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ABSTRACT

Deep neural network-based methods are becoming popular
for disease diagnosis and treatment in Endoscopy. In this pa-
per, we discuss our submission to Endoscopic Artefact De-
tection Challenge (EAD2020). The competition is part of
grand challenges in Biomedical Image Analysis and consists
of three sub-tasks1: i) Bounding box-based localisation of
artefacts ii) Region-based segmentation of artefacts, and iii)
Out of sample generalisation task.

For the first sub-task, we modify the Faster R-CNN ob-
ject detector by integrating a powerful backbone network and
a feature pyramidal module. For the second sub-task, we im-
plemented a U-Net based autoencoder with a modified loss
function to construct the semantic channels. For the third
sub-task, we used ensembling techniques along with a data-
augmentation technique inspired by RandAugment to boost
the generalisation performance.

We report a Scored of 0.1869± 0.1076 for the first task,
sscore of 0.5187 with a sstd of 0.2755 for the second task
and mAPg of 0.2620 and a devg of 0.0890 for the third task
on the test data-set. Our method for the third task, achieves
the third position on the leaderboard for the mAPg metric and
also surpasses the results obtained by many methods in the
previous EAD2019 challenge.

Index Terms— Endoscopic Artefact Detection Challenge,
Faster-RCNN, RandAugmentation, U-net.

1. INTRODUCTION

Endoscopy is widely used as a clinical procedure for early
detection of numerous cancers (e.g., nasopharyngeal, oe-
sophageal adenocarcinoma, gastric, colorectal cancers, blad-
der cancer, etc). It is also used for therapeutic procedures
and minimally invasive surgeries (e.g. Laparoscopy). Dur-
ing this procedure, an endoscope which is a thin, long and
flexible tube with a camera and a light source located at
its proximal tip is used which helps to visualise the inter-
nal organs and helps for further diagnoses by the clinicians.
A major drawback of the video frames obtained from this

1https://ead2020.grand-challenge.org
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process, is that they are corrupted with multiple artefacts
(for e.g. motion blur, pixel saturation, bubbles, fluid, debris,
specularity reflections, etc) even though, the videos might be
captured at a very high resolution. These artefacts prevent
effective diagnoses of pathologies, post-analysis with respect
to retrieving frames for report generation and video mosaick-
ing for follow-ups. Thus, it becomes essential to use frame
restoration algorithms, which helps to restore the frame to
its highest quality. The frame restoration algorithms require
accurate detection of the spatial location of multi-class arte-
facts in the corresponding frames. But present endoscopy
workflow supports the restoration of only one type of artefact
class, which is insufficient for high-quality frame restoration.
So, it becomes essential to build multi-class artefact detectors
which can lead to the development of artefact correction and
frame restoration algorithms for each specific artefact class.

Endoscopic Artefact Detection challenge 20201, aims
to address the key problem inherent in endoscopy. There
are three sub-tasks in this particular challenge. They are:
i) Bounding box localisation of multi-class artefacts. In this
task, we are required to identify the class of the artefact, along
with its spatial location by identifying the closest bounding
box co-ordinates around the artefact. ii) Semantic segmenta-
tion of artefacts, where we are required to identify the class
of the artefact along with its accurate region in the frame.
Semantic segmentation is more effective than bounding box
based localisation, because the region of interest, i.e. the
artefact region is accurately marked in this task. iii) Out of
sample generalisation task, where we are required to identify
the type and the region of the artefacts through bounding
boxes, from frames not captured for training purposes.

In our work, we demonstrate the following novelty:

• We modify the Faster R-CNN [1] module for the ob-
ject detection task. We use a powerful version of the
backbone ResNeXt-101 [2] for effective extraction of
aggregated features. Additionally, we apply a feature
pyramidal network (FPN) [3] module for multi-scale
feature representation.

• In-order to improve generalisation, we came up with
an augmentation technique inspired by RandAugment
[4]. RandAugment provided one of the highest boost
in AP on the COCO [5] and ImageNet [6] dataset. By



Class labels Number of instances

Specularity 11856
Imaging Artefacts 8681
Bubbles 5345
Contrast 1866
Saturation 1423
Blur 747
Instrument 603
Blood 528
Total 31049

Table 1. Statistics of the training data provided of EAD2020
challenge

using this technique, we achieved a significant incre-
ment in performance for Task 3. Using an ensemble
of the improved Faster R-CNN and RetinaNet module
along with the augmentation techniques, we achieved
the third position in the leaderboard with respect to the
mAPg metric. We also demonstrate in Section 4.3 that
our model surpasses the results obtained by methods
used in the previous EAD2019 challenge. More details
regarding the augmentation technique are provided in
Section 3.3.

• For the second task, we use a U-Net [7] and similar aug-
mentation techniques along with adopting Binary Focal
Loss which is further detailed out in Section 3.2.

2. DATASETS

For the EAD 2020 challenge, two types of data-sets [8, 9, 10]
were provided. These data-sets correspond to the two kinds
of tasks, i.e. bounding box based localisation and semantic
segmentation. The details of them are given below:

2.1. Dataset for bounding box based localisation task

The data-sets for this task were provided in three phases.
There were eight classes of artefacts i.e. specularity, bub-
bles, saturation, contrast, blood, instrument, blur and imaging
artefacts. In the first phase, we received 2200 endoscopic
frames. In the second phase, we received 99 frames and in
the third phase, we received five sets of sequential frames,
totally adding to 232 in number. Table 1 provides the class-
wise split of the total number of artefacts present in the total
data provided.

From the table, it is can be inferred that there is data-
imbalance between the classes. Specularity has the highest
number of instances equal to 11856 whereas blood has the
lowest number of instances equal to 528. Also, one more
challenge observed with respect to this data-set is the non-
uniformity of the image size/aspect ratio across the training

Fig. 1. Framework of the object detector used

images.

2.2. Dataset for semantic segmentation task

The data-sets for this task were provided in three phases as
well, with the first release having 474 samples, followed by
the second release of 70 samples, capped off with a final re-
lease of 99 samples amounting to a total of 643 instances.
With segmenting out the artefacts from images as the goal,
each instance had an RGB Image of an arbitrary size paired
up with a corresponding five-channel TIF mask file. The five
channels from the masks represented Instruments, Specular-
ity, Artefact, Bubbles and Saturation in that order. Each image
had the possibility of overlapping masks.

3. METHODS

3.1. Multi-class Artefact Detection

Faster R-CNN module is a two-stage object detector contain-
ing a backbone with a feature extractor and a prediction mod-
ule. Fig 1 shows the different components of the Faster R-
CNN module. We discuss below the improvement made to
the Faster R-CNN module to boost the performance towards
the tasks.

3.1.1. Backbone Network

Backbone networks are used for the low-dimensional repre-
sentation of input data. Usually, they are fully convolutional
layers. The choice of a backbone network is crucial in de-
termining how well the input data, in our case an image is
encoded into a low-dimensional space. Typically, a stronger
backbone network extracts effective features from the input
image which leads to better accuracy of the output predic-
tions.

In the EAD2020 train data-set (as extension of EAD2019),
as observed, the class objects can be very small in size and
difficult to differentiate from the background [10]. So, a
need for a strong object detector module becomes neces-
sary. The standard backbone networks used in literature



Fig. 2. a. The building of a ResNet module and b. The build-
ing block of a Resnext module with C=64

[11, 12, 13, 14, 15, 16, 17] are ResNet-50/101, VGG-16, In-
ception models, etc. To design a stronger backbone, we make
use of the simple architectural design exhibited by ResNet-
50/VGG-16. The number of hyper-parameters like the filter
size and strides are fixed for each convolutional/residual
block. Each block is followed by a downsampling step and
after every stage of downsampling, the width of the blocks
are multiplied by a factor of two. We build on this simple
architectural design and improvise it by making use of the
concept of simple split-transform-merge, as described in [2].
The input at each stage after the downsampling step is sent
independently to C parallel residual blocks, where C refers to
a hyper-parameter termed as cardinality. The output across
each parallel residual block is concatenated before sending it
to the next downsampling step. This model achieved state-of-
the-art results on the imagenet dataset.

Given the complications of our data-set, we choose
ResNet-101 having a cardinality C of 64, i.e. a ResNeXt-
101 with a cardinality of 64. Fig 2 shows the building block
of the ResNeXt-101 architecture. Inception based modules
are based on a similar concept to the ResNeXt modules and
achieve very good results. But it has complications with re-
spect to hyper-parameter tuning. The filter size and strides
need to be tailored for each stage and it is unclear as to how
to adapt the architecture to new data-sets.

3.1.2. Feature Pyramidal Network module

FPN constructs an image pyramid by fusing intermediate lay-
ers from the backbone network. It is a top-down pathway con-
sisting of lateral connections so the network efficiently con-
structs a rich, multi-scale feature pyramid from a single res-
olution input image. Since, the data-set in our case consists
of both small and large-sized objects and also objects which
are difficult to detect, using an FPN module builds a high-
level semantic representation of the input image at both high
and low resolutions, which helps for better predictions. To
achieve this, we build an FPN module on top of the ResNeXt-
101 backbone. We construct a pyramid with levels P3 through
P7, where l indicates the pyramid level (Pl has resolution 2l
lower than the input). Also, all pyramid levels have 256 out-

put channels in concordance with [3].

3.1.3. Output prediction module

The output prediction module consists of two sub-components,
the RPN head and the bounding box prediction module. The
RPN-head proposes regions of interest from the intermediate
feature representations coming from the FPN module. The
bounding box prediction module is again a convolutional
neural network. We chose to go with the standard modules
for the RPN and the bounding box neural network as stated
in [1].

3.2. Region based segmentation

The technique being employed for the Semantic Segmenta-
tion task was the U-NET Architecture Autoencoder [7]. Prior
to training, we apply augmentations on the images and masks
such as flipping, zooming, and rotating to increase the train
sample size. The backbone networks loaded into our models
are weights pre-trained on the ImageNet dataset. For the loss
function, we make use of the Binary Focal Loss [18] as op-
posed to the traditional Binary Cross-Entropy Loss given that
in most masks the negative pixels significantly outnumber the
positive pixels. To gauge the performance of our models we
make use of the Intersection over Union metric (IoU).

IoU =
TP

(TP + FP + FN)

To prepare the data for training, the images and masks are
scaled down to the uniform size of 256x256. Then, split in
the ratio 80:20 of training to test data, followed by the afore-
mentioned augmentations applied at random to both pools.
We were able to accomplish this by making use of the inbuilt
Keras [19] ImageDataGenerator class which provides high-
level APIs to apply these in batches and the Segmentation
Models Librar [20] for the various backbones for the U-NET.

3.3. Out-of-sample generalisation

The out-of-sample generalisation task requires us to detect
artefacts from images different from what was obtained for
training purposes. This requires that the neural network does
not get over-fit to the training data while maintaining its per-
formance on the test data.

Data-augmentation is a standard technique which per-
forms label-preserving transformations to the input data-set.
It is a well-known fact that data-augmentation improves
the generalization capability of the deep neural network.
Choosing the right transformations and adopting an effective
methodology for implementing the transformations is crucial
to achieve a high generalization score. Recently, a lot of re-
search has gone into identifying effective data-augmentation
methodologies. Cubuk et.al. [21] uses a technique termed



Fig. 3. Focal Loss [18].

as Auto-Augment, wherein a reinforcement learning based
algorithm is used to select the most effective transformations
suitable to a given data-set from a total pool of 16 opera-
tions. This technique achieved very high mAP on the COCO
data-set. But, implementation of the methodology is complex
and requires high computational capacity. In-order to design
an effective augmentation technique which is also simple to
implement, we make use of the idea used in [4].

The main idea is to randomly select N transformations
from a total pool of T operations and apply it to the image se-
quentially with a magnitude M that can be varied in the range
[1, 10]. This algorithm requires less computational power to
implement and surprisingly achieved similar results as [21] on
the COCO data-set. We fine-tune this algorithm to our data-
set. By experimentation, we found that effective and original
augmentations were being produced for M = 4,5. Also, we re-
stricted the number of sequential augmentation techniques N
to 2, due to computational limitations. For the data-set given,
we selected the transformations based on a simple intuition
that the output image should be label-preserving. The cho-
sen augmentation techniques are Equalize, Sharpness, Bright-
ness, Rotate, Cutout, Translate-X/Y and Shear-X/Y. Figure 4
shows examples of the augmented data.

To further increase the generalisation capability, we cre-
ated an ensemble of the improved Faster R-CNN module from
Section 3.1 along with a RetinaNet [18] object detector using
Weighted Boxes Fusion technique [22]. The networks were
allocated with equal weights. The threshold and intersection
over union parameters were set at 0.0000001 and 0.6 respec-
tively. The results of the above methods, along with a com-
parison with other networks are discussed in Section 4.

4. RESULTS

The results from the trained model on the test data-set are
discussed next. The models were trained on NVIDIA GTX
1080Ti and RTX 2070 GPU’s.

Fig. 4. Examples of the images generated through the aug-
mentation technique

Backbone Scored
Modified ResNeXt-101 backbone 0.2319± 0.1005
ResNext-50 0.2004± 0.1540
ResNet-101 0.1456± 0.3564

Table 2. Comparison of the backbone used with other stan-
dard backbones

4.1. Task 1: Bounding box localisation based multi-class
artefact detection

The test data-set was provided in two phases. The first phase
contained 150 images and the second phase contained totally
contained 317 images including the first phase images. As
discussed in Section 3.1 we use an improved Faster R-CNN
module for this task. To establish a comparison of our back-
bone with other standard backbones we trained the same
Faster R-CNN with different backbones like ResNeXt-50 and
ResNet-101. We compared the performance of the backbones
by using only the first phase of the test data-set. Table 2
summarises the results. It can be observed that the modified
ResNeXt-101 algorithm gives the highest Scored score over
other backbones, thus demonstrating its effectiveness over
other standard backbones.

Also, to establish a comparison with other state-of-the art
object detection techniques, we also train a Cascade R-CNN
and a RetinaNet detector with the same configuration of the
ResNeXt-101 backbone. The training set images were resized
to (1300,800) and the learning rate was set to 0.01. We also
applied the augmentation techniques discussed in Section 3.3.
We stopped the training after 12 epochs because the models
showed signs of over-fitting. Table 3 summarises the obtained
results on the final test data-set. It can be observed from the
results that Faster R-CNN performed way better than the Reti-
naNet and Cascade R-CNN. However, Faster R-CNN model
showed higher error of ±0.1076.



Method Scored
Faster R-CNN 0.1869± 0.1076
RetinaNet 0.1725± 0.0989
Cascade R-CNN 0.1686± 0.0907

Table 3. Results obtained for Task 1 by different models

Architecture Backbone Train IoU Validation IoU
U-Net None 0.9513 0.1823
U-Net ResNet50 0.9728 0.2141
U-Net ResNext50 0.9642 0.2501

Table 4. Results on Train and Validation set

Method sscore sstd
U-Net+ResNext50 0.5187 0.2755

Table 5. Results obtained for Task 2 on Test Set

4.2. Task 2: Semantic Segmentation of Artefacts

As discussed in Section 3.2, we used the U-NET Architecture
with different backbones to train on our augmented data. All
models were trained for 150 epochs and implemented using
the Segmentation Models [20] framework. On our test and
validation data we had the following results:

We used the best performing Model on the validation
data-set (U-Net with the ResNext50 Backbone) on the test
Dataset which had 162 samples for our submission. The
results are shown in Table 5.

4.3. Task 3: Out of Sample Generalisation

The test data-set for this task consisted of 99 frames. As dis-
cussed earlier in Section 3.3, we implemented the augmen-
tation technique and produced meaningful label-preserving
images. To demonstrate the effectiveness of the augmenta-
tion technique, we compare the performance of the improved
Faster R-CNN model trained using the augmented images
with the model trained without using the augmented data.
Both the models were tested on the first phase of the test data-
set to establish comparisons. Table 6 summarises the results.
It can be clearly observed that the model trained using the
augmented images easily surpasses the model trained without
the augmented images by achieving a difference of 5.9% on
the mAPg metric.

We created an ensemble model of Faster R-CNN and Reti-
naNet to boost the performance for the generalisation task.
To prove the effectiveness of the ensemble model, we provide
comparisons with non-ensembled models. As shown in Ta-
ble 7, the ensembled model achieved a mAPg of 0.2620 and
a devg of 0.0890. Even though the Faster R-CNN module
achieves the lowest devg score, the mAPg score is higher for

Fig. 5. Sample Result obtained from the U-NET Model for
the Tool Detection Channel of the Semantic Segmentation
Task

Method mAPg devg

With the augmented images 0.2583 0.0680
Without the augmented images 0.1987 0.0533

Table 6. Comparison results of the improved Faster R-CNN
model trained with and without the augmented data

Method mAPg devg

Ensemble(Faster R-CNN + RetinaNet) 0.2620 0.0890
Faster R-CNN only 0.2583 0.0680
RetinaNet only 0.2393 0.0722

Table 7. Comparsion of results obtained for ensemble mod-
eling

Method Data-set mAPg devg

Ensemble model EAD2020 0.2620 0.0890
Faster R-CNN only (Ours) EAD2020 0.2583 0.0680
Gao et.al. [13] EAD2019 0.2515 0.0728
RetinaNet only (Ours) EAD2020 0.2393 0.0722
Mohammad et.al. [16] EAD2019 0.2187 0.0770
Yang et.al. [15] EAD2019 0.1931 0.0478

Table 8. Comparison of our methods with EAD2019 [10]
models

the ensemble based model. This score is recorded as the third
highest in the leaderboard.

Also, we compare our entire methodology (Augmentation
+ Ensembling) adopted for this task, with methods used in the
previous EAD2019 challenge. Mohammad et.al. [16] uses a
RetinaNet with a Resnet-101 module. Gao et.al. [13] uses
a Fast R-CNN-NAS module. The comparison for the same
is provided in Table 8. It can be observed that our technique
achieves the highest performance.



5. DISCUSSION & CONCLUSION

In this paper, we discuss the methods used for the EAD 2020
challenge and also present the corresponding results obtained.
For the first task we used a improved Faster R-CNN module
with a powerful backbone and a FPN module. For the second
sub-task we used a U-Net architecture by modifying the loss
function. For the third sub-task, we designed an augmentation
technique inspired by RandAugment [4]. We also used an
ensemble of Faster R-CNN and RetinaNet to further boost
the results.

We demonstrate that the modified ResNext-101 backbone
achieves better results than the standard backbones. For the
first task, we achieved a Scored of 0.1869± 0.1076. We
also compare the results against other state-of-the-art tech-
niques. For the second task, we achieve a sscore of 0.5187
and sstd of 0.2755. For the third task, we first demonstrate
that the model trained on the augmented performs better than
the model not trained on the augmented images. Then, we
demonstrate that the ensembled based model performs better
than non-ensembled models. Lastly, we show that our model
achieves the third position in the leaderboard with respect to
the mAPg metric and that it performs better than a few models
used in the EAD2019 challenge. We believe more research
can be done towards identifying better semantic segmentation
algorithms and better ensembling techniques in the future.

6. ACKNOWLEDGEMENT

We thank the EndoCV2020 organisers for the opportunity.
We would also like to extend our thanks to Shanthanu
Chakravarthy, Raghu Menon and Varun Seshadrinathan from
Mimyk team for all the support during the competition.

7. REFERENCES

[1] Ren et.al. Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In Proceedings
of the 28th International Conference on Neural Infor-
mation Processing Systems (NIPS), page 9199, 2015.

[2] Saining Xie, Ross Girshick, Piotr Dollàr, Zhuowen
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