence, where the 

difference between the maximum and minimum values increases on average in pro-

portion to the root of the number of steps taken. 

At short distances, the Hurst exponent is very different, and reaches mean value 

of 𝐻 = 0.8. In accordance with this, there is a scale for which self-similar traffic, as in 

the previous case, will have the properties of a classical random process. A fragment 

of the obtained signal is shown in Fig. 7. 



 

 

 

Fig. 7. Histogram of the signal obtained by generator with 𝜆0 = 𝜆1 = 0.05. 

6 Conclusion and further work 

This paper presented self-similar traffic generators using Markov chains, which differ 

from their analogues in lower computational power requirements for simulation sys-

tems, which makes it possible to increase the performance of information movement 

modeling in telecommunication systems and computer networks. Further develop-

ment and study of such systems is relevant. 

Based on the simplified metric 𝑁(𝑘𝜀), an analytical expression is formed for calcu-

lating the fractal dimension of the generated binary numerical series based on the 

Markov chain. The dependence of the fractal dimension on the length of the interval 

on which it is calculated is noted and the assumption is made that the multifractality 

properties are repeated on classical metrics, such as numerical dimensions based on 

R/S analysis or Minkowski-Bouligand dimension. 

In order to verify the assumption, an experiment part was carried out which con-

firmed the assumption of a multifractal numerical sequence obtained by generators on 

Markov chains with a reliability over than 99%. 

Potential future work includes developing methods for controlling multifractality 

parameters, or opposite task of eliminating the appearance of multifractality. 
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