
A Visual Rule Generation Tool for SWRL?

Alia El Bolock1,2, Ibrahim Mohamed1, Cornelia Herbert2, and Slim
Abdennadher1

1 German University in Cairo, Cairo, Egypt
{alia.elbolock,ibrahim.mohamed,slim.abdennadher}@guc.edu.eg

2 Ulm University, Ulm, Germany
cornelia.herbert@uni-ulm.de

Abstract. The number of applications relying on representing knowl-
edge through ontologies and interactions through rules has grown signif-
icantly in the past years. The knowledge acquisition needed for ontology
engineering requires input from domain experts, which can lack comput-
ing and knowledge modeling skills. In this paper, we present a generic
visual programming tool for generating SWRL rules for OWL ontologies.
The developed web application allows ontology developers and domain
experts alike to easily create SWRL rules. By interacting with a sim-
ple graphical user interface, the users can specify the antecedents and
consequents of SWRL rules by combining ontology entities and applying
restrictions on them. Different control features, such as implicit variable
handling, are implemented, which only enables rule creation options that
maintain the correct SWRL syntax and maintain correct semantics. Con-
sistency is ensured by allowing the users to review the generated rules
and their effects before actually applying them to the ontology.

Keywords: SWRL · OWL · Ontology · Rule Generation · Visual ·Web
Application · Character Computing

1 Introduction

Ontologies are commonly used to represent knowledge in many domains, e.g.
bio-medicine, psychology, and human computer interaction. Due to the com-
plexity and size of the knowledge to be represented, it is often vital to include
domain experts while authoring ontologies [8]. However, most domain experts
lack knowledge modeling skills and find it hard to follow the logical notations
of the semantic web languages used to develop ontologies, such as the Web On-
tology Language (OWL) [23]. Accordingly, some kind of mediation between
knowledge engineers and domain experts was needed. While the architecture of
the ontologies themselves plays a vital role in capturing the essence of a spe-
cific domain, defining rules that detail how these concepts interact together is
one main advantage of using ontologies. Some approaches even propose allowing
including rules to ontology knowledge bases and reasoning on them [6].

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Rule-based languages, such as the Semantic Web Rule Language (SWRL)
[22] with its high expressivity, became an integral part in most ontologies [26],
due to the added reasoning capabilities and flexibility. However, SWRL, like
OWL, requires expertise in logic-based knowledge representation and the syntax
and semantics of the language. This might be relatively easy for ontology engi-
neers and computer scientists but not for the domain experts that are usually
required to produce and define the rules. Ontologies are also constantly revised
and adapted based on newly arising information and data, which also requires
changing the belonging rules. Accordingly, one of the main motivation behind
this work is the need for solutions that simplify the development of ontologies
and defining rules on them. Having a tool that enables non-ontology developers
to add rules to knowledge bases and ontologies in an intuitive format is thus in-
tegral to simplifying the development and extension of ontologies and their rules.
Such a tool is especially relevant when reasoning and defining rules over large and
complex ontologies. There is large number of approaches aiming at improving the
mediation process between knowledge engineers and domain experts and in turn
the process of ontology engineering. One of them is by parsing and translating
informal texts of experts to generate rules by using Natural Language Processing
and other Machine Learning algorithms [5]. The disadvantage of this approach
is that it is prone to imprecision and ambiguity [20]. Besides, the systems that
apply these solutions are so complex and hard to develop and maintain. A lot of
previous work promoted the idea of controlled natural language, this idea was
used to create the so-called natural language interfaces (NLIs). These interfaces
are developed to guide domain experts through the rule authoring process. The
FluentEditor [31] and AceWiki [24] are two such tools. One major drawback
of NLIs is that they show good results mostly when they are customized into a
specific domain [7]. The efficiency and easy of use decreases, the more generic
the tools become. Another drawback of NLIs is their adaptivity to new domains
[3]. It is still possible to provide a more intuitive and user-friendly approach to
increase the usability, especially for the novice users who come from disciplines
lacking the needed skills. The approach we follow in this work, is the use of visual
language interfaces to create an easier and more user-friendly experience for do-
main experts. Unlike NLIs, it is easy to build generic visual language interfaces
that are independent of associated ontologies from different domains. Some work
has been done in this area but often toward the visualization and paraphrasing
of existing rules e.g., [19]. One tool used for visualizing rule creation process is
[30]. The tool was the first to fully visualize SWRL rules creation process. The
proposed platform fully covers all SWRL constructs and is designed in a manner
that targets ontology experts as it requires understanding of the SWRL. Other
tools, such as [25], restrict SWRL a bit to simplify the process but at the cost
of limiting the users. In [2], a graph-based model to represent the relations be-
tween SWRL atoms is presented. It does not consider the order of atoms within
a rule, which can complicate the modeling whenever the number of rule atoms
increases. While these solutions might be a bit easier for non-experts to use, it
still shows a lot for the lower-level implementation details and gives users a lot

of control and decisions that can lead to mistakes in the rule creation. Thus,
most existing solutions do not specifically target domain experts that have no
ontology knowledge, while providing the complete expressivity of SWRL.

In this paper, we present a generic visual programming tool for generating
SWRL rules for OWL ontologies. The developed web application allows ontology
developers and domain experts alike to easily create SWRL rules to be added to
specific ontologies, see their effect on the ontology, and decide whether or not to
apply the rules. By interacting with a simple graphical user interface, the users
can easily specify the antecedent and consequent of a SWRL rule by combining
ontology entities. By relying on visual interaction techniques, the developed tool
can be easily used by individuals without programming background. We add
constraints to the rule creation process and guide the user through the process
step by step to ensure the integrity and validity of the generated rule and increase
the usability. This is further enabled by implementing different control features,
such as implicit variable handling, which do not exist in other similar tools
to date. The rule generation tool only enables choices that lead to syntactically
correct rule, thus avoiding any syntax errors that could arise from the user’s side.
Correct semantics are ensured by allowing the users to review the generated rules
and their effects before actually applying them to the ontology.

This work is part of a bigger project within the field of Character Computing
[4, 15, 9, 16], where a group of computer scientists and psychologists are devel-
oping an ontology-based model for representing human character [10] and its
interactions with behavior in different situations. This model and its ontology,
CCOnto [14], is to be used by computer scientists, as well as psychologists, to
develop semantic web solutions and applications that improve the user experi-
ence by sensing, adapting to, and guiding user interaction [11] e.g., [17, 13,
12]. This project heavily relies on developing solutions that ease the cooperation
between computer scientists and psychologists, such as the application proposed
in this paper and the work proposed in [1].

The rest of the paper is structured as follows. The application design and
features are presented in Section 2, while the system architecture and implemen-
tation details are explained in Section 3. Finally, Section 4 concludes the paper
as well as discusses the future work.

2 Application Design and Features

The design of the proposed rule generation application and its different com-
ponents are shown in Fig. 1. The application tool is a generic tool for visually
generating SWRL rules. SWRL rules are in the form A ⇒ C, where A is the
antecedent (body) and C is the consequent (head) of the rule. This is inter-
preted as, if the antecedent A holds, then the consequent C must also hold i.e. it
represents the classical implication. Both the antecedent and the consequent are
conjunctions of atoms. Atoms are limited to unary or binary predicates i.e., class
and property axioms, respectively. Variables, representing individuals or data,
are allowed in the antecedent and the consequent. One applied safety restric-

Fig. 1: Web application view and components

tion is that a variable can only be placed in the rule consequent if it appears in
the rule antecedent. SWRL supports most of the OWL axioms such as classes,
sub-classes, equivalent and disjoint classes, disjoint data types, data-values prop-
erties, and facts. These can be used to describe variables within a SWRL rule.
SWRL also supports built-ins for performing and evaluating various operations
and expressions e.g., math and string operations.

A SWRL rule is used to represent a piece of information. A simple example
of such a rule would be to describe the concept of being an uncle using a basic
ontology representing family relations. This is done by asserting the conjunction
of the hasParent and hasBrother properties in the antecedent of the rule to
imply the hasUncle property in the consequent of the rule.

Person(?person1) ^ Person(?person2) ^ Person(?person3)

^ DifferentFrom(?person2, ?person1) ^ DifferentFrom(?person3,

?person1) ^ DifferentFrom(?person3, ?person2) ^

hasFather(?person1, ?person2) ^ hasBrother(?person2, ?person3)

-> hasUncle(?person1, ?person3)

The rule states that if we have three different persons where the first is
the father of the second and the second is the brother of the third then the
first is the uncle of the third. Although the rule is trying to explain a very
simple relationship, it can be quite hard to understand for someone without
a background in logic. In this section, we will explain the different features
implemented into our SWRL rule generation tool, which is already deployed3.
The various features included in the tool can be divided into six main categories.
Table 1 gives an overview of the main feature categories as well as some example
features. These features alongside relying on visualization make authoring SWRL
rules more intuitive even for novice users.
3 http://rules.us-east-1.elasticbeanstalk.com/

Table 1: Main categories of features included in the SWRL rule generation tool
and belonging features. Only the main features are included in this table. Entities
refer to all OWL entities usually browsable by Protégé e.g., classes, properties
and individuals.

Feature Category Features

Entity Exploration viewing all entities with their hierarchy
Rule Management creating rules, viewing and deleting existing rules
Abstraction removing all unnecessary details, e.g. IRIs, entities renaming

automatic variable handling, providing only upper-level entity details
Flexibility viewing current rule, adding atoms to rules in SWRL notation
Constraints entity linking validations (directions and types), cardinality

control, consistency checking
Interactivity sameAs/differentFrom atom control

2.1 Must-Have Features

The “must-have” features achieve the minimum basic requirements of the de-
veloped tool. The main requirement is to be able to create SWRL rules in a
visualized way. The other requirements are deleting SWRL rules and the abil-
ity to view all current rules in an ontology. Thus, we deal with SWRL rules as
resources and apply basic resource management operations (i.e., creating, view-
ing, deleting, and editing) on them. Editing a SWRL rule is not currently a
feature of the application. However, it can easily be achieved by combining the
other existing features. The Entities Box, a visual component of the web appli-
cation, is used to view the current ontology and shows all the current entities
in the ontology that can be used to make valid SWRL atoms, namely Classes,
Object Properties, Data Properties and SWRL Built-ins. As Fig. 2 indi-
cates, classes are shown in a tree structure that can be collapsed and expanded
to give the user better readability. The tree structure reflects the actual inher-
itance relations between the classes of the ontology. The shown classes are not
just the classes that are explicitly stated as members of SubClassOf OWL ax-
ioms, but also the implicit classes inferred by the reasoner. In our case we use
HermiT [18], which is a reasoner based on Description Logic (DL) which aims
to be efficient and implement a series of improvements that allow it to work with
larger and more complex ontologies. Object properties are listed together with a
given ability to view their domains and ranges if available (see Fig. 2). The same
goes for data properties and their domains. SWRL built-ins are listed together,
however, the currently available atoms do not represent all the built-ins specified
in the SWRL language. All the entities in the Entities Box can be dragged and
dropped into SWRL Designer Boxes. When they are dropped, they turn into
SWRL Atom Blocks.

The SWRL Designer Boxes are used to contain the SWRL Atom Blocks.
There are 2 boxes of these, the first one represents the body of an SWRL rule,
while the second one represents the head of a SWRL rule (see Fig. 3). In SWRL,

(a) Class hierarchy (b) Object properties

Fig. 2: Entities Box

Fig. 3: The visualization for creating the hasUncle rule.

one can link between atoms using variables as shown in the hasUncle rule. As
illustrated in Fig. 3, it is possible to represent those variables by actual links
(a.k.a., wires) that can be extended between appropriate SWRL Atom Blocks.

As shown in Fig. 4, at the bottom of the application window, one can see
all the previously created rules listed together. In front of every rule there is a
delete button that can be used to remove that rule from the ontology.

Fig. 4: Listing of the generated SWRL rules.

2.2 Nice-To-Have Features

The “nice-to-have” features are control features which make the proposed tool
unique. They enhance the experience of the users and the usability of the appli-
cation. These features are responsible for enabling users without logic modelling
experience to generate rules using the tool. These features also try to prevent
the user from making mistakes during rule creation, as much as possible. Those
features are either standalone features or additions to the basic “must have”
features.

Our nice-to-have features can be divided into four categories, each category
represents the purpose of the features within it.

In order to simplify the complexities of SWRL language and to hide some
of its details, we implemented a meaningful color-coded scheme. Every SWRL
entity has a specific color in the Entities Box and the labels of its corresponding
SWRL Atom Blocks have the same color Fig. 5. Atom blocks are wired through
ports. To wire two atom blocks, each atom block label has the same color as
the other one’s port. This feature imposes an order on the rule creation process,
as well. A user has to use a SWRL Class Atom Block before being able to use
an Object Property Atom Block or a data property atom block. In addition,
there are no ports at the left of a SWRL Class Atom Block, which indicates
that this type of blocks represent the start of the rule. Also, it is not possible
to use a SWRL Built-in Atom Block unless it is preceded by a Data Property
Atom Block. This imposed order is easier for users to think of and understand
[19]. The underlying library that is used for diagramming automatically aligns
the blocks in that same order. To further abstract the SWRL constructs, a
modified naming of the SWRL entities is used. Relations denote SWRL object
properties, attributes denote SWRL data properties, and comparators denote
SWRL built-ins.

Fig. 5: SWRL Atom Blocks

We removed some constructs from our representation. As mentioned before,
not all SWRL built-ins are represented as well as SWRL data ranges. Removing
those constructs keeps our representation simple and helps reduce the complexity
of the developed application and avoid unnecessary errors. These constructs
are not often used and thus do not strongly affect the expressivity of SWRL.
However, to ensure that the tool is complete in terms of generating SWRL rules,
we enabled adding raw SWRL atoms in basic SWRL syntax. To integrate this
feature with our proposed way of rule creating using diagrams, users can view
the current SWRL rule in SWRL language syntax. This was the user can know
which implicit variables are used and can manually add SWRL atoms. As an
example, let us consider the following SWRL rule:

hasHeight(?square, ?height) ^ hasWidth(?square, ?width) ^

swrlb:greaterThan(?area, 100) ^

swrlb:multiply(?area, ?width, ?height) -> BigSquare(?square)

The rule states that if a square has area greater than 100 units, then it is a big
square. The area is calculated using the SWRL built-in atom swrlb:multiply.
Currently, this specific atom does not have a corresponding block representation.
In this case, the previously mentioned feature can be useful. As shown in Fig. 6,
we added the swrlb:multiply manually in the text-box. Nevertheless, these
advanced constructs , e.g. swrlb:multiply, will usually only be added by users
who will have some experience with knowledge representation and logic rules.

Putting constraints on the rule creation process will reduce the possible errors
that can be done by users. Despite being visually appealing, the coloring scheme
feature is mainly a validation mechanism. That is, if the user tries to wire blocks
that mismatch colors, this action will be prevented and the wire will not be
added. Another feature is controlling the cardinality of each SWRL Atom Block
(i.e., how many wires can be extended from each port). This feature is used to
reduce verbosity, making the user able to wire one block to multiple blocks and
vice versa based on the entity type of those blocks being wired. We introduced a
way to keep the underlying ontology consistent after adding a rule to it. Before

Fig. 6: Adding an SWRL atom in SWRL syntax.

adding a rule to ontology, we use it to infer more ontology data. Then, we check
if the result keeps the ontology consistent. If it does, we save that rule with
the new ontology state. If not, we refuse that rule, keep the ontology as is, and
notify the user of that problem. Even though this feature guarantees to keep the
ontology consistent, in some use cases, users may want to allow inconsistencies
in their ontologies. Therefore, we allow the user to turn this feature on and off.

Fig. 7: Representation of the sameAs and differentFrom atoms.

The tool is designed to be interactive, thus control goes back and forth be-
tween the user and the web application and is not completely left to the user. One
major example of this is how we represent SameAs and DifferentFrom SWRL
atoms. SWRL adopts the Open World Assumption 4 i.e., it is not allowed to
assume that two individuals are automatically distinct if they have different
name. Therefore, we should be cautious when using SameAs and DifferentFrom

SWRL atoms. Instead of representing those atoms in the diagrams and requiring
the user to explicitly remember setting them, the application detects whenever a
user reuses a Class Atom Block. Accordingly, it asks the user a question whether
this new class instance is same as or different from the same previously declared
class instances, or they do not know. In Fig. 7, we see how this feature got fired
when we used more than one Person class instance. this same behaviour occurs
while authoring hasUncle rule.

4 https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ

3 System Architecture

We propose a portable web application following a client-server architecture. The
client-server architecture also allows for cooperation, that is because multiple
clients can concurrently connect to the same server and edit the underlying
ontology. The client application visible to the users gets the ontology entities
from the ontology through the server. According to the fetched entities, the
users can use the GUI to create syntactically correct SWRL rules. Once a rule
is created and its effect on the ontology is approved by the user, it is added to
the ontology.

Like most web applications, we used Javascript for the client-side application
as it provides us with a wide variety of libraries. Flexible diagramming is one of
the most complex and crucial features needed for the developed application. For
this purpose, we used GoJS, a JavaScript and TypeScript library for building
interactive diagrams and graphs [27]. GoJS is highly customizable and abstracts
away a lot of HTML and Canvas machinery. We used JQuery [29], a multi-
purpose Javascript library, for DOM manipulation and Apache Tomcat for the
server. It is an open-source implementation of the Java Servlet, JavaServer Pages,
and WebSocket technologies. It provides a Java HTTP web server environment
in which Java code can be executed. To expose our core services to the client
application, RESTEasy is used. RESTEasy is an implementation of JAX-RS
specification to build RESTful web services in Java. In order to read entities from
ontologies and have a general access to it, the OWL API is used. It is a Java API
and reference implementation for creating, manipulating, and serializing OWL
Ontologies [21]. However, our main concern is accessing and handling SWRL
rules. Although a SWRL rule is an additional type of OWL axiom, OWL API
does not provide enough tools to easily manage SWRL rules. We used the SWRL
API to author and manage SWRL rules. The SWRL API provides both an
authoring environment for developing rules and a set of application programming
interfaces that support the building of rule-driven applications [28]. Finally, we
use the HermiT reasoner to check the consistency of underlying ontologies after
editing them through the generated rules. We also use it to extract and display
class entities in a tree structure. The different features presented in Section 2
are implemented through different modules included in the client and server-side
applications. Fig. 9 gives an overview of the different modules described above
and the features they realize.

1. Entity exploration features: Extracting the ontology classes to be displayed
in a tree-like structure is done using Hermit Reasoner and with the help
of a Depth First Search algorithm. Hermit reasoner provides the method
getSubClasses(OWLClassExpression c, boolean directSubClasses),
which can be used to traverse all OWL classes with depth-first search algo-
rithm. After fetching all classes and other entities. The client is responsible
of listing them to the user and providing the ability of collapse and expand
the entities listing to enhance the readability, this task was easily achieved
by JQuery library.

Fig. 8: Sequence diagram detailing the rule creation process.

Fig. 9: Overview of the different modules responsible for realizing the features
belonging to the different categories.

2. Rule management features: Rule management consists of two parts: rule
generation and rule viewing and deletion. The first one is the main feature
of the developed application. Fig. 8 shows the sequence diagram of the rule
generation process. The main part of the rule generation is done in the
client-side application with the help of the Diagrammer. A rule can be easily
formed by wiring appropriate blocks before being submitted to the server. In
the server, the Rule Engine is responsible for parsing, inferring, and saving
the rule. The different checks done while creating a rule, such as reasoner
consistency check, are also displayed in Fig. 8. The SWRLAPI is used to
extract existing rules to be viewed by the users. Rules can also be displayed
in a list-item pattern with the ability of deleting specific rules.

3. Abstractions: abstraction features are achieved with the help of GoJS Di-
agrammer. The ports feature of GoJS as well as the automatic layouting
enable the implemented abstractions. these abstractions do not only affects
the user by giving simple and visually appealing components, they also ab-
stract a lot of programming, making our code more open for extension.

4. Flexibility: To guarantee not to lose the SWRL language expressivity, we
added the features that allow users to deal with SWRL language syntax
directly. The implementation of those features was well integrated with the
rest of the features.

5. Constraints: The Diagrammer allows the programmer to set rules for block
linking, checking these rules is fired whenever a user tries to link two blocks.
Our rules do not check any block types, instead, the rules check the port
colors to ensure correct linking between entities in the rule body and head.
The cardinality restrictions on SWRL atoms is controlled by the Diagrammer
as it allows the programmer to specify how many links can go in or out from
a port. Hermit reasoner is responsible for the consistency checking whenever
a rule is submitted, this feature can be toggled on and off by the user.

6. Interactivity: Whenever a new class instance is added, the Block Tracker
checks whether instances of the same class were used before. If this occurs,
the Block Tracker prompts the user with same as/ different from questions
to determine if individuals refer to the same underlying individual or are
distinct.

4 Conclusion

In this paper, we have introduced a tool for creating SWRL rules using a wizard-
like graphical user interface. The tool enables domain experts without detailed
knowledge of ontologies and rules to define syntactically and to the most part
semantically correct SWRL rules. This is achieved by including six main feature
categories in the tool. Entity exploration and rule management are the must-
have features for a visual rule generation tool. The main advantage provided by
our tool is the four nice-to-have feature categories that enable anyone to use the
tool. These categories are abstraction, flexibility, constraints and interactivity.

A user study to evaluate the ease of use of prototype, in comparison to other
rule generation tools, is being conducted. We are currently working together with

our partners to incorporate the proposed tool into the ontology-based model.
This would enable psychologists to see the effect and check the consistency of
hypotheses on human behaviour. Comparing the rule effect on the ontology-
based model with actual collected data would help improve our understanding
of human behavior and the resulting models. We are also investigating how to
maintain the ease of use of the tool for very large complex ontologies. Here we
plan to combine different visualization and abstraction techniques to be able to
easily navigate through the ontology entities and define rules on them.

References

1. Alaa, M., Bolock, A.E., Abas, M., Abdennadher, S., Herbert, C.: Appgen: a frame-
work for automatic generation of data collection apps. In: Proceedings of the 35th
Annual ACM Symposium on Applied Computing. pp. 1906–1913 (2020)

2. Bak, J., Nowak, M., Jedrzejek, C.: Graph-based editor for swrl rule bases. In:
RuleML (2). Citeseer (2013)

3. Bernstein, A., Kaufmann, E.: Gino – a guided input natural language ontology
editor. pp. 144–157 (11 2006). https://doi.org/10.1007/1192607811

4. Bolock, A., Abdelrahman, Y., Abdennadher, S.: Character Computing. Human–
Computer Interaction Series, Springer International Publishing (2020), https://

books.google.com.eg/books?id=VZXHDwAAQBAJ

5. Boufrida, A., Boufaida, Z.: Automatic rules extraction from medical texts. In: 2014
International Workshop on Advanced Information Systems for Enterprises. pp. 29–33
(Nov 2014). https://doi.org/10.1109/IWAISE.2014.14

6. Costa, N., Knorr, M., Leite, J.: Next step for nohr: Owl 2 ql. In: International Semantic
Web Conference. pp. 569–586. Springer (2015)

7. Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural language interfaces to
ontologies: Combining syntactic analysis and ontology-based lookup through the user
interaction. pp. 106–120 (05 2010). https://doi.org/10.1007/978-3-642-13486-98

8. Dimitrova, V., Denaux, R., Hart, G., Dolbear, C., Holt, I., Cohn, A.G.: Involving do-
main experts in authoring owl ontologies. In: International Semantic Web Conference.
pp. 1–16. Springer (2008)

9. El Bolock, A.: Defining character computing from the perspective of computer science
and psychology. In: Proceedings of the 17th International Conference on Mobile and
Ubiquitous Multimedia. pp. 567–572. ACM (2018)

10. El Bolock, A.: What is character computing? In: Character Computing, pp. 1–16.
Springer, Cham (2020)

11. El Bolock, A., Abdennadher, S., Herbert, C.: Applications of character computing from
psychology to computer science. In: Character Computing, pp. 53–71. Springer (2020)

12. El Bolock, A., El Kady, A., Herbert, C., Abdennadher, S.: Towards a character-based
meta recommender for movies. In: Computational Science and Technology, pp. 627–
638. Springer (2020)

13. El Bolock, A., Ghonaim, A., Herbert, C., Abdennadher, S.: Detecting impulsive be-
havior through agent-based games. In: International Conference on Intelligent Human
Systems Integration. pp. 208–213. Springer (2020)

14. El Bolock, A., Herbert, C., Abdennadher, S.: Cconto: Towards an ontology-based model
for character computing. In: 14th International Conference on Research Challenges
in Information Science, RCIS 2020, Limassol, Cyprus, September 23-25, 2020. IEEE
(2020)

15. El Bolock, A., Salah, J., Abdelrahman, Y., Herbert, C., Abdennadher, S.: Character
computing: Computer science meets psychology. In: 17th International Conference on
Mobile and Ubiquitous Multimedia. pp. 557–562. ACM (2018)

16. El Bolock, A., Salah, J., Abdennadher, S., Abdelrahman, Y.: Character computing:
challenges and opportunities. In: Proceedings of the 16th International Conference on
Mobile and Ubiquitous Multimedia. pp. 555–559. ACM (2017)

17. El Nashar, Z., El Bolock, A., Salah, J., Herbert, C., Abdennadher, S.: Investigating the
effect of personality traits on performance under frustration. In: International Confer-
ence on Games and Learning Alliance. pp. 595–604. Springer (2019)

18. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An owl 2 reasoner. J.
Autom. Reason. 53(3), 245–269 (Oct 2014). https://doi.org/10.1007/s10817-014-9305-
1, https://doi.org/10.1007/s10817-014-9305-1

19. Hassanpour, S., O’Connor, M., Das, A.: Exploration of swrl rule bases through visu-
alization, paraphrasing, and categorization of rules. vol. 5858, pp. 246–261 (11 2009).
https://doi.org/10.1007/978-3-642-04985-923

20. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies (01
2009). https://doi.org/10.1201/9781420090512

21. Horridge, M., Bechhofer, S.: The owl api: A java api for owl ontologies. Semant. Web
2(1), 11–21 (Jan 2011)

22. Horrocks, Ian, Patel-Schneider, F, P., Boley, Harold, Tabet, S., Said, Grossof, Benjamin,
Dean, M., Mike: Swrl: A semantic web rule language combining owl and ruleml. W3C
Subm 21 (01 2004)

23. Horrocks, I., Patel-Schneider, P.F., Van Harmelen, F.: From shiq and rdf to owl: The
making of a web ontology language. Journal of web semantics 1(1), 7–26 (2003)

24. Kuhn, T.: Acewiki: Collaborative ontology management in controlled natural language.
CoRR abs/0807.4623 (2008), http://arxiv.org/abs/0807.4623

25. Leutgeb, A., Utz, W., Woitsch, R., Fill, H.G.: Adaptive processes in e-government-a
field report about semantic-based approaches from the eu-project” fit”. In: ICEIS (3).
pp. 264–269 (2007)

26. MacLarty, I., Langevine, L., Bossche, M.V., Ross, P.: Using swrl for rule-driven appli-
cations. Accessed February 9 (2009)

27. Northwoods Software: Gojs, https://hadoop.apache.org
28. O’Connor, M., Shankar, R., Musen, M., Das, A., Nyulas, C.: The swrlapi: A develop-

ment environment for working with swrl rules. (01 2008)
29. OpenJS Foundation: Jquery, https://jquery.com/
30. Pittl, B., Fill, H.G.: A visual modeling approach for the semantic web rule language.

Semantic Web 11(2), 361–389 (2020). https://doi.org/10.3233/SW-180340
31. Wróblewska, A., Kap lański, P., Zarzycki, P., Lugowska, I.: Semantic rules rep-

resentation in controlled natural language in fluenteditor. In: 2013 6th Interna-
tional Conference on Human System Interactions (HSI). pp. 90–96 (June 2013).
https://doi.org/10.1109/HSI.2013.6577807

