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Abstract

In our paper we consider systems of linear inequalities which linearly
depend on multidimensional parameters. A technique for approximat-
ing set of parameters for which the considered system is consistent is
described. Approximations are constructed by means of convex and
concave piece-wise linear functions. An illustrative example is given.

1 Intriduction

Parametric polyhedral set D(p) is defined in the following way

D(p) = {x ∈ X : gi(x, p) ≤ 0, i = 1, . . . ,m}, (1)

where X ⊂ Rn is a polytope (X ̸= ∅), gi : Rn × Rq, i = 1, . . . ,m are bilinear functions, i.e. each function is
linear in variable x when variable p is fixed and vise versa. Vector p is called a parameter and may vary within
a given polytope P ⊂ Rq, p ∈ P . Define set

P ∗ = {p ∈ P : D(p) ̸= ∅}.

In general, P ∗ is a nonconvex, disconnected and implicitly given set . We consider the following problem: find
an outer P ∗

out and an inner P ∗
in explicit approximations of P ∗:

P ∗
in ⊂ P ∗ ⊂ P ∗

out.

Similar problem were considered in [BorrelliEtAl03] and [JonesEtAl08] under some additional conditions
which allow one to effectively apply the well elaborated linear programming parametric technique. Interval
linear optimization [FiedlerEtAl06] is also tightly connected to the topic of our paper. However, here we suggest
to use approximations generated by support function-majorants and function minorants [Khamisov99].

2 Approximation technique

Consider the following function
w(p) = min

x∈X
max

1≤i≤m
gi(x, p).

Then set P ∗ has the equivalent description

P ∗ = {p ∈ P : w(p) ≤ 0}.
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Let p̃ ∈ P be given, find
x̃ ∈ Argmin

x∈X
max

1≤i≤m
gi(x, p̃) (2)

and define function
φ(p, p̃) = max

1≤i≤m
gi(x̃, p). (3)

Since functions gi are liner in p function φ is a convex piece-wise linear function which satisfies two conditions

w(p̃) = φ(p̃, p̃), w(p) ≤ φ(p, p̃) ∀p ∈ P. (4)

Due to these conditions function φ is called a support function-majorant of function w. Rewrite now function w
in the following way

w(p) = min
x∈X

max
1≤i≤m

gi(x, p) = min
x∈X

max
u∈Su

m∑
i=1

uigi(x, p) = max
u∈Su

min
x∈X

m∑
i=1

uigi(x, p), (5)

where Su is the standard simplex, Su =

{
u ∈ Rm :

m∑
i=1

ui = 1, ui ≥ 0, i = 1, . . . ,m

}
. Let again p̃ ∈ P be given.

Solve the corresponding max-min problem in (5) and find x̃ and ũ such that

w(p̃) =
m∑
i=1

ũigi(x̃, p̃). (6)

Define function

ψ(p, p̃) = min
x∈X

m∑
i=1

ũigi(x, p). (7)

Then, from (5) and (6) we have

w(p̃) = ψ(p̃, p̃), w(p) ≥ ψ(p, p̃) ∀p ∈ P. (8)

By construction function ψ(·, p̃) is concave and due to the properties (8) is called a support function-minorant
of function w.

Assume, that w(p̃) ≤ 0 and define set

Pin(p̃) = {p ∈ P : φ(p, p̃) ≤ 0}. (9)

From (4) we have w(p) ≤ 0 ∀p ∈ Pin(p̃). By construction Pin(p̃) is a convex polyhedral set. Therefore, Pin(p̃)
is a convex polyhedral inner approximation of P ∗

in. In the case of w(p̃) > 0 we define set

P∅(p̃) = {p ∈ P : ψ(p, p̃) > 0}. (10)

From (8) we have w(p) > 0 ∀p ∈ P∅(p̃). It follows from the concavity of ψ(·, p̃) that P∅(p̃) is a convex set. Then
the set Pout(p̃) = P \ P∅(p̃) is an outer approximation of P ∗

out.
It follows from (3) and (9) that set Pin(p̃) has explicit description as the polyhedron

Pin(p̃) = {p ∈ P : gi(x̃, p) ≤ 0, i = 1, . . . ,m}. (11)

The set Pout(p̃) is the complement of convex set P∅(p̃). Therefore, Pout(p̃) is nonconvex, can be disconnected and
has a disjunctive structure [Balas18]. Assume, that vertices v1, . . . , vN of X are known, X = conv{v1, . . . , vN}.
Then, from (7) we have

ψ(p, p̃) = min
1≤j≤N

m∑
i=1

ũigi(v
j , p) (12)

and

P∅(p̃) = {p ∈ P :

m∑
i=1

ũigi(v
j , p) > 0, j = 1, . . . , N}. (13)
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Define sets

Pj(p̃) = {p ∈ P :
m∑
i=1

ũigi(v
j , p) ≤ 0}, j = 1, . . . , N.

Then

Pout(p̃) =

N∪
j=1

Pj(p̃), (14)

i.e. Pout(p̃) is a union of polyhedrons. Find scalars γ̃j :

m∑
i=1

ũigi(v
j , p) ≤ γ̃j ∀p ∈ P, j = 1, . . . , N.

It is well-known, that by introducing 0-1 variables zj , j = 1, . . . , N the disjunctive structure of Pout(p̃) in (14)
can be described as follows

Pout(p̃) =

p ∈ P : ∃z :
m∑
i=1

ũigi(v
j , p) ≤ γ̃jzj , zj = 0

∨
1, j = 1, . . . , N,

N∑
j=1

zj = (N − 1)

 .

We always can assume that X is a simplex. Since X is bounded it has an outer approximation by a simplex
and since X is defined by a system of linear inequalities we can move all inequalities into the list of new functions
gi in (1). In this case new functions do not have parameter p, however the suggested approach is still correct.

Let us consider how x̃ and ũ corresponding to a given p̃ can be obtained. Rewrite problem in (2) in the
following way

min
x,ξ

{ξ : gi(x, p̃) ≤ ξ, i = 1, . . . ,m, x ∈ X}, (15)

where ξ is an auxiliary unbounded scalar variable. Problem (15) is a linear programming problem which always
has a finite solution. Let (x̃, ξ̃) be a solution. Then, obviously, x̃ satisfies inclusion (2) and w(p̃) = ξ̃. Write
down the Lagrange function

L(ξ, x, u) = ξ +

m∑
i=1

ui(gi(x, p̃)− ξ).

The Lagrange dual problem is

max
u≥0

min
x∈X,ξ∈R

L(ξ, x, u) = max
u≥0

min
x∈X,ξ∈R

{
ξ

(
1−

m∑
i=1

ui

)
+

m∑
i=1

uigi(x, p̃)

}
= max

u∈Su

min
x∈X

m∑
i=1

uigi(x, p̃),

i.e. ũ introduced in (6) is a dual solution of (15). Note also, that (15) is a linear programming problem and
hence can be easily solved for any given p̃ ∈ P .

Let us make some intermediate conclusions. For any arbitrary given p̃ ∈ P we solve linear programming
problem (15) obtaining primal solution (x̃, ξ̃) and dual solution ũ. If ξ̃ ≤ 0 then we know that system (1) is
consistent not only for p = p̃ but also ∀p ∈ Pin(p̃), where Pin(p̃) is given in (11). If ξ̃ > 0 then system (1)
is inconsistent not only for p = p̃ but also ∀p ∈ P∅(p̃) in (10). The main result here consists in the following:
checking a given parameter for feasibility we obtain a set with the same property.

Example. Sets P = [−0.2, 1.3], X = {(x1, x2) : −5 ≤ xj ≤ 5, j = 1, 2}. System (1) is defined by the following
inequalities

g1(x1, x2, p) = 5px1 + 10x2 + 2p− 10 ≤ 0,

g2(x1, x2, p) = −2x1 − 3px+ 2− 5p+ 10.5 ≤ 0.

Set P ∗ is union of three intervals, P ∗ = [−0.2,−0.05]
∪
[0.075.0.94]

∪
[1.235, 1.3]. Function w and set P ∗ are shown

in Fig. 1. In this example we check three values of parameter for feasibility and construct the corresponding
sets.

First parameter p1 = 0.01. Solving problem (15) with p̃ = p1 we obtain the corresponding primal solution
x1 = (5, 1.015), ξ1 = 0.4196, and dual solution u1 = (0.003, 0.997). Since w(p1) = ξ1 > 0 we have D(p1) = ∅. Set
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X has four vertices v1 = (−5,−5), v2 = (−5, 5), v3 = (5,−5), v4 = (5, 5). Support function-minorant of w has
the following form (see (12))

ψ(p, p1) = min{9.901p+ 20.2585,−20.009p+ 20.5585, 10.051p+ 0.3185,−19.859p+ 0.6185} =

= min{10.051p+ 0.3185,−19.859p+ 0.6185} ∀p ∈ [−0.2, 1.3].

Set P∅(p
1) = {p : ψ(p, p1) > 0} is open interval (-0.0317,0.0311). Therefore, D(p) = ∅ ∀p ∈ (−0.0317, 0.0311).

Hence Pout(p
1) = P \P∅(p

1) = [−0.2,−0.0317]
∪
[0.0311, 1.3]. See Fig 1 for geometrical interpretation of function

ψ(·, p1) and set P∅(p
1).

Take now the second value of the parameter, p2 = 0.6. The corresponding problem (15) (p̃ = p2) has solutions
x2 = (5,−0.737), ξ2 = −1.1729, u2 = (0.153, 0.847). Since ξ2 < 0 set D(p2) ̸= ∅. From (3) we obtain

φ(p, p2) = max{27p− 17.37,−2.789p+ 0.5},

Pin(p
2) = {p : φ(p, p2) ≤ 0} = [0.179, 0.643] and D(p) ̸= ∅ ∀p ∈ [0.179, 0.643].

Third parameter p3 = 1.1. The corresponding primal and dual solutions x3 = (5,−1.857), ξ3 = 1.1286, u3 =
(0.248, 0.752). In this case ξ3 > 0 and D(p3) = ∅. Support function-minorant

ψ(p, p3) = min{14.216p− 14.504,−8.344p+ 10.296,−20.744p+ 25.336}.

Set P∅(p
3) = {p : ψ(p, p3) > 0} is interval (1.02, 1.22).

Figure 1: Geometrical interpretation of the Example.

3 An approximation procedure

Parameter p ∈ P such that D(p) ̸= ∅ is called feasible parameter and infeasible otherwise. Below we describe
a procedure which is based on generating finite number of random parameters in P and checking feasibility
property of them. Since every parameter generates a set containing either only other feasible parameters or only
infeasible parameters such procedure is a covering type procedure. In general, we finish with a collection of sets
with feasible parameters and collection of sets with infeasible parameters.

It is assumed that vertices v1, . . . , vN of set X are known. We also fix maximum number of iterations k > 1
in advance. The procedure has the following description.

4



Step 0. Set Pin = ∅, P∅ = ∅, k = 1, kin = 0, k∅ = 0;

Step 1. Choose randomly parameter pk ∈ P ;

Step 2. If pk ∈
∪

Pin∈Pin

Pin then goto step 7;

Step 3. If pk ∈
∪

P∅∈P∅

P∅ then goto step 7;

Step 4. Solve problem (15) with p̃ = pk. Let (xk, ξk) and uk be primal and dual solutions.

Step 5. If ξk > 0 then define P k
∅ = P∅(p̃) in (13) for p̃ = pk and ũ = uk, and set P∅ = P∅

∪
P k
∅ , k∅ = k∅ + 1;

Step 6. If ξk ≤ 0 then define P k
in = Pin(p̃) in (11) for p̃ = pk and x̃ = xk, and set Pin = Pin

∪
P k
in, kin = kin+1;

Step 7. Set k=k+1;

Step 8. If k > k then stop, otherwise goto step 1.

When the procedure stops we have a collection Pin = {P 1
in, . . . , P

kin

in } of feasible parameters sets and a collection

P∅ = {P 1
∅ , . . . , P

k∅
∅ } of infeasible parameters sets. Therefore, we can define P ∗

in and P ∗
out in the following way

P ∗
in =

kin∪
i=1

P i
in, P

∗
out = P \

(
k∅∪
i=1

P
k∅
∅

)
.

In the example considered above we have k = 3, kin = 1, k∅ = 2 and

Pin = {[0.179, 0.643]}, P∅ = {(−0.0317, 0.0311), (1.02, 1.22)}.

Therefore,

P ∗
in = [0.179, 0.643], P ∗

out = [−0.2,−0.0317]
∪

[0.0311, 1.02]
∪

[1.22, 1.3].

Theoretically the suggested procedure is finite since P is a compact set, hence can be covered by a finite
number of convex sets. However, in order to increase the efficiency other covering techniques, e.g. borrowed
from global optimization technology [EvtushenkoEtAl17] can be used.
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