Approximation of parametrically given polyhedral sets

Oleg V. Khamisov Melentiev Energy Systems Institute Irkutsk, Russia khamisov@isem.irk.ru

Abstract

In our paper we consider systems of linear inequalities which linearly depend on multidimensional parameters. A technique for approximating set of parameters for which the considered system is consistent is described. Approximations are constructed by means of convex and concave piece-wise linear functions. An illustrative example is given.

1 Intriduction

Parametric polyhedral set D(p) is defined in the following way

$$D(p) = \{ x \in X : g_i(x, p) \le 0, \ i = 1, \dots, m \},\tag{1}$$

where $X \subset \mathbb{R}^n$ is a polytope $(X \neq \emptyset)$, $g_i : \mathbb{R}^n \times \mathbb{R}^q$, i = 1, ..., m are bilinear functions, i.e. each function is linear in variable x when variable p is fixed and vise versa. Vector p is called a parameter and may vary within a given polytope $P \subset \mathbb{R}^q$, $p \in P$. Define set

$$P^* = \{ p \in P : D(p) \neq \emptyset \}.$$

In general, P^* is a nonconvex, disconnected and implicitly given set . We consider the following problem: find an outer P^*_{out} and an inner P^*_{in} explicit approximations of P^* :

$$P_{in}^* \subset P^* \subset P_{out}^*$$
.

Similar problem were considered in [BorrelliEtAl03] and [JonesEtAl08] under some additional conditions which allow one to effectively apply the well elaborated linear programming parametric technique. Interval linear optimization [FiedlerEtAl06] is also tightly connected to the topic of our paper. However, here we suggest to use approximations generated by support function-majorants and function minorants [Khamisov99].

2 Approximation technique

Consider the following function

$$w(p) = \min_{x \in X} \max_{1 \le i \le m} g_i(x, p).$$

Then set P^* has the equivalent description

$$P^* = \{ p \in P : w(p) \le 0 \}$$

Copyright © by the paper's authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). In: Sergei S. Goncharov, Yuri G. Evtushenko (eds.): Proceedings of the Workshop on Applied Mathematics and Fundamental Computer Science 2020, Omsk, Russia, 30-04-2020, published at http://ceur-ws.org

Let $\tilde{p} \in P$ be given, find

$$\tilde{x} \in \operatorname{Argmin}_{x \in X} \max_{1 \le i \le m} g_i(x, \tilde{p}) \tag{2}$$

and define function

$$\varphi(p,\tilde{p}) = \max_{1 \le i \le m} g_i(\tilde{x}, p). \tag{3}$$

Since functions g_i are liner in p function φ is a convex piece-wise linear function which satisfies two conditions

$$w(\tilde{p}) = \varphi(\tilde{p}, \tilde{p}), \ w(p) \le \varphi(p, \tilde{p}) \ \forall p \in P.$$
(4)

Due to these conditions function φ is called a support function-majorant of function w. Rewrite now function w in the following way

$$w(p) = \min_{x \in X} \max_{1 \le i \le m} g_i(x, p) = \min_{x \in X} \max_{u \in S_u} \sum_{i=1}^m u_i g_i(x, p) = \max_{u \in S_u} \min_{x \in X} \sum_{i=1}^m u_i g_i(x, p),$$
(5)

where S_u is the standard simplex, $S_u = \left\{ u \in \mathbb{R}^m : \sum_{i=1}^m u_i = 1, u_i \ge 0, i = 1, \dots, m \right\}$. Let again $\tilde{p} \in P$ be given. Solve the corresponding max-min problem in (5) and find \tilde{x} and \tilde{u} such that

$$w(\tilde{p}) = \sum_{i=1}^{m} \tilde{u}_i g_i(\tilde{x}, \tilde{p}).$$
(6)

Define function

$$\psi(p, \tilde{p}) = \min_{x \in X} \sum_{i=1}^{m} \tilde{u}_i g_i(x, p).$$
(7)

Then, from (5) and (6) we have

$$w(\tilde{p}) = \psi(\tilde{p}, \tilde{p}), \ w(p) \ge \psi(p, \tilde{p}) \ \forall p \in P.$$
(8)

By construction function $\psi(\cdot, \tilde{p})$ is concave and due to the properties (8) is called a support function-minorant of function w.

Assume, that $w(\tilde{p}) \leq 0$ and define set

$$P_{in}(\tilde{p}) = \{ p \in P : \varphi(p, \tilde{p}) \le 0 \}.$$
(9)

From (4) we have $w(p) \leq 0 \quad \forall p \in P_{in}(\tilde{p})$. By construction $P_{in}(\tilde{p})$ is a convex polyhedral set. Therefore, $P_{in}(\tilde{p})$ is a convex polyhedral *inner* approximation of P_{in}^* . In the case of $w(\tilde{p}) > 0$ we define set

$$P_{\emptyset}(\tilde{p}) = \{ p \in P : \psi(p, \tilde{p}) > 0 \}.$$
(10)

From (8) we have $w(p) > 0 \quad \forall p \in P_{\emptyset}(\tilde{p})$. It follows from the concavity of $\psi(\cdot, \tilde{p})$ that $P_{\emptyset}(\tilde{p})$ is a convex set. Then the set $P_{out}(\tilde{p}) = P \setminus P_{\emptyset}(\tilde{p})$ is an *outer* approximation of P_{out}^* .

It follows from (3) and (9) that set $P_{in}(\tilde{p})$ has explicit description as the polyhedron

$$P_{in}(\tilde{p}) = \{ p \in P : g_i(\tilde{x}, p) \le 0, \ i = 1, \dots, m \}.$$
(11)

The set $P_{out}(\tilde{p})$ is the complement of convex set $P_{\emptyset}(\tilde{p})$. Therefore, $P_{out}(\tilde{p})$ is nonconvex, can be disconnected and has a disjunctive structure [Balas18]. Assume, that vertices v^1, \ldots, v^N of X are known, $X = conv\{v^1, \ldots, v^N\}$. Then, from (7) we have

$$\psi(p, \tilde{p}) = \min_{1 \le j \le N} \sum_{i=1}^{m} \tilde{u}_i g_i(v^j, p)$$
(12)

and

$$P_{\emptyset}(\tilde{p}) = \{ p \in P : \sum_{i=1}^{m} \tilde{u}_i g_i(v^j, p) > 0, \ j = 1, \dots, N \}.$$
(13)

Define sets

$$P_j(\tilde{p}) = \{ p \in P : \sum_{i=1}^m \tilde{u}_i g_i(v^j, p) \le 0 \}, \ j = 1, \dots, N,$$

Then

$$P_{out}(\tilde{p}) = \bigcup_{j=1}^{N} P_j(\tilde{p}),\tag{14}$$

i.e. $P_{out}(\tilde{p})$ is a union of polyhedrons. Find scalars $\tilde{\gamma}_j$:

$$\sum_{i=1}^{m} \tilde{u}_i g_i(v^j, p) \le \tilde{\gamma}_j \quad \forall p \in P, \ j = 1, \dots, N.$$

It is well-known, that by introducing 0-1 variables z_j , j = 1, ..., N the disjunctive structure of $P_{out}(\tilde{p})$ in (14) can be described as follows

$$P_{out}(\tilde{p}) = \left\{ p \in P : \exists z : \sum_{i=1}^{m} \tilde{u}_i g_i(v^j, p) \le \tilde{\gamma}_j z_j, \ z_j = 0 \bigvee 1, \ j = 1, \dots, N, \ \sum_{j=1}^{N} z_j = (N-1) \right\}.$$

We always can assume that X is a simplex. Since X is bounded it has an outer approximation by a simplex and since X is defined by a system of linear inequalities we can move all inequalities into the list of new functions q_i in (1). In this case new functions do not have parameter p, however the suggested approach is still correct.

Let us consider how \tilde{x} and \tilde{u} corresponding to a given \tilde{p} can be obtained. Rewrite problem in (2) in the following way

$$\min_{x,\xi} \{ \xi : g_i(x, \tilde{p}) \le \xi, \ i = 1, \dots, m, \ x \in X \},$$
(15)

where ξ is an auxiliary unbounded scalar variable. Problem (15) is a linear programming problem which always has a finite solution. Let $(\tilde{x}, \tilde{\xi})$ be a solution. Then, obviously, \tilde{x} satisfies inclusion (2) and $w(\tilde{p}) = \tilde{\xi}$. Write down the Lagrange function

$$L(\xi, x, u) = \xi + \sum_{i=1}^{m} u_i (g_i(x, \tilde{p}) - \xi)$$

The Lagrange dual problem is

$$\max_{u \ge 0} \min_{x \in X, \xi \in R} L(\xi, x, u) = \max_{u \ge 0} \min_{x \in X, \xi \in R} \left\{ \xi \left(1 - \sum_{i=1}^m u_i \right) + \sum_{i=1}^m u_i g_i(x, \tilde{p}) \right\} = \max_{u \in S_u} \min_{x \in X} \sum_{i=1}^m u_i g_i(x, \tilde{p}),$$

i.e. \tilde{u} introduced in (6) is a dual solution of (15). Note also, that (15) is a linear programming problem and hence can be easily solved for any given $\tilde{p} \in P$.

Let us make some intermediate conclusions. For any arbitrary given $\tilde{p} \in P$ we solve linear programming problem (15) obtaining primal solution $(\tilde{x}, \tilde{\xi})$ and dual solution \tilde{u} . If $\tilde{\xi} \leq 0$ then we know that system (1) is consistent not only for $p = \tilde{p}$ but also $\forall p \in P_{in}(\tilde{p})$, where $P_{in}(\tilde{p})$ is given in (11). If $\tilde{\xi} > 0$ then system (1) is inconsistent not only for $p = \tilde{p}$ but also $\forall p \in P_{\emptyset}(\tilde{p})$ in (10). The main result here consists in the following: checking a given parameter for feasibility we obtain a set with the same property.

Example. Sets $P = [-0.2, 1.3], X = \{(x_1, x_2) : -5 \le x_j \le 5, j = 1, 2\}$. System (1) is defined by the following inequalities

$$g_1(x_1, x_2, p) = 5px_1 + 10x_2 + 2p - 10 \le 0,$$

$$g_2(x_1, x_2, p) = -2x_1 - 3px + 2 - 5p + 10.5 \le 0.$$

Set P^* is union of three intervals, $P^* = [-0.2, -0.05] \bigcup [0.075.0.94] \bigcup [1.235, 1.3]$. Function w and set P^* are shown in Fig. 1. In this example we check three values of parameter for feasibility and construct the corresponding sets.

First parameter $p^1 = 0.01$. Solving problem (15) with $\tilde{p} = p^1$ we obtain the corresponding primal solution $x^1 = (5, 1.015), \xi^1 = 0.4196$, and dual solution $u^1 = (0.003, 0.997)$. Since $w(p^1) = \xi^1 > 0$ we have $D(p^1) = \emptyset$. Set

X has four vertices $v^1 = (-5, -5)$, $v^2 = (-5, 5)$, $v^3 = (5, -5)$, $v^4 = (5, 5)$. Support function-minorant of w has the following form (see (12))

 $\psi(p, p^1) = \min\{9.901p + 20.2585, -20.009p + 20.5585, 10.051p + 0.3185, -19.859p + 0.6185\} =$

$$= \min\{10.051p + 0.3185, -19.859p + 0.6185\} \quad \forall p \in [-0.2, 1.3].$$

Set $P_{\emptyset}(p^1) = \{p : \psi(p, p^1) > 0\}$ is open interval (-0.0317,0.0311). Therefore, $D(p) = \emptyset \ \forall p \in (-0.0317, 0.0311)$. Hence $P_{out}(p^1) = P \setminus P_{\emptyset}(p^1) = [-0.2, -0.0317] \bigcup [0.0311, 1.3]$. See Fig 1 for geometrical interpretation of function $\psi(\cdot, p^1)$ and set $P_{\emptyset}(p^1)$.

Take now the second value of the parameter, $p^2 = 0.6$. The corresponding problem (15) ($\tilde{p} = p^2$) has solutions $x^2 = (5, -0.737), \ \xi^2 = -1.1729, \ u^2 = (0.153, 0.847)$. Since $\xi^2 < 0$ set $D(p^2) \neq \emptyset$. From (3) we obtain

$$\varphi(p, p^2) = \max\{27p - 17.37, -2.789p + 0.5\},\$$

 $P_{in}(p^2) = \{p : \varphi(p, p2) \le 0\} = [0.179, 0.643] \text{ and } D(p) \ne \emptyset \ \forall p \in [0.179, 0.643].$ Third parameter $p^3 = 1.1$. The corresponding primal and dual solutions $x^3 = (5, -1.857), \ \xi^3 = 1.1286, \ u^3 = 1.1286, \$

(0.248, 0.752). In this case $\xi^3 > 0$ and $D(p^3) = \emptyset$. Support function-minorant

 $\psi(p, p^3) = \min\{14.216p - 14.504, -8.344p + 10.296, -20.744p + 25.336\}.$

Set $P_{\emptyset}(p^3) = \{p : \psi(p, p^3) > 0\}$ is interval (1.02, 1.22).

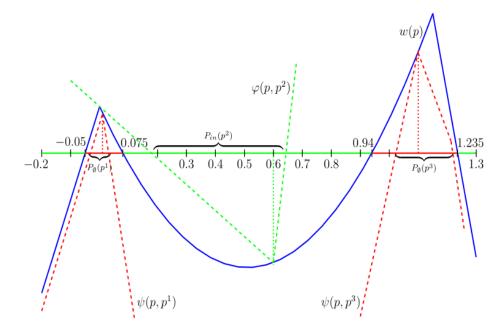


Figure 1: Geometrical interpretation of the Example.

3 An approximation procedure

Parameter $p \in P$ such that $D(p) \neq \emptyset$ is called feasible parameter and infeasible otherwise. Below we describe a procedure which is based on generating finite number of random parameters in P and checking feasibility property of them. Since every parameter generates a set containing either only other feasible parameters or only infeasible parameters such procedure is a covering type procedure. In general, we finish with a collection of sets with feasible parameters and collection of sets with infeasible parameters.

It is assumed that vertices v^1, \ldots, v^N of set X are known. We also fix maximum number of iterations $\overline{k} > 1$ in advance. The procedure has the following description.

Step 0. Set $\mathcal{P}_{in} = \emptyset$, $\mathcal{P}_{\emptyset} = \emptyset$, k = 1, $k_{in} = 0$, $k_{\emptyset} = 0$;

Step 1. Choose randomly parameter $p^k \in P$;

Step 2. If $p^k \in \bigcup_{P_{in} \in \mathcal{P}_{in}} P_{in}$ then go ostep 7;

Step 3. If $p^k \in \bigcup_{P_{\emptyset} \in \mathcal{P}_{\emptyset}} P_{\emptyset}$ then goto step 7;

Step 4. Solve problem (15) with $\tilde{p} = p^k$. Let (x^k, ξ^k) and u^k be primal and dual solutions.

Step 5. If $\xi^k > 0$ then define $P_{\emptyset}^k = P_{\emptyset}(\tilde{p})$ in (13) for $\tilde{p} = p^k$ and $\tilde{u} = u^k$, and set $\mathcal{P}_{\emptyset} = \mathcal{P}_{\emptyset} \bigcup P_{\emptyset}^k$, $k_{\emptyset} = k_{\emptyset} + 1$;

Step 6. If $\xi^k \leq 0$ then define $P_{\mathbf{in}}^k = P_{\mathbf{in}}(\tilde{p})$ in (11) for $\tilde{p} = p^k$ and $\tilde{x} = x^k$, and set $\mathcal{P}_{\mathbf{in}} = \mathcal{P}_{\mathbf{in}} \bigcup P_{in}^k$, $k_{\mathbf{in}} = k_{\mathbf{in}} + 1$; Step 7. Set k - k + 1:

Step 1. Set
$$\kappa = \kappa + 1$$
;

Step 8. If $k > \overline{k}$ then stop, otherwise goto step 1.

When the procedure stops we have a collection $\mathcal{P}_{in} = \{P_{in}^1, \dots, P_{in}^{k_{in}}\}$ of feasible parameters sets and a collection $\mathcal{P}_{\emptyset} = \{P_{\emptyset}^1, \dots, P_{\emptyset}^{k_{\emptyset}}\}$ of infeasible parameters sets. Therefore, we can define P_{in}^* and P_{out}^* in the following way

$$P_{in}^* = \bigcup_{i=1}^{k_{in}} P_{in}^i, \ P_{out}^* = P \setminus \left(\bigcup_{i=1}^{k_{\emptyset}} P_{\emptyset}^{k_{\emptyset}}\right).$$

In the example considered above we have $\overline{k} = 3$, $k_{in} = 1$, $k_{\emptyset} = 2$ and

$$\mathcal{P}_{in} = \{ [0.179, 0.643] \}, \ \mathcal{P}_{\emptyset} = \{ (-0.0317, 0.0311), (1.02, 1.22) \}.$$

Therefore,

$$P_{in}^* = [0.179, 0.643], \ P_{out}^* = [-0.2, -0.0317] \bigcup [0.0311, 1.02] \bigcup [1.22, 1.3].$$

Theoretically the suggested procedure is finite since P is a compact set, hence can be covered by a finite number of convex sets. However, in order to increase the efficiency other covering techniques, e.g. borrowed from global optimization technology [EvtushenkoEtAl17] can be used.

Acknowledgements

The paper was supported by RFBR grant No. 18-07-01432.

References

[Balas18] E. Balas. Disjunctive programming. Springer Nature Switzerland AG, 2018.

- [BorrelliEtAl03] F. Borrelli, A. Bemporad, and M. Morari. Geometric algorithm for multiparametric linear programming. Journal of Optimization Theory and Applications, 108(3):515–540, 2003.
- [EvtushenkoEtAl17] Yu.G. Evtushenko, M.A. Posypkin, L.A. Rybak, and A.V. Turkin. Finding sets of solutions to systems of nonlinear inequalities. *Computational Mathematics and Mathematical Physics*, 57(8):1241–1247, 2017.
- [FiedlerEtAl06] M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, and K. Zimmermann. Linear optimization problems with inexact data. Springer, 2006
- [JonesEtAl08] C.N. Jones, E.C.. Kerrigan, and J.M. Maciejowski. On polyhedral projection and parametric programming. *Journal of Optimization Theory and Applications*, 138(2):207–220, 2008.
- [Khamisov99] O. Khamisov. On optimization properties of functions with a concave minorant. *Journal Global Optimization*, 14:79–101, January 1999.