
Methods and Means of Searching Errors When
Working With Dynamic Memory

Andrey Dergachev1[0000−0002−1754−7120], Daniil Sadyrin2[0000−0001−5002−3639],
Aglaia Ilina3[0000−0003−1866−7914], Ivan Loginov4[0000−0002−6254−6098], and Iurii

Korenkov5[0000−0002−8948−2776]

1 ITMO University, Kronverkskiy prospekt, 49, St. Petersburg, 197101, Russia
http://www.ifmo.ru/, dam600@gmail.com

2 cyberguru007@yandex.ru
3 agilina@itmo.ru

4 ivan.p.loginov@gmail.com
5 idkorenkov@itmo.ru

Abstract. The subject The work discusses methods and means of
finding errors when working with dynamic memory that arise as a result
of exploiting vulnerabilities in implementations of dynamic memory allo-
cation algorithms in the C language - allocators. Such vulnerabilities are
common for software systems of various levels and purposes, including
system software. Techniques for their operation are easily implemented,
their descriptions are publicly available on the Internet, which explains
their widespread use. The purpose of the work The goal is to develop
an integrated approach and software that can detect vulnerabilities of
dynamic memory allocators both at the compilation stage and during
the operation of the software, issue appropriate warnings and recom-
mendations, and also at the compilation stage, edit the code so that
exploitation of vulnerabilities is impossible. One of the important qual-
ity criteria of the developed approach is the minimization of the over-
head during the verification of software products. The method of the
work Based on the studies and analysis of the exploitation techniques of
the vulnerabilities Poisoned Null-byte, Overlapped Chunks, Fastbin At-
tack, Unsafe Unlink, House of Einherjar, House of Force, House of Spirit,
House of Lore, Unsorted Bin Attack, a conclusion was drawn on the need
for checking during the verification process software applications of the
following conditions:
– the possibilities of manipulating the fields of data structures that

store service information, up to the creation of fake sections of the
main memory on the heap or on the stack;

– possibilities of accessing arbitrary sections of the computer memory
due to intentional violation of the logic of the memory allocation
algorithms.

The analysis of modern verification methods and existing software prod-
ucts aimed at detecting vulnerabilities in the operation of memory allo-
cation algorithms is carried out. Their advantages and disadvantages are

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

http://www.ifmo.ru/, 


2 A.Dergachev et al.

revealed. The results As a result of the work done, a software solution
to the problem of detecting the potential exploitation of vulnerabilities
of dynamic memory allocators in the form of a low-level debugger based
on the method of symbolic execution of program code is proposed.

Keywords: Verification · Bugs in software · Symbolic execution · Model
checking · Dynamic memory · C language.

1 Introduction

The presence of vulnerabilities in the operation of dynamic memory allocation
algorithms can lead to loss and/or intentional data corruption and, among other
negative consequences, to property damage. Obviously, the detection of appro-
priate errors in the program code is necessary to minimize unwanted effects and
their misuse. Therefore, the development of strategies for the automatic detec-
tion of such errors within the life cycle of software and products based on them
is an urgent task.

2 Vulnerabilities in the realization of the algorithms of
dynamic memory allocation

Table 1. Vulnerabilities in different versions of glibc.

Poison
ed Null
-byte

Overla
pped
Chunks

Fastbin
Attack

Unsafe
Unlink

House
of Einh
erjar

House
of For
ce

House
of Spir
it

House
of Lore

Unsort
ed bin
Attack

glibc 2.25 + + + + + + + + +

glibc 2.26 – + + + + – – + +

The basic concepts of dynamic memory allocation in C [1] are the following.
Each thread is assigned with some memory area – “arena” in which the memory
chunks will be allocated and freed upon application requests. Each arena is owned
by one or more heaps consist of chunks, and a new heap is allocated with full
use of the previous heap. ”Malloc state” - (the arena header, is a structure from
which the memory for storing the initial heap for this arena is usually taken)
stores information about bins (linked lists of chunks in the heap), top chunk (a
chunk on the upper memory boundary requested from the OS) and so on. The
heap is described by a structure called “heap info”, which stores pointers to its
arena, previous heap, etc. Chunk (the “malloc chunk” structure) is the range
of memory on the heap allocated to the application. It can be combined with
other chunks to get a larger chunk if needed. The metadata for the allocated and
free chunks are different. Free chunks are stored in singly connected or doubly
connected lists – i.e. bins. There are:



Dynamic Memory Errors 3

– 10 of fastbin bins. They store chunks ranging in size from 32 to 160 bytes.
The fastbin list works on the principle of LIFO (Last Input First Output).

– 64 of smallbin bins. They store chunks smaller than 1024 bytes. Each bin gets
chunks of the appropriate size. Smallbins are based on the FIFO principle
(First Input First Output).

– 63 of largebin bins. They store chunks larger than 1024 bytes. Largebin
chunks are stored in descending order of size.

– 1 unsorted bin - all released chunks get into it.

When malloc is called, chunks are retrieved from the unsorted bin and transferred
to the commensurate bins, or returned to the user. All beans are stored in the
malloc state structure.

The glibc library implements algorithms for efficient work with memory. The
requested chunks, depending on the size, are extracted from different bins in the
order established by the corresponding algorithms of the glibc library. At present,
there is a set of known vulnerabilities in the realization of the algorithms of dy-
namic memory allocation in the glibc library, which are considered on the Inter-
net sites [2,3] and are illustrated with detailed examples [4]. As can be seen from
table 1, glibc developers introduced patches that make it impossible to conduct
a number of attacks, including a patch was proposed in 2017 to combat over-
writing metadata in a single byte of the heap: https://sourceware.org/ml/libc-
alpha/2017-10/msg00773.html. Table 1 shows a comparison between versions
2.25 and 2.26 of the glibc library, depending on the presence of vulnerabilities
listed in the first row of the table.

According to the CWE (Common Weakness Enumeration) classification [5],
the list of attacks in table 1 exploits vulnerabilities that fall into the following
categories:

1. CWE-122 Heap-based Buffer Overflow
2. CWE-415 Double Free
3. CWE-416 Use after free
4. CWE-476 NULL Pointer Dereference

If we classify the presented vulnerabilities according to the technique of use,
the main list can be presented in the following edition (table 2) depending on:

– attacker’s capabilities to overwrite top chunk (see heap organization in glibc)
and fields: prev size, size, fd, bk;

– the ability to create a special “fake” chunk on the stack or heap;
– from the presence of “double free” vulnerability;
– from the ability to free a pointer to an arbitrary address (”arbitrary free”).

Let us illustrate the undesirable behavior of programs(table 3) due to the use
for example of the Overlapped chunks and Fastbin Attack techniques, based on
some of the vulnerabilities like CWE-415.

In the first column of table 3 the code of the first example is placed. In
this example after deliberately recording an invalid value of the size of chunk
p2 and releasing this chunk if a new memory chunk (p6) is allocated in its

https://sourceware.org/ml/libc-alpha/2017-10/msg00773.html
https://sourceware.org/ml/libc-alpha/2017-10/msg00773.html


4 A.Dergachev et al.

Table 2. Comparative characteristics of attacks.

Tech
niques

Overwrite area
Demands
of “fake”
chunk

Dema
nds of
Doub
le Free

Dema
nds of
Arbitra
ry Free

Top
chunk

prev
size

PREV
INUSE
(1byte)

size fd bk On the
stack

On the
heap

Pois
oned
null-
byte

+

Over
lapped
chunks

+

Fast
bin
Attack

+ +

Unsafe
Unlink

+ + +

House
of Ein
herjar

+ + +

House
of For
ce

+

House
of Spi
rit

+ +

House
of Lo
re

+ +

Unsor
ted bin
Attack

+ + + +

place, the effect of overlapping two chunks (p3 and p6) appears, which clearly
demonstrates the output of the program placed under the code. The second
example demonstrates the usage of the double free vulnerability: the chunk p1
is released twice and entered in a fastbin. After that the rewriting in its field fd
of the position of ”stack var” variable allows one after the new calling of malloc
to return the chunk (pp4) to an arbitrary address, in this case, at address ”8 +
(char *) & stack var”, which is reflected in the output of the program.

It is obvious the occurrence of similar situations during the software operation
is unacceptable and leads to the inevitable search for solutions to the problem



Dynamic Memory Errors 5

Table 3. Code examples

Code example 1 Code example 2

intptr t *p1,*p2,*p3,*p4,*p5,*p6;
int prev in use = 0x1;
p1 = malloc(100);
p2 = malloc(100);
p3 = malloc(100);
p4 = malloc(100);
p5 = malloc(100);

int evil chunk size = malloc usable
size(p2) + malloc usable size(p3)
+ prev in use + sizeof(size t) * 2;

(unsigned int *)((unsigned char *)p1 +
malloc usable size(p1) ) = evil chunk size;

free(p4);
free(p2);
p6 = malloc(200);
memset(p3, ’3’, 100);
memset(p6, ’6’, 150);
fprintf(stderr, ”p6 = %s”, (char *)p6);
fprintf(stderr, ”p3 = %s”, (char *)p3);

unsigned long long stack var;

fprintf(stderr, ”The address we want
malloc() to return is %p.”,
8+(char *)&stack var);

unsigned long long *p1 = malloc(8);
unsigned long long *p2 = malloc(8);
free(p1);
free(p2);
free(p1);
unsigned long long *pp1 = malloc(8);
unsigned long long *pp2 = malloc(8);
stackvar = 0x20;

pp1 = (unsigned long long)
(((char*)&stack var) - sizeof(pp1));

unsigned long long *pp3 = malloc(8);
unsigned long long *pp4 = malloc(8);

fprintf(stderr, ”allocated chunk:
%p, %p, %p, %p”, pp1, pp2, pp3, pp4);

Program result 1 Program result 2

p6 = 66666666666666666666666666666666
6666666666666666666666666666666666666
6666666666666666666666666666666666666
6666666666666666666666666666666666666
6666666633333333333333333333333333333
333333333333333333333333333333333
p3 = 6666666666666666666666666666666
666666633333333333333333333333333333
333333333333333333333333333333333

The address we want malloc() to re-
turn is 0x7ffc4099d018. allocated chunk:
0x1edb010, 0x1edb030, 0x1edb010,
0x7ffc4099d018

of automatization of the fight against the considered phenomena at all stages of
the software life cycle.

3 Existed approaches and solutions

At presence there are a number of approaches to solving the problem, among
which, as the most promising, we can distinguish the following: fuzzing method,
dynamic analysis approach, model checking approach, symbolic execution ap-
proach, Binary Decision Diagrams application and SAT task solution.



6 A.Dergachev et al.

It should be noted that the use of each of the methods implies the overhead
of the execution of the program, which in some cases can be up to 500%. Let us
consider in more detail some of them.

In [6] and [7], the use of “smart” fuzzing to search for buffer overflow vul-
nerabilities was proposed. Here, fuzzing is understood as an approach in which,
instead of the expected input data, random or specially generated data is trans-
mitted to the program. The objects of interest are crashes and freezes, violations
of internal logic and checks in the application code, memory leaks.

Dynamic analysis is one of the code verification methods and is performed
during program execution. The disadvantages of this approach are the impossi-
bility of checking all the ways the program can be executed and the slowdown
of the program due to the parallel execution of dynamic analysis.

In [8], a verification method is considered using the created models of pro-
grams and algorithms (model checking). The specification for the program is
written in the language of temporal logic, and then special algorithms automat-
ically check whether the created model matches the specification.

An interesting approach is the symbolic execution of a program [9]. This
technique of simulation execution of a program allows to represent some of the
input variables used in the program in symbolic form. Such a symbol denotes the
set of values of the input variable of the program from the scope of its definition.
Each symbolic execution is equivalent to executing a program on a set of specific
test values of input variables, which reduces the power of the set of necessary
tests. Via symbolic execution approach, it is required to select input data on
which an error will occur.

Since the task is relevant, today there are several products, such as CBMC,
HAIT, Heap Hopper, ArcHeap and MOPS, dedicated to solving the problem.

CBMC is a verifier that provides the possibility of limited model checking
(Bounded Model Checker) for the languages ANSI-C and C ++. It allows to
verify overflow of the array (buffer overflow), pointers safety, exceptions, and
user-specified assertions.

A tool called HAIT (Heap Analyzer with Input Tracing) [10] implements
the approach of automatic collecting of the information about the state of the
heap and the operations that are performed on it. The prototype is based on
the Triton framework created for dynamic binary analysis of programs. HAIT
logs memory operations and tagged values. Symbolic expressions are stored in
the form of abstract syntax trees (AST), and the analysis of parsed tagged data
is used to track memory operations affected by user input.

Heap Hopper applies the principles of symbolic execution to search for buffer
overflow vulnerabilities in the heap [11] . Heap Hopper is based on the Angr
framework. At each step of the program execution, an object of the SimState
class is created, which stores the state of the registers and memory of the program
at the moment. Registers and memory can have a specific or symbolic value.
Each symbolic variable is represented as a class of BitVectorSymbol. It is also
possible to manually mark the necessary input data as symbolic - it can be
symbolic memory, represented as a SimSymbolicMemory class, or a symbolic



Dynamic Memory Errors 7

file, represented by a SimFile class. When the conditional branch instruction
is reached, a constraint on the symbolic variable is added. When calling the
”malloc” operator with a symbolic parameter for the size of allocated memory, a
memory chunk with symbolic metadata is created. At each step in the SimState
class, the heap state is saved. The heap model presented in the Heap Hopper is
considered approximate.

ArcHeap [12] is an automatic tool for detecting unexplored heap exploita-
tion techniques, regardless of their realization. For its operation it is necessary
to describe the parameters of the memory allocator as well as set of possible
actions on the heap. During the study ArcHeap checks to see if combinations of
these actions can potentially be used to perform maintenance techniques, such
as random storage or overlapping chunks. As proof ArcHeap generates a PoC
that demonstrates a discovered exploitation technique.

MOPS Modelchecking Programs for Security properties [13] - verifier of
models extracted from the code of programs written in C. The correctness re-
quirements are specified in a special form and correspond to the statements of the
so-called “defensive” programming. During compilation, all possible execution
paths are analyzed without regard to conditions. All possible tracks are collected.
Of these, operators important to safety are highlighted. Having a context-free
grammar of the C language, the program is presented as a pushdown automa-
ton. The security model is represented as a finite-state machine that accepts a
sequence of security operations. The sequence of security operators is “suitable”
if it is received at the input by a state machine and puts it in a “safe” state.

Since only certain aspects of the task are implemented in all the presented
products, the authors of this article consider it possible and expedient to search
for a more comprehensive approach that would allow creating a product whose
capabilities would include methods to detect the most complete list of vulnerabil-
ities presented in program codes combined with possible overhead minimization
for its implementation.

4 The proposed solution

It is known when verifying C / C ++ programs several scenarios are possible:

– emulation of code execution in a virtual machine.

– instrumentation of the executable file after the building and its execution on
a real processor.

– instrumentation of the program source code during compilation and subse-
quent execution of the file [14].

– performing changes to the source code of the program separately before
compilation, for example, by facilities of the TXL language [15].

– the symbolic execution of the internal representation of the code during the
compilation [16].

– execution using the debugger after the building.



8 A.Dergachev et al.

In addition, an important step is to obtain an abstract representation of reg-
ister information. The most used are the internal representations of VEX and
REIL. VEX uses an intermediate representation of SSA (Static single assign-
ment), in which each variable is assigned a value only once.

The following comprehensive approach to solving the problem is proposed:
dynamic symbolic (concolic - concrete and symbolic) execution of the executable
file which combines the real execution of the program with symbolic execution
should be carried out. Dynamic symbolic execution will allow to applicate tech-
niques of program execution paths investigation and by adding security predi-
cates to path constraints to check the potentially dangerous operations for real
errors included in a program. To create a more precise representation of the
heap during symbolic execution, it is proposed to work directly with the “mal-
loc state” structure.

All the abilities and vulnerabilities from the table 1 should to be checked for
each state of symbolic execution. This approach will allow to understand the
applicability of attacks to errors while working with the dynamic memory.

In addition, in order to reduce overhead, instead of emulating, one should
run the tested application by using a special debugger. In the future, it is also
planned to investigate methods for finding errors in programs with interactive
input.

5 Conclusion

The article examined the known techniques of attacks on dynamic memory, ap-
proaches to software verification, briefly characterized the existing solutions for
finding errors in program code. A new approach to finding errors in memory
allocators has been proposed. In the future, this approach is planned for imple-
mentation with subsequent comparison with existing solutions.

References

1. Understanding glibc malloc, https://sploitfun.wordpress.com/2015/02/10/

understanding-glibc-malloc/comment-page-1/. Last accessed 25 May 2019
2. Yet another free() exploitation technique, http://phrack.org/issues/66/6.html.

Last accessed 25 May 2019
3. Malloc Des-Maleficarum, http://www.phrack.org/issues/66/10.html. Last ac-

cessed 25 May 2019
4. A repository for learning various heap exploitation techniques, https://github.

com/shellphish/how2heap. Last accessed 08 Nov 2019
5. Common Weakness Enumeration, https://cwe.mitre.org/index.html. Last ac-

cessed 25 May 2019
6. Bhardwaj, M., Bawa, S.: Fuzz testing in stack-based buffer overflow. Advances in

Intelligent Systems and Computing 759, 23–36 (2019)
7. Mouzarani, M., Sadeghiyan, B., Zolfaghari, M. A.: Smart Fuzzing Method for De-

tecting Heap-Based Buffer Overflow in Executable Codes.Proceedings - 2015 IEEE
21st Pacific Rim International Symposium on Dependable (2016)

https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/comment-page-1/
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/comment-page-1/
http://phrack.org/issues/66/6.html
http://www.phrack.org/issues/66/10.html
https://github.com/shellphish/how2heap
https://github.com/shellphish/how2heap
https://cwe.mitre.org/index.html


Dynamic Memory Errors 9

8. Karna, A.K., Chen, Y., Yu, H., Zhong, H., Zhao, J.: The role of model checking in
software engineering. Frontiers of Computer Science 12(4), 642–668 (2018)

9. Dudina, I.A., Belevantsev, A.A.: Using static symbolic execution to detect buffer
overflows. Programming and Computer Software.43(5), 277–288 (2017)

10. Atzeni, A., Marcelli, A., Muroni, F., Squillero, G.: HAIT: Heap analyzer with input
tracing. ICETE 2017 - Proceedings of the 14th International Joint Conference on
e-Business and Telecommunications, 4, pp. 327–334. (2017).

11. Eckert, M., Bianchi, A., Wang R, Shoshitaishvili Y, Kruegel C, Vigna G.: Heap
Hopper: Bringing Bounded Model Checking to Heap Implementation Security, 27th
USENIX Security Symposium, 2018

12. Automatic Techniques to Systematically Discover New Heap Exploitation Primi-
tives, https://arxiv.org/pdf/1903.00503.pdf. Last accessed 25 May 2019

13. MOPS: an Infrastructure for Examining Security Properties of Software, http:

//web.cs.iastate.edu/~hridesh/teaching/610/06/02/papers/mops-ccs02.pdf.
Last accessed 25 May 2019

14. Jang, Y.-S., Choi, J.-Y.: Automatic prevention of buffer overflow vulnerability
using candidate code generation. IEICE Transactions on Information and Sys-
tems.E101D(12), 3005–3018 (2018)

15. Dahn, C., Mancoridis, S.: Using program transformation to secure C programs
against buffer overflows. Proceedings - Working Conference on Reverse Engineering,
WCRE. 2003-January

16. Loding, H., Peleska, J. Symbolic and Abstract Interpretation for C/C++ Programs
/ Electronic Notes in Theoretical Computer Science 217 (2008), https://www.

sciencedirect.com/science/article/pii/S1571066108003885. Last accessed 25
May 2019

 https://arxiv.org/pdf/1903.00503.pdf
http://web.cs.iastate.edu/~hridesh/teaching/610/06/02/papers/mops-ccs02.pdf
http://web.cs.iastate.edu/~hridesh/teaching/610/06/02/papers/mops-ccs02.pdf
 https://www.sciencedirect.com/science/article/pii/S1571066108003885
 https://www.sciencedirect.com/science/article/pii/S1571066108003885

	Methods and Means of Searching Errors When Working With Dynamic Memory

