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Abstract. The problem of quality model creation for models based on decision 
trees and forests is considered. The set of indicators characterizing properties of 
decision trees and forests is proposed. It allows to quantitatively evaluate such 
properties as diversity, equivalence, retraining, confidence in a decision-
making, hierarchy, equifinality, generalization, nonlinearity, robustness, homo-
geneity, sensitivity to the input signals, plasticity, variability adaptability, sym-
metry, asymmetry, emergence (integrity), interpretability (logical transparency), 
learnability, and autonomy as for individually considered single tree model, as 
for an ensemble of tree models (forest). 
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1 Introduction 

Automation of decision-making in applied tasks, as a rule, requires the construction of 
a decision-making model. To solve the problem of decision-making model construct-
ing on the precedents, a wide class of computational intelligence methods has been 
proposed, including neural networks [1-5], neuro-fuzzy networks [6-9], decision and 
regression trees [10-17], forests of decision trees [18-22] and etc. 

Usually, the quality of such models is characterized by the error function [1, 2]. As 
a result model is selected from several alternative obtained models, which has the 
smallest error. Note that for each class of methods, even for the same given training 
sample of observations, it is possible to obtain a wide range of different models with 
acceptable accuracy. At the same time, achieving the maximum accuracy (the small-
est error) does not guarantee a high level of customer properties of the model.  

Earlier in [23-26] author has proposed a set of indicators, applicable to models based 
on neural and neuro-fuzzy networks. However, most of these indicators are not applica-
ble to the models based on decision trees and forests due to their paradigm difference 
from network models paradigm. Therefore, it is necessary to develop a quality model 
for decision trees and forests providing comparability of its indicators with the quality 
indicators of models based on neural and neuro-fuzzy networks proposed earlier in [23-
25]. 



The properties of models can be affected not only by the structural parameters, but 
also by the properties of the training sample [27-31]. Therefore, it is necessary to take 
into account information about the properties of the sample when determining the 
quantitative indicators characterizing the properties of models. 

The aim of this work was to create a quality model for models based on decision 
trees and forests as a set of quality indicators. 

2 Formal problem statement 

Let we have a training sample of observations in the form <x, y>, where x = {xs}, 
xs={xs

j}, y={ys}, s = 1, 2, ..., S, j = 1, 2, ...., N, xs is a set of input values (descriptive) 
features of s-th sample instance, xs

j is a value of j-th input feature of s-th sample in-
stance, y is an output feature value for the s-th instance in a sample, S is a number of 
instances in the training sample, N is a number of input (descriptive) features charac-
terizing the instances of  training sample. 

Then the problem of model building for the dependence y=f(w, x) on a sample of 
observations  <x, y> based on the decision tree tree consists in identifying the model 
structure f and the values of its parameters w that provide an acceptable value of the 
given quality functional of the model F(x, y, f, w) [17]. 

The problem of model building based on a forest of decision trees, in turn, can be 
represented as a problem of obtaining a set of models forest={treet}, treet =ft(w

t, x), 
that provide an acceptable value of a given quality functional F(x, y, {ft},{wt}), where 
t is a number of a tree in the forest, t = 1, 2, ..., T, T is a number of trees in the forest, f  
is a model structure of a t-th tree , wt is a set of model parameter values of a t-th tree 
[20]. 

It is obviously, that the problem of the quality functional creation of models based 
on decision trees and forests requires the determination of a set of indicators {Ii} that 
quantitatively describers the properties of the models. 

3 Primary model characteristics 

Along with the sample parameters described above, we will use such notation for the 
characteristics of the samples: <xtest, ytest> is a test sample, Stest is a number of in-
stances in the test sample; N, N' are, respectively, the number of signs in the original 
set and in the reduced set of features;  , minmax ff  are, respectively, the maximum and 

minimum boundary values of a model output,  , minmax yy are, respectively, the maxi-

mum and minimum boundary values of output feature. 
The basic properties characterizing the model structure are defined as: M is a num-

ber of levels in a tree, Nn is a number of nodes in the model, N  is a number of nodes 

in the  -th layer of a tree, max
nN  is a maximum possible number of nodes in a model, 

fi is an i-th node function, min is a smallest possible change of the real number, tak-



ing into account the bit grid of the computer, )( jo  is a complexity of the j-th node, 

which can be defined similarly to [250] in units of elementary operations of addition 
and multiplication, *i

aut  is a characteristic of autonomy of a formation of i-th element 

of a model structure ( *i
aut = 0, if the inclusion (or exclusion) of i-th node to the model 

determined only by the human; *i
aut = 1, if the inclusion (or exclusion) of i-th node to 

the model is automatically defined by the training method; *i
aut = 0.5, if the inclusion 

(or exclusion) of i-th node to the model can be determined by the human or training 
method), )(inp  is a characteristics of plasticity of i-th node of the tree, which is 

equal to the number of possible states of a node i (for leaf nodes containing singleton 
(not containing functions) )(inp  = 1, for the nodes with functions the )(inp  should 

be taken equal to the number of different functions that may contained in the node, for 
the rest nodes of the tree we should take )(inp  as a number of branches of the node), 

ijw is a connection of i-th and j-th nodes ( ijw = 0, if i-th and j-th nodes are not con-

nected, and ijw = 1, if i-th and j-th nodes are connected). 
Let introduce the notation for the description of a model parameters: minmax ,ww  

are, accordingly, the maximum and minimum possible values of a model parameters, 
Nw  is a number of adjustable parameters of model node, max

wN  is a maximum possible 

number of adjustable parameters of a model nodes, min
,

max
, , jiji ww  are, respectively, the 

maximum and minimum possible values of j-th parameter in i-th node, w  is a 

smallest possible change in weights taking into account the size of the computer bit 
grid, wj is a j-th model parameter, Nw(i) is a number of parameters of i-th model node, 

jiw ,  is a minimum possible change of j-th parameter of i-th node taking into ac-

count the bit grid size of a computer, sp(i) is a characteristics of a plasticity of pa-
rameters of i-th node (sp(i) = 0 if the node has no adjustable parameters, otherwise 

set: 
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We define the notation for describing the functioning of a model as: Etr, Еtest   are, 
respectively, model errors for the training and test samples, )(wE is a model error at a 

set of weights w. 
The following notation will be used for the model training method parameters: 

metN  is a the number of training method parameters, aut
metN  is a number of parameters 

of a training method, which values of are determined automatically without a human 
intervention, )( iaut w  is a characteristic of autonomy of i-th node parameter values 

setting ( )( iaut w = 0, if parameter values set only by a human; )( iaut w = 1, if the 

values of the node parameters are determined automatically by the training method; 
)( iaut w  = 0.5, if the values of the node parameters can be determined by the human 

and method). 



For tree models in a forest we denote: 
min,max, , ff ww , accordingly, maximum and 

minimum possible values of  parameters of a forest model, 
fwN is a number of pa-

rameters of a forest model without taking into account the number of parameters of its 

trees, maxT  is a maximum possible number of trees in the forest. 
If necessary to distinguish the use of indicators for the decision tree we will use no-

tations in the form of tI  or treeI  (here I is an indicator, t is a tree number, tree is a 

tree symbol), and for the forest we will use notation of the form of forestI  (here I is 
an indicator, forest is a forest symbol). 

4 Model Quality Indicators 

Diversity is defined by a number of different states of a system. In accordance with 
the law of "Requisite variety" of W.R. Ashby, creating of a system able to decide a 
problem, which has certain known diversity (complexity), it is necessary to provide 
for a system an even greater diversity (knowledge of solving methods) than the diver-
sity of the problem being addressed, or to ensure the ability of the system to create 
this diversity within itself (it would have methodology, could have developed a meth-
odic or proposed new methods for solving the problem) [32]. 

The absolute indicator of the limiting diversity of the synthesized model based on 
the decision tree tree, by analogy with [24], is defined as (1): 

 .))((round)(
max

1

minmax 














n

w N

i
np

N

div i
w

ww
treeI  (1) 

The absolute indicator of the limiting diversity of the synthesized model based on 
the forest of decision trees forest is defined as (2): 
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The greater the value of limiting diversity, the wider the range of models we can 
obtained on its basis. 

By analogy with [24], we define the diversity indicators of the tree model tree and 
forest model forest: 

– in relation to the training sample as (3) and (4):  
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– in relation to the population universe as (5) and (6):  
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The more the value of Idiv(tree,<x, y>) for a single tree, and the value of 
Idiv(forest,<x, y>) for the forest, the more will be the model potential for approximat-
ing the relationship represented by the sample. The smaller the value of the corre-
sponding indicator for the model at an acceptable level of error E , the better the ap-
proximation of the sample is. 

The more the value of Idiv(tree, X, Y) for a single tree, and the value of Idiv(forest, X, 
Y) for a forest, the more the model will be able to solve the given problem. However, 
if the relevant indicator is greater than one, or is near to one, then the model is too 
excessive for the problem solving. 

The equivalence of models is determined as follows: two models are equivalent if 
they have the same sets of answers (they respond equally to the same input stimuli) 
[33]. 

The equivalence coefficient of trained models based on decision trees t1  and t2 for 
the sample <x, y> we defined as (7): 
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The equivalence coefficient of trained forests models can be determined similarly 
to the above, replacing the calculated tree outputs with the corresponding forest out-
puts. 

The values of the equivalence indicator will be in the range from zero to one: the 
more similar the responses of the models with the same input influences, the greater 
the value of the equivalence coefficient. 

Retraining of a model for the training sample x relatively to the test sample 
<xtest, ytest>  <x, y> may be defined as (in the given form with substitutions) [24]:  

– for classification problems as (8): 
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– for the evaluation problems as (9):  
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where   is an error threshold.  



Since the error threshold for an instance in practice cannot always be set, as well as 
for greater universality and uniformity in solving various problems we define it as 
(10): 
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These indicators can be used not only for a model based on a single tree, but also 
for a forest of decision trees, using as f the output value determined by the ensemble 
of forest trees. 

The higher the value of the retraining indicator, the worse the approximating prop-
erties of the model for data that did not used in the training. 

Confidence in a decision-making is a subjective assessment by the model of the 
made decision [34]. 

Regarding the value at the model output for the instance xs fed to its inputs, we de-
termine the confidence indicator of the model in the made decision (11): 
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where q
jC  is a value of the coordinate on j-th feature of q-th cluster center corre-

sponding to the node of the tree, to which the recognized instance sx  hits. For in-
stances that are not included in the training set, instead of ys  it is possible to substitute 
the value of the output feature associated with the center of the corresponding cluster.  

It is possible to estimate the coordinates of the cluster centers for leaf nodes on the 
basis of a training sample: 

– for the decision tree constructed on the basis of the training sample, determine 
the belonging of the training sample instances to leaf nodes;  

– for every q-th leaf node qu  form a cluster }{ q
j

q CC   of instances fallen into this 

node, q = 1, 2, ..., Q , where Q is a number of leaf nodes (clusters); 
– for each j-th feature as the coordinate of the cluster center take the arithmetic av-

erage of the coordinates of the instances of the corresponding cluster according to the 
corresponding feature (12):  
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, j = 1, 2, ..., N; q = 1, 2, ..., Q, (12) 



where  qS  is a number of instances of the training sample that fell into the q-th node 
(cluster). 

– determine the function u( sx ) that maps the recognized instance sx  to the node 
number of the tree into which it fell. 

The average confidence of the decision tree for a sample x is defined as (13): 
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Indicators of subjective confidence of model based on a decision tree will take val-
ues in the range from zero to one: the higher the value, the closer the properties of a 
recognized instance to formed cluster center templates, and the more the model is 
confident in the made decision. 

The confidence of the forest of decision trees for the instance xs is defined as (14): 
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tf  is an estimated value of the model output of t th tree, forest
certI  is an indicator of 

confidence of forest models, 
k
 , 

t
  are symbols of operators, defining the confi-

dence of the forest in the decision for the k-th class and the t-th tree, respectively. As 
such operators it is possible to use the minimum, maximum, arithmetic mean of the 
set of arguments. 

The indicator of averaged confidence of forest for sample x is defined as (16): 
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Indicators of subjective confidence of the forest will take values in the range from 
zero to one: the higher the indicator value, the more the trees ensemble confident in 
made decision. 

The hierarchical organization of the structure, the integrity and crushability of ele-
ments allows to build models of complex objects from simpler ones; the work of the 
hierarchical structure requires that the information element in each hierarchical level 
behave as a whole, but when moving from level to level it must be fragmented, and 
when moving from the upper hierarchical level to the lower, this fragmentation corre-
sponds to the allocation of its constituent elements, and when moving from the lower 
level to the top, it corresponds to the inclusion of a certain part of this element in a 
more complex object [33]. 



The hierarchy of the model based on the decision tree is defined by analogy with 
[25] as (17): 

 
n

M

h NMM

N

I
)1(

2
1











, M 1, Nn 1. (17) 

The greater the Ih value , the greater the number of hierarchical levels in the model 
with respect to maximum possible number of levels for a given number of nodes Nn. 

Estimate the maximum possible number of levels. Since the maximum number of 
levels in the tree will be at the minimum number of outcomes from nodes, then at 
each level there should be at least one node with two outcomes, and the rest of the 
nodes should be leafy. Moreover, the greatest number of levels will be achieved for 
the tree, where only one node at each level (except for the last) has two outcomes, and 
the rest are leafy and contain only two nodes at each level. Thus, for the deepest tree, 
the number of nodes of the highest level is 1 (root), for the lower level is 2 (leaves), 
for the remaining layers is 2, i.e. 1+2(M–1) = Nn . From here we get: M =0.5(Nn–1)+1. 
Therefore, for the decision tree we get (18): 
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, M 1, Nn 1. (18) 

The hierarchy of the model based on the forest of decision trees is defined as (19): 
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The elasticity for a function y(x) on the variable xj in [35] is defined as (20): 
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 , xj > 0, y > 0. 

The relative elasticity indicator on the variable xj of  approximating function y=f(x) 
realized by the model at output y trained on a training sample <x, y> is defined simi-
larly to [24] as (21): 
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f  is a calculated value at the output of the model when applying normal-

ized values of the features of s-th instance to its inputs; 
)~(

~
j

s
j xx

f


 is a value of the 

model output when applying normalized values of features of s-th instance to its in-
puts, and corrected normalized by jx value of j-th feature of s -th instance to j-th 

input. 
The larger the value of elasticity indicator, the more elastic is the model. This indi-

cator applies both to a single tree model and for a forest model. 
Equifinality is a regularity of functioning and development of the system, charac-

terizing its ultimate capabilities [36]. 
Relative equifinality of a model based on a decision tree tree defined similarly to 

[24] as (22): 
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Relative equifinality will receive the largest value (top-limited by one) for those 
models which have reached the maximum possible size and the number of parameters 
during synthesis as well as the smallest error (bottom limited by zero) in the learning 
process. 

For the forest of decision trees, we determine the relative equifinality indicator as 
(23): 
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Generalization is the model’s ability to integrate partial data to determine patterns 
and prolongate results, that is, after training based on the training set, to give answers 
for test sample instances similar to the training sample but not included in it [37, 38]. 

The generalization indicator of the decision tree for the training <x, y> and test 
<xtest, ytest> samples is determined by analogy with [37, 38] as (24): 
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In a similar way, the generalization indicator for the forest of decision trees will be 
determined. 



Generalization indicator will take values in the range from zero to one, and will be 
the greater, the smaller the error of a model at instance recognition, and difference of 
recognized instance to nearest by features instance of a training sample is more. 

The generalization indicator of the trained model is defined as (25): 
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If generalization indicator is significantly greater than one, then the model shows 
great ability to generalization, if the generalization indicator much smaller than one, 
then the model does not shows no generalizing properties. 

Generalization indicator for a forest of decision trees is defined as (26): 
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The errors here are defined for the ensemble of trees. 
Nonlinearity is a dependency that cannot be explained by a linear combination of 

variable inputs [39, 40]. 
The nonlinearity indicator for classification problems is defined similarly to [39] as 

(27): 
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The nonlinearity indicator for estimation problems is defined as (28): 
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The nonlinearity indicator of the classifier will take values in the range [0, 1]: the 
greater its value, the more nonlinear is a model. A disadvantage of this indicator is its 
applicability only for models with single output, and exclusively for classification 
problems. 

The nonlinearity indicator for estimation problems is applicable also for classifica-
tion problems. 

In a similar way, the nonlinearity indicator for the forest of decision trees can be 
determined. 



The indicator of compliance of nonlinearities of the sample and model is defined as 
(29): 
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where ),(  yxInl
 is a nonlinearity indicator of the sample, determined according to 

[41, 42]. 
If the indicator nlI

~
 is equal to one, then we can conclude that the model corre-

sponds to the sample in complexity. If the indicator nlI
~

 is less than one, then the 

smaller its value, the greater the effect of retraining will be, and it would show possi-

ble redundancy of a model. If the indicator nlI
~

 value exceeds one, then the model is 

not sufficient for good approximation (require additional training or change the model 
structure). 

Robustness is a model property to reliably solve a problem when receiving incom-
plete and / or damaged data. In addition, the results must be consistent, even if some 
part of the model is damaged [43, 44]. 

The robustness of the model on the basis of a decision tree in relation to the input 
signals is defined as (30): 
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 1 ,0x
 is a constant that regulates the accuracy of determining a robustness indicator 

on model inputs. 
The indicator is normalized smallest change in the input signal, resulting in a sig-

nificant increase of model error. 
The robustness of a model based on a decision tree with respect to weights (pa-

rameters) is defined as (31): 
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where  1 ,0w  is a constant regulating accuracy of determination of the robustness 

indicator on model parameters.  
The indicator is a normalized least change in weight values, leading to significantly 

increase in model error. 
The integral robustness indicator for a decision tree can be defined as (32): 
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The indicator IRb will take values in the range [0, 1]. The closer its value to zero, 
the lower the robustness of the model, the more sensitive the model to a change in 
input signals or parameter values. The closer the value of the indicator IRb to one, the 
greater the robustness of the model, the less sensitive the model to changes in input 
signals or parameter values. 

In this way, robustness indicators for the forest of decision trees can be determined. 
The homogeneity of the elements lies in the fact that models are built from many 

simple unified standard elements that perform elementary actions and are intercon-
nected by various connections [45]. 

The homogeneity of the functions of the nodes of a decision tree is defined by 
analogy with [25] as (33): 
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The homogeneity indicator will vary from zero to one: the more its value, the more 
uniform the corresponding elements of the model. 

The homogeneity of the node functions of the of the forest trees is defined as (34): 
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The sensitivity to the input signals is characterized by calculating the partial de-
rivatives of the model error function [46–48]. However, this approach is computation-
ally hard. 



The averaged normalized indicator of the sensitivity of the output of the decision 
tree to a change in the input signal is defined as (35): 
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The value of the sensitivity indicator will be in the range [0, 1]. The higher the 
value of the sensitivity indicator, the stronger the model reacts to changes in the input 
signal, the greater are its categorization capabilities. However, too high sensitivity 
may indicate a weak model resistance to noise and interference in the input signal. 

The average indicator of the sensitivity of the forest to changes in the input 
signal is defined as (36): 
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Plasticity determines the complexity of the model’s behavior, which is considered 
as a result of the interaction of many elements, each of which limits the action of oth-
ers and is limited by others on the way to the formation of global observable behavior 
[49, 50]. As an analogue of neural plasticity, where neuron nodes are considered as 
plastic elements for neural network models, with respect to decision trees, we will 
consider the plasticity of nodes. As an analogue of synaptic plasticity (modification of 
the strength of the synaptic connection between nodes, implemented by the scales in 
neural network models) as applied to the decision tree, we will consider the plasticity 
of tunable parameters of tree nodes. 

The relative indicator of plasticity of the nodes of the model by analogy with [25] 
is defined as (37): 
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The indicator Inp will take values in the range from zero to one: the greater its 
value, the higher the level of plasticity of the model nodes. 

The relative plasticity indicator of the adjustable model parameters, by analogy 
with [25], is defined as (38): 
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The coefficient Isp will take values in the range from zero to one: the bigger its 
value, the higher the level of plasticity of the model parameters. 

The relative indicator of plasticity of a model is defined as (39) [25]: 

 spnppl III  . (39) 

The relative indicator of plasticity will take values in the range from zero to one: 
the greater its value, the higher the level of plasticity of the model and, therefore, it 
has better adaptive abilities. 

For the forest of decision trees, we define the plasticity indicators as (40)–(42): 
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Variability is an ability to obtain several different models for approximating de-
pendencies from the same data sample using the same method [51-53]. As applied to 
decision trees, the variability of models is determined by the choice of a feature for 
the root node and the order in which features are added for checks at other nodes, the 
method of determining threshold values in nodes, etc. 

The absolute indicator of the variability of the model we define similarly to [25] as 
(43): 
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where )),(( inv   is a variability of the verification of the i-th node of  -th layer of 

the model: )),(( inv   = 1, if a non-random feature hit into the node; )),(( inv  =N, 

if a feature for checking in the node selected as random from all original feature 
set )),(( inv  = N* , if a feature for checking in the node is randomly selected from 

the set of N* not yet considered features (44): 
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where )),(( iwv   is a variability of determining the values of the parameters of i-th 

node of  -th model layer: )),(( iwv   is equal to the number of parameters in the 

node that can be configured non-deterministically, if all parameters in the node de-
pend on previous nodes, then )),(( iwv  = 1. 

The more the Iv value, the more different models can be obtained based on the cor-
responding paradigm. 

The absolute indicator of the variability of the forest of decision trees is defined as 
(45): 
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Noise resistance is the property of the model to provide the correct response to an 
input signal containing noise [54]. 

The indicator of the resistance of the trained model to additive noise in the input 
signal at the j-th input is defined similarly to [24] as (46): 
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where  is a given noise level, 0 <  < 1.  In order to automate the process of   set-
ting it is proposed to use such formula (47): 
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The greater the value of the indicator of model resistance to noise in the input sig-
nal on j-th input, the less important this input to the decision making. 



This indicator is applicable both to a model based on a single decision tree and to a 
forest-based model. 

Adaptability is a property of structures to dynamically and independently change 
their behavior in response to an input stimulus [55]. In relation to a model based on 
decision trees, adaptability is determined, first of all, by plasticity, which determines 
the resources for adaptation: the greater the plasticity, the more adaptive the proper-
ties of the model. 

Plasticity is a necessary but insufficient prerequisite for adaptability. Along with 
plasticity, the adaptive properties of the model are influenced by the sensitivity of the 
model, which determines the strength of the reaction of the model to the minimum 
change in the values of its parameters. 

The adaptability indicator of a model is defined as (48):  

 .tolpladapt III   (48) 

The larger the adaptability indicator value, the greater the possibility has models to 
adapt to a given task. 

The adaptability indicator in this way can be determined for the forest of decision 
trees. 

Symmetry reflects the proportionality in the arrangement of the parts of the whole 
in a space, the complete correspondence (in location, size) of one half of the whole to 
the other half [56]. In relation to decision trees, it is possible to determine the indica-
tors of symmetry and asymmetry. 

The indicator of symmetry of the structure of the decision tree is defined as (49): 
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The greater the In
sym value, the greater the symmetry of the structure of the decision 

tree. 
The asymmetry indicator of the model structure based on the decision tree as (50): 
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The greater the value of In
asym the greater the asymmetry of the model structure. 

The symmetry indicator of the nodes of the decision tree is defined as (51): 
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The higher the Iw
sym value the more the symmetry of model connections. 

The asymmetry indicator of model connections based on the decision tree is de-
fined as (52): 
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The larger the Iw
asym value the greater the asymmetry of the model connections. 

The general indicator of the symmetry of a model based on a decision tree is de-
fined as (53): 
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The higher the value of Isym the bigger the symmetry of the decision tree . 
The general indicator of the asymmetry of a model based on a decision tree is de-

fined as: 

 .1 symasym II   (54) 

The larger the Iasym the greater the asymmetry of the model. 
For the forest of decision trees, the symmetry and asymmetry indicators can be de-

termined as the average values of the corresponding indicators of the individual trees 
included in the forest. 

Emergence (integrity) is a regularity that manifests itself in the system in the ap-
pearance of new properties in it, which are absent in its elements. The integrity prop-
erty is associated with the purpose for which the system is created. Let Co is an intrin-
sic complexity, which is the total complexity (content) of system elements without 
interconnecting them (in the case of pragmatic information, the total complexity of 
the elements that affect the achievement of the goal), Cv is a mutual complexity char-
acterizing the degree of interconnection of elements in the system (i.e. the complexity 
of its schema or structure). The degree of system integrity in accordance with [24, 57, 
58] is defined as (55): 
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The emergence of a model based on a decision tree is defined similarly to [24] as 
(56): 
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The larger the I  value, the more holistic is the model. 
For a forest-based model, emergence is defined as (57): 
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Interpretability (logical transparency) is a model property to be understandable for 
human perception and analysis [59, 60]. Obviously, a model is more interpretable if it 



is hierarchical, and the average number of node connections does not exceed 5-7 (this 
number is caused by the peculiarities of the human psyche). Since each node in the 
decision trees has only one input, it is necessary to consider mainly the number of 
outcomes from the node. 

Heuristically we define interpretability through hierarchy and the number of nodes 
[25] as (58): 
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The level of model interpretability increases with increasing of Iinterp. value. 
For the forest of decision trees, we define the interpretability as (59): 
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Learnability is the property of a model to improve its work (to learn or adapt), us-
ing examples to turn it to solve a particular problem [61]. 

The decision tree model learning indicator similarly to [25] is defined as (60): 
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where L is the Lipschitz constant for the training sample [62] as (61): 
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L(tree) is a Lipschitz constant (complexity) of the model [63, 64], which, as applied to 
the binary decision tree, is estimated as (62): 
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The greater the value of the learnability indicator, the model has bigger potential 
for solving the problem of approximating dependence y = f(x) given in tabular form. 

For a forest of decision trees, we define the learnability indicator as (63): 
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Autonomy is an agent's ability to act without direct human intervention by control 
on its own actions and internal state. Autonomy also implies the possibility of learn-
ing based on experience [65]. 

Since the trained computational intelligence models, as a rule, in the process of 
their functioning in decision-making does not require human intervention, they are 
equally have a property of autonomous functioning. However, in the process of train-
ing the level of autonomy for different models and different training methods may 
vary considerably.  

Therefore, we will consider further characteristics of model autonomy only in rela-
tion to the process of its learning. Since the ability to learn is determined by plasticity, 
the autonomy of learning (self-adaptivity) will be characterized by an indicator that 
depends on the plasticity characteristics of the model. On the other hand, the depend-
ence of model learning from the human may be characterized by its influence (por-
tion) on the formation of the structure and parameters of the model. 

Combining these considerations, we obtain the indicator of autonomy of model 
training method (64): 
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As Iaut increases, the level of model autonomy in the training process increases. 
For a forest of decision trees, the indicator Iaut can be defined as a smallest of the 

indicators of forest trees (65): 
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5 Integral indicators of model quality 

Information quality criteria is a family of integral indicators, depending on the model 
error E , the training sample volume S and the number of adjusted model parameters 
Nw . They include Hannan-Quinn Criterion [66], Bayesian Information Criterion [67], 
Akaike's Information Criterion [68], Corrected AIC [69], and Unbiased AIC [69]. A 
number of criteria in addition to the error, the sample size and the number of adjust-
able parameters also take into account the maximum possible number of adjustable 
parameters max

wN . They include a Minimum Description Length [70] , Shortest Data 

Description [71], Consistent AIC [69] and Mallow Criterion [72]. 
At model constructing and comparing it is usually assumed to be identical the 

sample size. Therefore, it is advisable to exclude the sample size from the comparison 
criteria. At the same time, various synthesized models may not use all of the features 
of the sample. Therefore the number of features used in the models N' should be seen 
as an important property of the models at their comparison. 

On the basis of these considerations we can define integral information criterion of 
a model as (66): 
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The IIC criterion will take values in the range from zero to one. The less its value 
the worse the model, and the bigger its value the better the model. Here, for different 
models, the error values E and the maximum number of adjustable parameters max

wN , 

as well as the number of used features N', may differ. At the same time the number of 
features in the original set N will not differ, but is used in the formula (66) for normal-
izing N'. 

This indicator is applicable for comparing models based on single decision trees 
and for ensembles (forests) of decision trees. For the case of ensembles, N will remain 
unchanged, and the error E, the number of selected features N' and the number of 
adjustable parameters max

wN  will be determined for the entire ensemble of trees. 

The effectiveness (quality) of a problem solving by the model is determined by the 
accuracy (error) of problem solving for the training and test data, simplicity, logical 
transparency and speed of the resulting model, as well as by the cost of model build-
ing (by hardware requirements, iteration and time spent of training method). 

The generalized indicator of the model effectiveness based on the indicators pro-
posed above is determined by analogy with [25] as (67): 

 ).exp( EIII lrgenef   (67) 

The indicator Ief  can be used as for comparing the models and methods of their 
synthesis, as for optimization of the model building process. 

Similarly, the Ief indicator can be determined for a forest of decision trees. 
In this case, the error E and indicators lrgen II ,  will be determined for the entire 

ensemble of trees. 
An alternative generalized indicator of model efficiency may be defined by anal-

ogy with [25] as (68): 
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Having resulted similar, we receive (69): 
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An alternative generalized efficiency indicator Ief' may be used as for comparing 
models and methods for their synthesis, as to optimize the process of model building.  



Ief ' indicator can be used also for models based on forest of decision-trees. For the 
case of ensembles, N and S will remain unchanged, and the error E, the number of 

selected features N', and the number of adjustable parameters max
wN  will be deter-

mined for the entire ensemble of trees. 

6 Results and Discussion 

The set of indicators proposed above is extensive and for its application in practice it 
is advisable to analyze the proposed indicators. 

The Fig. 1 presents the classification of a set of proposed indicators characterizing 
the properties of models based on decision trees and forests. 

Horizontally at Fig. 1, indicators are divided into groups according to the complex-
ity of data compilation: sample (indicators characterize the properties of the sample 
and are model independent), tree model (indicators are defined for a single decision 
tree model), forest (indicators are defined for a set of decision tree models of a forest). 

The more to the right the indicator is located horizontally at Fig. 1, the higher the 
level of complexity of data generalization by the model is required to determine it. 

Vertically at Fig. 1, indicators are divided into groups according to the level of 
computational complexity relative to primary characteristics: basic properties (easily 
identifiable characteristics of data and models), primary indicators (indicators deter-
mined on the basis of basic properties), secondary indicators (indicators determined 
on based on primary indicators), and integrative indicators (indicators determined on 
the basis of indicators of previous levels). 

The higher the level of the indicator, the more difficult it is to calculate it with re-
spect to the primary properties of the data and models. 

7 Conclusion 

The problem of creation of a quality model for models based on decision trees and 
forests is solved. 

The set of indicators characterizing properties of decision trees and forests is pro-
posed. It allows to quantitatively evaluate such model properties as diversity, equiva-
lence, retraining, confidence in a decision-making, hierarchy, equifinality, generaliza-
tion, nonlinearity, robustness, homogeneity, sensitivity to the input signals, plasticity, 
variability adaptability, symmetry, asymmetry, emergence (integrity), interpretability 
(logical transparency), learnability, and autonomy as for individually considered (sin-
gle) tree model, as for a an ensemble of tree models (forest). 

The prospects of further study are to obtain estimates of the computational (time) 
and spatial (memory) complexity of calculating the proposed indicators, to conduct an 
experimental study of the set of the proposed indicators for assessing the properties of 
models in solving practical problems of diagnosis and automatic classification on 
features, to identify the relationships between different indicators of the properties of 
models based on decision trees and forests. 
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Fig. 1. Analysis of decision tree and forest indicators 
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