
DeRool: A rule-based dialog engine

Kevin Angele1 and Jürgen Angele2

1 Onlim GmbH
kevin.angele@onlim.com

http://onlim.com
2 adesso, Competence Center Artificial Intelligence

juergen.angele@adesso.de

http://adesso.de

Abstract. Intelligent digital assistants as chatbots and voice assistants
are already widely accepted and used. For the majority of the existing
chatbots, the way people can communicate with them is still limited to
some extent. In the future, the interaction between users and intelligent
digital assistants should become more natural. The goal is to realize
complex dialogs instead of independent question and answering parts.
In real life, a dialog between humans is an ongoing change of the dialog
initiative between the persons talking to each other. This natural way of
communicating with each other needs to be implemented for intelligent
digital assistants. The digital assistant, as the humans in a dialog, need
to keep the information of the current conversation for the ongoing dialog
and ask for information necessary to understand the user and fulfill their
requests. To enable a more natural communication between users and
assistants, we present DeRool, a rule-based dialog engine that is able to
handle complex dialogs.

Keywords: Rule · OO-Logic · Dialog engine · Intelligent digital assis-
tants.

1 Introduction

Intelligent digital assistants as chatbots and voice assistants are more popular
than ever. Most people already used one of those to receive some sort of infor-
mation or fulfill a specific task. Most of the existing chatbot and voice assistant
solutions (e.g., Google Dialogflow3) are able to handle simple question-answer
dialogs. The user asks a question, and the digital assistant returns an answer.
The idea is that a conversation with a virtual digital assistant becomes more nat-
ural, like talking to a real person. Conversations between two persons are more
than independent questioning and answering. Instead, it is more like an exchange
of information and specific questions between those. Imagine a conversation in

2 Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

3 https://dialogflow.com/

a shop that sells particular sorts of wine. A conversation would start with the
person who wants to buy a bottle of wine, giving necessary information to the
salesperson. During the conversation, the salesperson will ask some questions to
get an idea of the preferences of the person. In the end, the salesperson has all
the information he needs to recommend a specific sort of wine that, in his eyes,
fits best. Such conversations can not be handled by independent and straight-
forward questions and answers as the user would always need to mention all the
facts he already provided again. The digital assistant needs, like the salesperson
in the shop, to remember the information it already got from the user and ask
questions to get all the necessary information that is still missing. In a nutshell,
dialogs consist of an ongoing change of the dialog initiative between the user and
the digital assistant retaining the context information.

To enable more natural conversations, we present a dialog engine based on
rules called DeRool that allow us to define knowledge-based guided dialogs.
Those dialog definitions are not done in a programmatical way, like using a
programming language and compiling code to make the dialogs executable. They
are defined in a declarative way using JSON syntax. An integrated interpreter
then executes those definitions. One of the main benefits of the dialog engine is
its independency from NLU frameworks. For example, IBM Watson4 provides
a function to model and execute dialogs. Still, it can only be used when using
IBM Watsons NLU (natural language understanding) component to process the
messages. DeRool acts on top of a triple store and has, therefore, access to the
underlying data. All data that is necessary for the topics the digital agent should
cover can be stored in the triple store and can also be used to guide the dialog
in certain directions. Complex dialogs can be modeled using declarative rules.
With those rules, it is also possible to include the underlying data into decisions
made by the dialog engine. The dialogs can be extended by so called built-ins
to access external service, to allow a dialog flow based on external information.

In the previous paragraph, we already mentioned that all the dialogs are
defined using JSON syntax. JSON syntax is very popular for the development
of APIs and in the web development domain. The dialog engine provides a
basic structure on how a dialog needs to be defined and which properties need
to be given to realize a dialog. To define pre- and postconditions OO-Logic
[2] conditions are used. Due to those conditions, the dialogs can behave very
flexible. Besides, also hardwired dialogs are possible. The transition between
states is caused by incoming intents, that come from the NLU as a result of the
processed user message. Every intent supported by the dialog engine needs a
corresponding dialog state and action definition. The dialog engine is stateful,
which means that all the intents and the current state for each user are stored
while the dialog is active.

The paper is structured in the following way: In Section 2, we present the
structure of dialog definitions, that are defined in JSON and an explanation of the
available properties. Afterward, the processing of a certain intent is described.
An example from industry is later used (Section 4) to show the capabilities and

4 https://cloud.ibm.com/docs/assistant?topic=assistant-dialog-build

give an insight into the dialog definitions used by the dialog engine. Section 5
presents other approaches that support dialogs, and in the last section (Section
6), we conclude our paper and give an outlook on future work.

2 Dialog definition

A dialog definition follows a strict pattern that must be given in a document
using JSON syntax. A dialog definition consists of four different parts:

– general information
– state definitions
– output of the current state definition
– response given by the user corresponding to the current dialog state

We start with the description of properties on the root level (general infor-
mation), continue with the properties that are needed to define a specific dialog
state (state definitions). Afterward, we present the properties that can be used
to describe the appearance of the answer for the particular dialog state (output
of the current state definition). Finally, properties that can be used for handling
incoming intents as response to the output of the current dialog state are pre-
sented (response given by the user). Listing 1.1 shows an empty dialog definition
pattern with all the possible properties that can be used for a dialog definition.

{
"@id": "",
"@type": "Dialog",
"chatbots": [],
"facts": [],
"states": [{
"state": "",
"recognizes": [],
"pre": "",
"message": {
"template": "",
"type": ""

},
"queries": [],
"response": [{
"post": "",
"recognizes": [],
"goto": ""

}]
}]

}

Listing 1.1: Structure of a dialog definition

2.1 General information

Properties on the root level contain general information about the dialog. A
unique identifier, the list of chatbots the dialog can be used for, and general

facts that need to be available in the dialog. Listing 1.2 shows the properties
on the root level. In the following, we give a short description of each of those
properties.

{
"@id": "",
"@type": "Dialog",
"chatbots": [],
"facts": "",
"states": [],

}

Listing 1.2: Root level properties

– @id - is the unique identifier for the given dialog.
– @type - defines the type of the given JSON document. For a dialog definition

this value is fix and always represented by ”Dialog”.
– chatbots - every intent that is sent to the dialog engine must provide a prop-

erty called chatbotId. This property defines for which chatbots (chatbotId)
the dialog is used.

– facts - it is possible to define facts that can be used in the dialog states.
Those facts must be given in OO-Logic, e.g. text(de, ”Montag”). text(en,
”Monday”). Those facts are often used to support different languages.

Properties on the root level are extended by properties to define the dialog
states.

2.2 Dialog state

The core of each dialog is the different dialog states a dialog can take. Each user
message results in a state transition, even if the same state is entered again.
Listing 1.3 shows the list of possible properties to define those dialog states.

{
...
"states": [{
"state": "",
"recognizes": [],
"pre": "",
"message": {},
"queries": [],
"response": []

}],
...

}

Listing 1.3: Dialog state properties

– state - a unique identifier for the corresponding state. The state identifier
must be unique in the context of the given dialog definition. In different
dialogs, it is possible to have states with the same name, but for a specific
definition, it must be unique.

– recognizes - intents that should be recognized by the current state are de-
fined in this property. It takes a list as different intents can trigger the
same dialog state. The incoming intent must have an object as value for the
property parameters and this object must have a property intent name or
intent id.

– pre - OO-Logic condition that is checked before entering the state. If the
condition is fulfilled, the given state will be entered.

– message - defines how the output of the current state looks like. It will be
explained in the next subsection (Subsection 2.3).

– queries - it is possible to define queries that contain variables that are used
for the current dialog state. This is used to fill the variables in the response
part with the values of the underlying ontology. The queries are formulated
in regard to the underlying ontology. Data stored in the triple store can be
accessed that way.

– response - the message is returned to the user and the user gives a new input
that is sent to the dialog engine. In the response object, it is defined how to
handle the incoming user request as a response to the output of the current
state. A further description can be found in Subsection 2.4.

In the following two subsections, we describe the message object to format
the output that should be returned to the user and the response object to handle
user requests that follow as an answer to those outputs.

2.3 Output of the current state definition

The output of a dialog state transition can either be a simple text or a more
complex structured JSON/HTML object. The simple text can contain variables
that must correspond to the variables used in the queries property (see the
previous subsection). Those variables are then replaced with the result of the
query, and the text is returned to the user. An example would be ”My name is
$NAME$“, where the variable $NAME$ is then replaced by the value given in
the result of the query. Listing 1.4 describes the JSON object structure to use
more complex templates.

{
...

"message": {
"template": "",
"type": ""

},
...
}

Listing 1.4: Output definition properties

– template - name of a template must be given. This name corresponds to
the file name of the template that should be used. Such a template contains
variables as well that must correspond to the variables used in the query.
After executing the query, the template is filled with the results of the query.
It is also possible to receive multiple results from one query. In that case,
the template is filled multiple times and combined into an array. This is,
for instance, used to show a carousel of different information cards in the
chatbot.

– type - the dialog engine currently supports templates defined in HTML or
JSON.

2.4 Response given by the user

The dialog engine returns a response after a dialog state transition. The user
might then send a new request to the dialog engine. A response object defines
how to handle a response from the user for the current dialog state.

{
...

"response": [{
"post": "",
"recognizes": [],
"goto": ""

}],
...
}

Listing 1.5: Response definition properties

– post - OO-Logic condition that is checked after the state transition. An
example is given in the use case section (Section 4).

– recognizes - has the same meaning as the property on the state definition
level. It defines the intents that are accepted as response to the output of
the current state.

– goto - if the incoming intent matches one of the intents given in the recognizes
property and the post-condition is fulfilled, this property defines the follow
up state that should be entered.

Based on those patterns, it is possible to describe all kinds of dialog flows. As
the queries and rules refer to an ontology, these dialog flows are knowledge-based.
In the next section, we give a short introduction to the execution of dialogs in
the dialog engine.

3 Dialog engine

When starting the triple store with the dialog engine extension, the dialog def-
initions and templates are loaded. Afterward, the dialog engine is ready and

waits for incoming intents. For an incoming intent, the dialog engine checks if
there is already an active dialog for the current user. If that is the case, the
intent is used to enter the next state (state transition). In case there is no active
dialog for the user, the dialog engine checks if the given intent corresponds to
a state, and the state is a start state. If a start state matches the given intent
and the precondition of the state is fulfilled, this state is entered. For a state
transition, if there is a pre-condition, it is checked if the condition is fulfilled. If
yes, the state is entered, and otherwise, nothing happens, and the dialog is left.
After a successful state transition, the query for the given state is executed. The
result of that query is used to fill the response message/template. This message
is sent back to the user, and the user can send a new message (is then resolved
to an intent) as a response to the given output. For the new intent, it is checked
if the response part of the current state expects the given intent. If the intent
is recognized, the post-condition is checked, and the state identified by goto is
entered. The dialog is left, if the post-condition is not fulfilled. Those steps are
repeated until either the dialog is finished or the user leaves the dialog. The
dialog engine handles the state of an arbitrary number of users. DeRool is based
on SemReasoner, the successor of Ontobroker [1]. In [4], it has been shown that
Ontobroker is the top performer. SemReasoner is, in most cases, twice as fast as
Ontobroker.

4 PAYONE an in-use example from industry

DeRool is already used in chatbot related projects by larger companies. In the
following, we present an in-use example for a provider for payment solutions in
Germany, Austria, and Switzerland. First of all, we give some information on
the company and their use cases. Afterward, we show an extract from the dialog
definitions used to realize the use cases, and in the end, we present screenshots
on real user interactions with the chatbot. At the time of writing the paper,
the chatbot of this payment solution provider was realized as an MVP (minimal
viable product) in preparation for a productive use at a later stage.

4.1 General

Payone GmbH (PAYONE)5 is a company based in Frankfurt am Main that pro-
vides cashless payment solutions in Germany, Austria, and Switzerland. With
1,200 employees and about 400,000 customers, PAYONE processes roughly 2.6
billion payment transactions a year. The total payment volume is around 118
billion euros. Every transaction is processed within 100 milliseconds with a max-
imum of 12,000 transactions per second. PAYONE offers not only national and
international payment methods but also risk management, debtor, and receiv-
ables management.

PAYONE has a call center for its customers that handles all concerns of cus-
tomers. Especially the quantity of questions concerning bills, card transactions,

5 https://www.payone.com/

and payouts is very high. For instance, each position in the bills for the cus-
tomers is composed of several parts like payment terminal fees, fees for service
fees, network fees, and fees for tax. There is only a restricted number of ques-
tions the customers have on those topics. On the other hand, the manual effort
to answer those questions is relatively high, as the call center agents have to
retrieve the relevant information from the operative IT-systems. This use case
is perfect for an automatic interactive chatbot using dialogs.

There are different roles for DeRool in this case. DeRool, with its rule-based
reasoner behind, serves as a semantic integration engine. It hosts an ontology
describing bills, card transactions, and payouts with all their properties needed
for the knowledge-based answering of the customer’s questions. Attached to the
ontology are the external information sources like an SAP system. The informa-
tion inside SAP is brought to a semantic level by reinterpreting those data in
terms of the ontology [3]. Attaching external information sources and integrating
them into the ontology is done by rules as well. The second role of DeRool is
providing a knowledge base. This knowledge base consists of the ontology and
rules describing more complex relationships. Dependent on the available finan-
cial data, we developed a small ontology that describes bills, positions in bills,
and the different kinds of fees. More complex relationships are described using
rules like the amount of a payout is given by the sum of the amounts of the
single pay positions:

NettoSumme: ?A[NettoSumme: ?NS] :- ?NS := sum{?N [?A] | ?A:Auszahlung, ?A[
Position: ?P], ?P[Nettowert: ?N]}.

Finally, the third role of DeRool is handling the different dialog states and
creating knowledge based (rule and query-based) answers to the customers like
it has been described above.

4.2 Extract of the dialog definitions

In the following, we show some extracts of the dialog definitions for our use case.
There are three different main branches for the dialogs: bills, card transactions,
and payouts. We will show two dialog steps from the branch card transactions.
In the dialog, the user is first asked for an SMS code sent to his mobile phone as
part of the two-factor authentication. Then the chatbot asks for the amount and
the date of the transaction. After the user has provided this information, the
chatbot assures this information and generates the response, which explains the
different parts of that position. Finally, the user is asked whether the respective
document should be sent to the user by e-mail, and finally, the user confirms
that. In listing 1.6 the entry dialog for this branch is given. As soon as the NLU
(natural language understanding) recogizes the intent af06c63b-e726-4302-9082-
4b5cedaacbe3 the dialog engine jumps into that state and asks the user for the
amount and the date of the transaction. If that amount can be found (first post
condition) the dialog engine jumps to state 1 which is shown in listing 1.7.

{
"state": "0",

"recognizes": ["af06c63b-e726-4302-9082-4b5cedaacbe3"],
"message": "Nennen Sie bitte den Kaufbetrag und das Kaufdatum für die gew

ünschte Transaktion .",
"response": [{

"recognizes": ["edd4c4fa -00fe -481d-a11c-900f88e0de7f"],
"post":"CardPayoment[amount:?M],?A:Auszahlungsposition, ?A[Nettowert: ?M]

.",
"goto": "1"

},
{

"recognizes": ["edd4c4fa -00fe -481d-a11c-900f88e0de7f"],
"post":"CardPayoment[amount:?M],?A:Auszahlungsposition, ?A[Nettowert: ?N]

, ?M != ?N.",
"goto": "10"

}
]
}

Listing 1.6: First payment transaction dialog state

{
"state": "1",

"queries":[
"Amount: ?- CardPayment[amount:?M],

?A:Auszahlungsposition,
?A[Nettowert:?M]."

],
"message": {

"Wir haben mehrere Beträge in der Höhe von M gefunden. Bitte geben Sie
die letzten 4 Ziffern der Kartennummer ein"},

"response": [{
"recognizes": ["fb387d82-5acb -4f46-a510-91482ea3a847"],
"post": "CardPayment[Cardnumber:?C,amount:?M],

?A:Auszahlungsposition,
?A[Nettowert:?M,Kartennummer:?N],
?C = ?N",

"goto": "2"
},
{
"recognizes": ["fb387d82-5acb -4f46-a510-91482ea3a847"],
"post": "CardPayment[Cardnumber:?C, amount:?M],

?A:Auszahlungsposition,
?A[Nettowert:?M,Kartennummer:?N],
?C != ?N",

"goto": "1"
}

]
}

Listing 1.7: Second payment transaction dialog state

In listing 1.7, the second state of this dialog is given. It is the part of the dialog
where the chatbot assures the input given by the user. In the field message, the
bot says, ”Wir haben mehrere Beträge in Höhe von M gefunden. Bitte geben
Sie die letzten 4 Ziffern der Kartennummer ein”. The variable M is filled by the
OO-logic query Amount. The query refers to the property Nettowert of a class
Auszahlungsposition in the ontology. If the card number given by the user is the
same as the card number for the transaction (see the first post condition), the
dialog state changes to state 2, otherwise if it is not the same, we go back to
state 1.

4.3 Example chatbot conversation

As mentioned at the beginning of this section, the outcome of the PAYONE
project is a chatbot that can handle questions concerning bills, card transac-
tions, and payouts. The following screenshots give an impression on the card
transaction dialog. In Figure 1 the user requests information for a card trans-
action (”Kartenzahlung”). To be able to help the user, the chatbot needs more
information like the amount and the date the transaction was done (”1072,50,
01.11.18”). Based on this information DeRool searches for a transaction that
matches. If there is more than one transaction, the user needs to enter the last
digits of his card number.

Fig. 1: Card transaction dialog

After the user entered the missing information (”4511”, see Figure 2), DeRool
searches again for matching transactions. If there is a transaction matching all
given information (”1072,50, 01.11.18, 4511”), details on this transaction are
presented to the user. The chatbot provides some basic information for the user
and in addition a web link to a more detailed description.

The space for displaying information in a chatbot is restricted not to over-
whelm the user. Therefore, detailed information on transactions are available on
a separate website.

Fig. 2: Transaction details

5 Related Work

Many small companies offer chatbot solutions and platforms for intelligent digital
assistants. There are only a few big players like Amazon with Alexa6, Google
with Dialogflow7 and also IBM with Watson8. In addition to those, we will
present in this section mercury.ai9 a platform that provides a dialog management
component.

Amazon Alexa is a voice assistant developed by Amazon. The platform can
be used by developers to build a custom skill for free. This skill can then be
used on all the Amazon devices. So far, Alexa supports only simple question
answering and no guided dialogs at all.

Google uses his platform Dialogflow for the digital assistant called Google
Assistant. Google itself develops Dialogflow. Regarding dialogs, Dialogflow al-
lows storing certain context information that can be used either as input or as
output for an intent. Also, it supports follow up intents that can be triggered
based on context information. For very simple dialogs like collecting a set of
information, Dialogflow allows to define prompts. Those will be sent to the user
when information is missing. Dialogflow has a very developer-friendly user in-
terface that makes it easy to define and configure intents and simple dialogs. On
the other hand, more complex dialogs are not supported and can not be modeled
with Dialogflow. Dialogflow can not use data for knowledge-based control of the
dialog flow and neither for generating knowledge-based answers.

With IBM Watson, it is possible to define more complex dialogs based on
user input. Each dialog state has a specific entry condition that is either based
on the recognized intent, entity, or a particular context. Also, Watson provides
the possibility to define follow up states that use the context set from the pre-
vious state. Those follow up states are again triggered based on the conditions

6 https://alexa.amazon.com
7 https://dialogflow.com/
8 https://ibm.com/watson
9 https://mercury.ai

specified. As well as Dialogflow Watson provides so-called slots to prompt for
required information and stores them in the context to be used by other follow
up states. Watson’s user interface shows all the connections between different
dialog states in a tree view. This makes it very easy for dialog designers to model
dialogs. On the other hand, those dialogs can again only be defined based on
user input. There is no possibility of including external services or the underlying
data for controlling the dialog flow or for providing knowledge-based answers.

A quite young company providing a chatbot platform is mercury.ai, founded
in 2016. So far, they don’t support more than Dialogflow or Watson. Never-
theless, in their documentation, they mention that the Dialog Engine they are
building will, at some point, be able to handle data-driven dialogs. So far, to
the best of our knowledge, we didn’t find any data-driven dialog example for the
mercury.ai platform.

6 Conclusion

We presented DeRool, a dialog engine based on OO-Logic rules. The goal of
DeRool is to enable more natural conversations between users and intelligent
digital assistants (like chatbots or voice assistants). To understand the flexibility
DeRool provides, we presented the format for the definitions of dialogs and
explained how the dialog engine executes the dialogs. DeRool is used in a project
at PAYONE, a provider for payment solutions acting in the DACH (German,
Austria, and Switzerland) region. They use the dialog engine to help users with
questions on bills, card transactions, and payouts. One part of the use case
was an extract of those dialog definitions and an example conversation a user
could follow in the chatbot. DeRool is used productively at Bitmarck, a large
IT service provider for health insurance in Germany. In the future, we want to
develop a tool that supports the process of modeling dialogs with a user-friendly
interface. This tool should also verify the dialog definitions and present errors
before they occur during the execution of the dialogs. In the end, the tool is also
able to connect to NLP tools (like Dialogflow10 and many more) to easily link
the intents defined in those platforms with the dialog states they correspond to.

References

1. Angele, J.: Ontobroker. Semantic Web 5(3), 221–235 (2014)
2. Angele, J., Angele, K.: Oo-logic: a successor of f-logic. International Joint Conference

on Rules and Reasoning (2019)
3. Angele, J., Gesmann, M.: Data integration using semantic technology: a use case.

In: 2006 Second International Conference on Rules and Rule Markup Languages for
the Semantic Web (RuleML’06). pp. 58–66. IEEE (2006)

4. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the per-
formance of rule engines. In: Proceedings of the 18th international conference on
World wide web. pp. 601–610 (2009)

10 https://dialogflow.com/

