
DBMS Performance Issues on a Single-Board Computer

Raspberry Pi 3 Model B

Igor Lazarev[0000-0001-8033-4673] and Ilya Gosudarev [0000-0003-4236-5991]

ITMO University, St. Petersburg, Russia.

il5498@yandex.ru

goss@itmo.ru

Abstract. In this article, using the Raspberry Pi 3 Model B platform as an

example, we consider the problem of performance of different DBMS in the

process of using them to provide a single board computer as a web server. The

existing studies do not reveal the database management system (DBMS)

performance problems on single board computer platforms. A comparative

analysis of the performance of different operations using MariaDB relational

DBMS and the same operations using MongoDB NoSQL DBMS was conducted.

The data for the analysis were obtained in the process of experiment, during

which the performance of such operations on databases as sampling and updating

was tested. The Node.js. platform was used as a testing application. Testing was

carried out on a test stand that included a single board computer Raspberry Pi 3

Model B and Windows PC. Besides the DBMS, the web server performance

analysis was conducted in conjunction with the file system. As a result of the

testing, the real performance degradation was found to be compliant with the

expected one and some interesting performance features of different DBMS were

identified. As a result of the testing the conclusions were made about the

possibility of using Raspberry Pi 3 Model B platform as an authentication web-

server.

Keywords: Single-board computers, Raspberry Pi, Database Management Sys-

tems, MySQL, JSON files, MongoDB, Node.js

1 Introduction

At the moment, among the most important requirements for hardware and technical

solutions are mobility, scalability, low operating costs and the possibility of customi-

zation. These qualities have led to the spread of single-board computers in a number of

areas, including the routing of network requests, management of components of the

Internet of Things, the deployment of software-controlled hardware and software solu-

tions in the field.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

2

The study showed that up to 85% of solutions based on single board computers tend

to implement monolingual paradigm, mainly based on the programming language C.

The monolingual platform is understood as the management of all or almost all aspects

of the platform's operation using the same programming language. For example, a one

programming language can be used to control sensors and LEDs on a computer as well

as to process the data from these sensors and deliver them to the IoT client, e.g. via a

web server. However, the evolution of JavaScript and the development of its ecosystem

create reasons for the migration to this language as the basis of the monolingual plat-

form. Refactoring of the existing code and practical experience allowed us to identify

a number of related problems.

In the previous studies, one of the authors needed to ensure the performance of the

web server when working with the database to avoid problems with data transmission

to the client side and their reflection. In the course of this work relational DBMS

MySQL was selected. This choice was due to the convenience of using the relational

data model and the wide popularity of the database. At application deployment devel-

oped during work on final qualifying work on platform Raspberry Pi the problem of

absence of the official distribution kit of server MySQL has been revealed. This fact

revealed the need to replace the MySQL database with another one that supports the

work on a single-board computer Raspberry Pi. DBMS such as MariaDB and Mon-

goDB were considered as possible options. In addition to comparing the results of using

the DBMS, a performance comparison was made when using JSON file stored in the

file system as a database. This choice was conditioned by the necessity to check the

ability of the file system or hardware data storage to avoid reducing the working speed.

MariaDB relational database surpasses MySQL performance by 3-5% due to im-

proved query optimizer and many other performance related improvements, as well as

complete drop-in-replacement MySQL 5.5, which is a strong argument for analyzing

the performance of this particular database on the Raspberry Pi platform [1].

At the same time, the article A Comparison of Database Performance of MySQL and

MariaDB with OLTP Workload v3.0. states that MySQL performance is higher than

MariaDB performance when using approximately the same amount of system resources

[5]. On the other hand, the article NVM Aware MariaDB Database System states that

MariaDB has implemented a solution that increases the efficiency of using this DBMS

on systems with non-volatile memory [6]. Also, the article by Yusuf Abubakar shows

that MariaDB relational DBMS is the most productive for data reading operation among

all considered relational DBMS such as PostgreSQL, MySQL and SQLite [7]. Thus,

there are a lot of articles considering MariaDB relational DBMS performance that do

not come to a final solution of the issue of positioning this DBMS in the relational

DBMS performance rating.

There is also a question of the rationality of MongoDB use considering the disad-

vantages of this DBMS in the form of a large load on the system's RAM and the need

to independently interrupt slow queries [2]. At the same time, the ability to easily scale

MongoDB [4] can provide the use of the cluster of Raspberry Pi 3 Model B instances

as the hardware part of the distributed database created by MongoDB No-SQL DBMS.

Since the study considers the DBMS performance on the Raspberry Pi 3 Model B

platform, the use of the classical criterion of the number of operations for a certain

3

period of time, such as in the article on the creation of the LinkBench benchmark [8],

seems irrational due to the fact that single-board computers are worse than specialized

data storage systems all performance parameters, the time spent on one operation of

selecting or updating data is used as a comparison criterion for a DBMS.

Despite the presence of the conducted researches on the topic of comparing the per-

formance of relational DBMS MySQL and NoSQL DBMS MongoDB [3] or other re-

lational DBMS PostgreSQL and MongoDB [4], it can be noted that these researches

did not consider the issue of DBMS data performance on single-board computer plat-

forms.

2 Data mining

2.1 Test bench specification

The following DBMS testing platforms were selected: Windows PC and Raspberry Pi

3 Model B single board computer. These platforms are widely used in various areas of

application development. While the PC has the best hardware features, Raspberry Pi 3

Model B is compact, low power consumption and low cost. The need for tests on a

desktop PC was due to the possibility that a single-board computer Raspberry Pi 3

Model B might not have enough performance, so that the use of single-board computers

to deploy web servers within the concept of monolingual programming using the Ja-

vaScript language would be irrational. Thus, it became necessary to determine an ac-

ceptable threshold for performance degradation. For this purpose, the hardware charac-

teristics of desktop PC and Raspberry Pi 3 Model B were compared. SSD on Windows

PC and MicroSD card on Raspberry Pi 3 Model B were used as a data storage. MicroSD

card used as read-only memory in Raspberry Pi 3 Model B by default. A comparison

of all components of the platforms used is shown in Table 1. As a result of the compar-

ison, it was decided to establish an acceptable threshold performance reduction of

200%.

Table 1. Technical characteristics of two platforms

 PC Raspberry Pi

Processor model AMD A8-7410 Broadcom BCM2837

Сlock frequency 2.2 GHz 1.2 GHz

Number of core 4 4

RAM capacity 8 GB (up to 16 GB) 1 GB

ROM capacity 930 GB 32 GB

Node.js and Express technologies were chosen as the stack of technologies used for

testing various DBMS. The choice of these technologies is due to the fact that this study

is part of a more global study of the possibility of using JavaScript programming lan-

guage in IoT.

The performance of the database management system for various basic operations,

such as sampling, insertion and modification, was selected as the benchmark for

4

comparison. This criterion was chosen due to the need for fast data exchange between

the DBMS and the server.

The process of experimenting to determine a suitable DBMS was organized as fol-

lows. Tests were developed to determine the timing of operations. In addition, data

similar to the real data had to be generated. The data could be used to fill various data-

base management systems, in two versions. In the first case, 20,000 records were used.

This number is due number is due to the one of the author's previous researches, in

which a database of about 20,000 unique people was used. Thus, the choice of this

number allows to estimate the DBMS indicators that can be used to assess their perfor-

mance in real life tasks. The second option contained 100,000 entries. The choice of

such a number of records is based on the possibility of increasing the number of records

in the existing database, according to experts' estimates, up to 100,000 in 3-5 years.

2.2 Relational DBMS MariaDB testing

To test the data access performance in relational DBMS MariaDB, the samples were

made by the year of birth and by the surname. Such samples allowed to test the selection

as a large set of values and a less one from the volume data array. The code fragment

responsible for sampling small amount of data from relational DBMS MariaDB is

shown in Figure 1.

Fig. 1. Code fragments for sampling small amount of data from rDBMS MariaDB

Thus, in the case of small data set sampling, their filtration is performed by name, while

in the case of large data set sampling the filtration is performed by the birth year. A

sample code sample that selects a large amount of data is shown in Figure 2.

Fig. 2. Code fragments for sampling a lot amount of data from rDBMS MariaDB

Also, the DBMS was tested for the data alteration speed. To perform this operation, we

decided to use the method of updating the data of one column, if the data of another

5

column correspond to the value strictly specified earlier. The code fragments responsi-

ble for this part of the testing are shown in Figure 3.

Fig. 3. Code fragments for updating a lot amount of data in rDBMS MariaDB

2.3 NoSQL DMS MongoDB testing

The NoSQL DBMS MongoDB performance testing process is in general similar to the

MariyaDB relational DBMS performance testing process, except for a few points, such

as no need to format the SQL query to the DBMS and different DBMS connection

implementation. Thus, unlike the MariaDB client implementation, the MongoDB client

implementation, due to the fact that this DBMS supports queries to databases in JavaS-

cript language, uses built-in functions together with the built-in MongoDB functions.

The code that selects a small amount of data from the database is shown in Figure 4.

Fig. 4. Code fragments for sampling small amount of data from NoSQL DBMS MongoDB

It follows from the code that the selection of large and small amounts of data differ

slightly both in queries to MariaDB DBMS and in queries to MongoDB DBMS. The

key difference between the queries to these DBMS is the use of SQL language in the

6

case of queries to MariaDB DBMS and the use of built-in functions in the case of que-

ries to MongoDB DBMS. The code responsible for selecting a significant amount of

data from the MongoDB is shown in Figure 5.

Fig. 5. Code fragment for sampling a lot of data from NoSQL DBMS MongoDB

The procedure of updating data in the MongoDB DBMS differs significantly from

the procedures considered earlier. Firstly, there are several methods of data updating in

MongoDB first. They are given below in Table 2.

Table 2. Methods of updating data in MongoDB DBMS NoSQL [9]

Method Description

updateOne() Update a single document in a collection

updateMany() Update multiple documents in a collec-

tion

replaceOne() Replace a document in a collection with

another document

Also, one of the operators in Update operation in MongoDB - $set - is used to per-

form the data update request. The full list of operators and description of their behavior

is given below in Table 3.

Table 3. Operators using for updating data in MongoDB DBMS NoSQL [9]

Operator Behavior

$currentDate Sets the value of a field to the current

date, either as a Date or a timestamp. The

default type is Date.

$inc Increments a field by a specified value.

$min Updates the value of the field to a speci-

fied value if the specified value is less

than the current value of the field. This

operator can compare values of different

types, using the BSON comparison or-

der.

7

$max Updates the value of the field to a speci-

fied value if the specified value is greater

than the current value of the field. This

operator can compare values of different

types, using the BSON comparison or-

der.

$mul Multiply the value of a field by a num-

ber.

$rename Updates the name of a field.

$set Replaces the value of a field with the

specified value.

$setOnInsert If an update operation with upsert: true

results in an insert of a document, then

assigns the specified values to the fields

in the document. If the update operation

does not result in an insert, this operator

does nothing.

$unset Deletes a particular field.

Based on the above mentioned, the code was developed to update the data in the Mon-

goDB DBMS, which is shown below in Figure 6.

Fig. 6. Code fragment for updating a lot of data in NoSQL DBMS MongoDB

As a result of the code considered earlier it was possible to accumulate a large amount

of data. In total, more than 25 thousand data sampling and updating operations were

performed for all operations. The results of time measurements of these operations are

analyzed in the next section.

3 Data analysis

From the data accumulated during the experiment, a simple non-repeatable sample was

built consisting of 3600 records of the time spent on data sampling and updating oper-

ations in different DBMS on different platforms and operating systems. With the help

of statistical transformations, various data were obtained. Thus, for example, the data

on average values of the time spent on executing different operations in different

DBMS are given in Table 4.

8

Table 4. Mean values of testing results

 Raspberry Pi 3 Model B Windows PC

 20 000

records

(ms)

100 000

records

(ms)

20 000

records

(ms)

100 000

records

(ms)

MariaDB

Select one 148.437 165.327 132.555 286.954

Select

some
271.432 649.541 158.275 300.375

Update 236.934 670.093 144.052 361.388

MongoDB

Select one 201.167 205.050 1098.593 1105.547

Select

some
205.257 204.003 1098.147 1104.457

Update 311.510 657.830 1154.953 1117.373

JSON files

Select one 76.680 142.217 31.540 52.660

Select

some
60.317 160.650 24.583 42.000

Update 24.480 105.993 12.370 31.933

From the table above it follows that the average decrease in performance on Raspberry

Pi 3 Model B platform running Ubuntu 18.04 (Bionic) is approximately 193% com-

pared to the performance of the PC platform running Windows.

Also, it is important to note that despite the 2.78 times lower performance when

working with flat JSON files on the Raspberry Pi 3 Model B platform running on Ub-

untu 18.04 (Bionic) compared to the PC platform running on Windows 10, the perfor-

mance of MongoDB DBMS on the Raspberry Pi 3 Model B platform is significantly

higher than its performance on the PC platform. Thus, the average time spent on the

operation of selecting a unique value from the database deployed on the Raspberry Pi

3 Model B platform and containing 100,000 records is 539% faster than the time spent

on an identical operation on the Windows PC platform.

This is caused by an interesting statistical anomaly seen in Figures 7 and 8.

Fig. 7. Histogram of distribution of sample values from the data obtained during MongoDB

DBMS testing on Windows PC.

9

Fig. 8. Histogram of distribution of sample values from the data obtained during MongoDB

DBMS testing on Windows PC.

From the diagrams shown in Fig. 7 we can see that the time spent on operations with

the MongoDB DBMS deployed on a Windows PC is subject to the Laplace-Gauss dis-

tribution. And in Fig. 8 it can be seen that the time spent on the same operations with

Raspberry Pi 3 Model B with the Ubuntu 18.04 operating system (Bionic) is subject to

the Poisson distribution.

To test the hypothesis that the performance degradation on the Raspberry Pi 3 Model

B platform running Ubuntu 18.04 (Bionic) depends not so much on optimizing various

DBMS for this platform as on the platform performance itself, besides the table with

the average values of the time spent on executing the data sampling and updating oper-

ations, the tables with its minimum and maximum values are given below. In Table 5

the minimum testing results is shown. The maximal testing results is shown in Table 6.

Table 5. Minimum values of testing results

 Raspberry Pi 3 Model B Windows PC

 20 000

records

(ms)

100 000

records

(ms)

20 000

records

(ms)

100 000

records

(ms)

MariaDB

Select one 140 143 128 282

Select

 some 269 643 147 291

Update 235 665 140 355

MongoDB

Select one 157 182 1078 1079

Select

some 182 182 1073 1074

Update 287 630 1129 1088

JSON files

Select one 75 140 30 52

Select

some 57 155 23 41

Update 20 101 6 31

10

Table 6. Maximum values of testing results

 Raspberry Pi 3 Model B Windows PC

 20 000

records

(ms)

100 000

records

(ms)

20 000

records

(ms)

100 000

records

(ms)

MariaDB

Select one 140 143 128 282

Select

some 269 643 147 291

Update 235 665 140 355

MongoDB

Select one 157 182 1078 1079

Select

some 182 182 1073 1074

Update 287 630 1129 1088

JSON files

Select one 75 140 30 52

Select

some 57 155 23 41

Update 20 101 6 31

It follows from the tables above that the average DBMS performance decrease on

the Raspberry Pi 3 Model B platform under Ubuntu 18.04 (Bionic) calculated according

to the minimum time spent on data sampling and updating operations is 214% in com-

parison with the performance of the investigated DBMS on the Windows PC platform.

At the same time, the average DBMS performance decrease on the same platforms cal-

culated by the maximum time spent on executing the data sampling and updating oper-

ations is 190%. Proceeding from the fact that the previously mentioned performance

degradation calculated on the basis of the average time spent on data sampling and

updating operations which is 193% it follows that the real performance degradation

corresponds to the theoretical one calculated in the paragraph 2.1.

4 Results

In the course of the study it was revealed that the problem of monolingual programming

on the Raspberry Pi 3 Model B platform using the JavaScript language, associated with

the lack of an official MySQL server distribution, is solved by using an alternative da-

tabase management system MariaDB. At the same time, the study showed that the use

of DBMS MariaDB leads to a decrease in performance by 111-216 percent. Thus, the

study found that the Raspberry Pi 3 Model B platform is not an effective choice for

working with databases, due to a significant decrease in database performance. At the

same time, the platform can be used effectively to deploy applications that do not re-

quire high performance data storage and processing operations. For example, Raspberry

Pi 3 Model B can be used as an authorization server for web-based applications or as a

distributed DBMS cluster element.

The current study has revealed a number of issues that will be the subject of the

upcoming research. In the future it is possible to investigate the issue of performance

11

of different DBMS on a cluster of some Raspberry Pi platforms, this study can deter-

mine the importance of the Raspberry Pi platform for use in the development of high-

load web applications.

References

1. Ivanov, Ivan. (2019). Reasons to migrate to MariaDB. [On-line] - https://www.re-

searchgate.net/publication/331074421_Reasons_to_migrate_to_MariaDB. Last accessed

26.01.2020

2. Stepovik A. N. Analiz preimushhestv i nedostatkov nereljacionnyh SUBD na primere Mon-

goDB //Nauchnoe Obespechenie Agropromyshlennogo Kompleksa. – 2018. – S. 595-597.

3. Shichkina Ju. A., Kuprijanov M. S., Koblov A. A. Sravnenie proizvoditel'nosti re-ljacionnyh

i nereljacionnyh baz dannyh na primere MySQL i MongoDB //Informacionnye sistemy i

tehnologii v modelirovanii i upravlenii. – 2017. – S. 213-219.

4. B.A.Novikov & M.Y.Levin, "Sravnitel’nyi analiz proizvoditel’nosti SQL i NoSQL SUBD"

[Comparative Analysis of the Performance of SQL and NOSQL DBMS],Computer tools in

education, no.4, pp.48–63, 2017 (in Russian).

5. Tongkaw, Sasalak & Tongkaw, Aumnat. (2016). A comparison of database performance of

MariaDB and MySQL with OLTP workload. 117-119. 10.1109/ICOS.2016.7881999.

6. Lindström, Jan & Das, Dhananjoy & Mathiasen, Torben & Arteaga, Dulcardo & Talagala,

Nisha. (2015). NVM aware MariaDB database system. 10.1109/NVMSA.2015.7304362.

7. Abubakar, Yusuf. (2014). BENCHMARKING POPULAR OPEN SOURCE RDBMS: A

PERFORMANCE EVALUATION FOR IT PROFESSIONALS. International Journal of

Advanced Computer Technology (IJACT). 3. 39.

8. Armstrong, Timothy & Ponnekanti, Vamsi & Borthakur, Dhruba & Callaghan, Mark.

(2013). LinkBench: a database benchmark based on the Facebook social graph. Proceedings

of the ACM SIGMOD International Conference on Management of Data. 1185-1196.

10.1145/2463676.2465296.

9. MongoDB Documentation. [On-line] - https://docs.mongodb.com/. Last accessed 26 Janu-

ary 2020.

https://docs.mongodb.com/

