
On the Reproducibility of Experiments of Indexing Repetitive
Document Collections

Antonio Fariña
antonio.farina@udc.es

Universidade da Coruña, CITIC
A Coruña, Spain

Miguel A. Martínez-Prieto
migumar2@infor.uva.es
University of Valladolid

Segovia, Spain

Francisco Claude
fclaude@recoded.cl

Universidad Diego Portales
Santiago, Chile

Gonzalo Navarro
gnavarro@dcc.uchile.cl

IMFD, DCC, University of Chile
Santiago, Chile

Juan J. Lastra-Díaz
jlastra@invi.uned.es

UNED
Madrid, Spain

Nicola Prezza
nicola.prezza@gmail.com

University of Pisa
Pisa, Italy

Diego Seco
dseco@udec.cl

IMFD, University of Concepción
Concepción, Chile

ABSTRACT
We summarize an already published work [3]. It consists in a com-
panion paper that aims at allowing the exact replication of the
methods, experiments, and results discussed in a previous work
[2], where we proposed many techniques for compressing indexes
which exploit that highly repetitive collections are formed mostly
of documents that are near-copies. In this work, we show our
replication framework (uiHRDC: available at https://github.com/
migumar2/uiHRDC/), that permits to replicate the actual experi-
mental setup from our parent paper with little effort. The experi-
mentation was carefully explained, providing precise details about
the parameters that can be tuned for each indexing solution. Finally,
we also provided uiHRDC as a reproducibility package.

CCS CONCEPTS
• Information systems→ Data compression; Search index com-
pression.

KEYWORDS
Repetitive document collections, inverted index, self-index, repro-
ducibility.

1 INTRODUCTION
Scientific advances have typically been disseminated in the form of
scientific publications. Publications in Computer Science, usually
present a new technique, algorithm, etc. that aims at improving
upon the state of the art. Experimental results are typically provided
as evidence of the achievements of the paper. Therefore, having pub-
lic access to the original authors’ setup (tools/source code, datasets,
tuning parameters, etc.) used to drive such experimental evaluation
becomes crucial to assess the validity of the results obtained and to
allow other researchers to reuse this previous research as a baseline
to compare with their future techniques.

"Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)."

According to the ACM [1], an experiment is reproducible only if
an independent group of researchers can obtain the same results
using artifacts that they developed independently. The ACM also
defines replicability as a weaker type of reproducibility, where inde-
pendent researchers must obtain the same results when using the
artifacts provided by the original work’s authors. Finally, repeata-
bility refers to the possibility that the original author of a work
could obtain the same results when reusing the original setup (same
conditions, system,...); i.e. he can repeat the experiments and obtain
the same results. The conclusion is that research works must be
at least repeatable, and that achieving replicability would become
desirable. Yet, that is not always simple as we must not only have
source code, but also sometimes match the exact version of exter-
nal dependencies, tune the parameters of the tools (such tuning is
sometimes difficult to obtain from the original paper), or even keep
the original computer without software/hardware updates. In our
case, this was accomplished with a Docker-based solution.

2 OUR PROPOSAL
We focused on making the experiments of our previous work [2]
replicable. In that parent paper, we tackled the problem of indexing
repetitive document collections. We showed that the existing com-
pressed posting lists representations commonly used for positional
and non-positional inverted indexes are not well-suited to deal with
highly repetitive collections. We provided new compressed posting
lists representations (using run-length, lempel-ziv, and grammar
based compression) that improved upon the state-of-the-art, and
included also self-indexes in the comparisons. In our reproducible
paper [3] we focused on:

• Briefly enumerating the 10 posting list representations in-
cluded in the parent paper, and when applicable, we dis-
cussed the parameters of those techniques, and the actual
values used to tune those parameters. Those techniques
are: rice, vbyte (with three variants), Simple9, PforDelta,
QMX-coding, rice-runs, vbyte-Lzma, vbyte-Lzend, Repair
(with four variants). For all these techniques we used our

https://github.com/migumar2/uiHRDC/
https://github.com/migumar2/uiHRDC/


Fariña et al.

implementation of inverted indexes. We also included also
the implementation of 4 techniques provided by a more re-
cent work [4] (partitioned-EliasFano, Opt-PForDelta,
Interpolative-codes, and Varint-G8IU ).

• Webriefly enumerated 6 self-indexing techniques used: RLCSA,
SLP, WCSA, WSLP, Lz77-index, and LzEnd-index. We also
showed how they were tuned in the original experiments.

• We described the original experimental framework, includ-
ing both the datasets and the query patterns used, and finally
describe how those experiments were run. We provided the
actual source code for all the techniques compared and in-
structions regarding how to use them. This included the ac-
tual scripts that were used to create the different indexes at
build time, and those scripts that leaded search experiments.
Both datasets and source code were also made available.

• We clearly described the variables being measured. That
is, the memory footprint of the different techniques (space
requirements), and the CPU execution time at query time.
Particularly when performing the operations locate, and ex-
tract with the available indexing/self-indexing techniques.

• We fixed some errors that were detected in the parent paper.
• We provided our reproducibility framework uiHRDC that
permits to re-run all the experiments from the parent paper
and to gather all the experimental results. It is discussed in
Section 2.1.

• Finally, we used uiHRDC to automatically run the experi-
ments in a new/different computer, and showed the results
obtained. We discussed how the results permitted us to asses
that the new results obtained actually draw the same con-
clusions as those in the parent paper.

2.1 uiHRDC Framework
The main contribution of this work was the careful creation of our
uiHRDC (universal indexes for Highly Repetitive Document Collec-
tions) reproducibility framework. We included in it: (1) the source
code and all the dependencies (with the actual versions) required to
build the test programs; (2) the document datasets and query pat-
terns used; (3) scripts to compile the source code for each technique;
(4) scripts to build/create the compressed inverted indexes and self-
indexes over the document collections. Such indexing/self-indexing
structures are finally saved into disk; (5) scripts that load each rep-
resentation from disk into memory and perform queries over such
representation. Each run saves both space/time measurements into
text result-files; (6) a script to compile all the source code, build all
the indexes, and perform all the querying experiments (it includes
repetitively launching steps 3 → 4 → 5 for each technique); (7) a
script that collects all the result-files in first term. In same cases
these are gnuplot-data files, in other cases they are simple text files
containing the standard output of the search programs that we
parse (using python scripts) to create well-formed gnuplot-data
files. Then it creates all the figures from the parent paper using
exactly the same styles to simplify the comparison between both
versions; (8) an script to collect all those figures, and that using a
latex template, generates a unique report in PDF format. In such
report we also provide information regarding the machine in which
the results were obtained (cpu, memory, o.s. version, etc) among
other information. Figure 1 illustrates the workflow in uiHRDC.

Finally, we used Docker as the tool to provide a fully working
environment where we tested our uiHRDC framework, hence guar-
antying replicability.We provided a Docker configuration file (Dock-
erfile) with instructions to create a container that exactly repro-
duces the configuration of the test framework and deploys uiHRDC.
Basically, it installs ubuntu 14.04 (even though we also tested it suc-
cessfully on ubuntu 16.04), with gcc 4.8, and installs from libraries
such as libboost, to tools such as cmake, screen/byobu, textlive, gnu-
plot, or even an ssh-server to make ssh/sftp connections possible.
We provide simple instructions to build our docker image, launch
and connect to a docker instance (this is really simple as the user
can simply connect by ssh as if the container were a running linux
server), and then execute a script to deploy uiHRDC, run all the
experiments, and get the final PDF report using a sftp connection.

Document
collection

compressed
index

compressed
index

compressed
index

...

INDEXING LOCATE searches
EXTRACT searches

results results

PDF Report

Document
collection

compressed
index

compressed
index

compressed
index

…

INDEXING LOCATE searches
EXTRACT searches

results results

PDF Report

queries

Source
code

1

2

3

4

5

6

7
Results

& Figs

latex
template

8

Figure 1: Workflow in uiHRDC to reproduce experiments.

3 CONCLUSIONS
We have briefly described all the techniques and their parameters
from our original research [2]. We have also described the repro-
ducibility framework uiHRDC, that includes the datasets, query sets,
source code (and dependencies), as well as a set of scripts to au-
tomate the execution of all the experiments from [2]. They also
automate the generation of a final PDF report where we collect the
results (space/query-time) obtained by each technique and create
all the figures from the parent paper. Finally, we provide a Docker
container that reproduces our test enviroment to ensure that all
our experiments can be replicated with little effort in any computer
having Docker installed and matching our minimal RAM/disk re-
quirements.

4 ACKNOWLEDGEMENTS
Supported by Xunta de Galicia/FEDER-UE [CSI: ED431G 2019/01
and GRC: ED431C 2017/58]; by Xunta de Galicia Conecta-Peme
2018 [Gema: IN852A 2018/14]; by MCIU-AEI/ FEDER-UE [Datos
4.0: TIN2016-78011-C4-1-R, BIZDEVOPS: RTI2018-098309-B-C32]

REFERENCES
[1] ACM. 2018. Artifact Review and Badging.

https://www.acm.org/publications/policies/artifact-review-badging.
[2] Francisco Claude, A. Fariña, Miguel A. Martínez-Prieto, and Gonzalo Navarro.

2016. Universal Indexes for Highly Repetitive Document Collections. Information
Systems 61 (2016), 1–23. https://doi.org/10.1016/j.is.2016.04.002

[3] Antonio Fariña, Miguel A. Martínez-Prieto, Francisco Claude, Gonzalo Navarro,
Juan J. Lastra-Díaz, Nicola Prezza, and Diego Seco. 2019. On the reproducibility of
experiments of indexing repetitive document collections. Information Systems 83
(2019), 181 – 194. https://doi.org/10.1016/j.is.2019.03.007

[4] Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano Indexes.
In Proc. 37th Int. ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, NY, USA, 273–282. https://doi.org/10.1145/2600428.2609615

https://doi.org/10.1016/j.is.2016.04.002
https://doi.org/10.1016/j.is.2019.03.007
https://doi.org/10.1145/2600428.2609615

	Abstract
	1 Introduction
	2 Our proposal
	2.1 uiHRDC Framework

	3 Conclusions 
	4 Acknowledgements
	References

