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Abstract. The pricing of options generated by diffusion processes, where diffusion 

depends on two groups of variables, was carried out. An algorithm for calculating 

the approximate price of derivatives and the accuracy of valuations has been 

developed, which allows to perform the analysis and to make precautionary to 

minimize the risk of derivatives pricing arising on the stock market. The method of 

finding the indicative price for a wide class of derivatives has been expanded. Using 

the spectral theory of self-adjoint operators in Hilbert space and the wave theory of 

singular and regular perturbations, an analytical formula of the approximate asset 

price was set, which was described by models with stochastic volatility dependent 

on l-fast variable and n-slow variable factors,                      and on 

local variable. 
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I Introduction 

At the moment, financiers have been drawn to the problem of the relationship between 

the price of an asset and its volatility. The asset price was found to be volatile. This has 

led to a number of works to refine this model. Empirical studies have shown that volatility 

is a time-dependent random variable [5]. Analytical models having stochastic volatility 

are proposed in [6]. In particular, they provide an opportunity to examine the price of 

assets that change continuously over time [7-10]. 

A spectral image of the density of one-dimensional diffusion was obtained in [12]. 

Spectral theory is an important tool for the analysis of financial models of diffusion in the 

study of the decomposition of the eigenfunctions of linear operators. Spectral theory has 
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been used by many scientists, namely to forecast options prices [9], to find interest rate on 

securities [14], to simulate volatility of financial assets [13]. Both spectral theory and 

stochastic volatility models have become an indispensable tool in financial mathematics, 

due to the fact that derivative prices are subject to Brownian motion and correlate with 

volatility [1]. Study of stochastic volatility, in particular the volatility of an asset 

controlled by non-local diffusion [2]. 

Short-term interest rate dynamics models were considered in Vasicek's work [11] for 

derivatives pricing. Significant contribution to the theory of interest rates was made in [8-

10], namely: finding the credit spread of credit market instruments, determining the price 

of interest rate options, determining the risk and return on derivatives of the stock market. 

The models developed by these scientists have their advantages and disadvantages, but 

each is used to increase the liquidity of the financial markets. The use of more complex 

models, despite their theoretical validity, causes complex multi-parameter functions of the 

profitability curve to be obtained, and this causes significant errors in the calculations. 

Using spectral analysis, Linetsky [5] applied the spectral theory of self-adjoint 

operators to different models, and in particular to the Vasicek model. Lorig [11] 

considered short-term interest rates described by Vasicek's model with stochastic 

volatility dependent on two factors, one of which is fast and the other is slowly changing. 

The spectral theory and the theory of singular and regular perturbations is applied to self-

adjoint operators in Hilbert spaces, which describe processes with multidimensional 

stochastic volatility having l-fast variable, n-slow variable factors,                    

 . In particular, this theory applies to the short-term interest rates described by Vasicek's 

model. The approximate price of the bonds and their profitabilty are calculated. Applying 

the Sturm-Liouville theory, Fredholm alternatives, and analyzing singular and regular 

perturbations at different time scales, we obtained explicit formulas for the approximation 

of bond prices and profitability. 

The goal of the article is to develop an algorithm for finding the approximate price of 

derivatives and to find explicit formulas for finding their value based on the development 

of eigen functions and eigenvalues of self-adjoint operators using boundary tasks for 

singular and regular perturbations. To set the theorem of estimating the accuracy of option 

prices approximation. 

The main advantage over other developed methods is that finding the price of 

derivatives is reduced to solving the problem of finding the eigenvalues and 

eigenfunctions of a particular equation that fits this model. 

II Methodology and Data 

Let   represent short interest rates. One of the most widely known models of short 

interest rates is the Vasicek model, in which   is modeled as an Ornstein-Uhlenbeck 

process with multidimensional stochastic volatility. 
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The Ornstein – Uhlenbeck process is described by a second-order differential equation 

ща parabolic type 
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Let’s calculate the density of distribution of this process. To do this, consider the 

Cauchy problem for (1). With the initial condition 
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The initial condition has the form 
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The Cauchy problem (3), (4) for a linear non-uniform differential equation in partial 

first-order derivatives is solved by the method of characteristics 
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(5) and (6) are equations of characteristics. 
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     – closed contour,   
  

 – analytical function, so, by Cauchy's 

integral theorem, the integral is zero. 
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Fig. 1. Contour of integration 

 

Let’s take contour (      ( )) as ( ), where 
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Similarly, ∫   
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so fundamental solution or the Green's function has the form 
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On the other hand, on the probabilistic side, the Green's function is the density of 

distribution. 

Using the methods of spectral theory and the theory of singular and regular 

perturbations, we can find the approximate price of Ornstein-Uhlenbeck two-barrier 

options with multivariate volatility, as a self-function decomposition using infinitesimal 

generators of (l + n + 1)-dimensioned diffusions,                        that is, 

diffusion depends on one local variable, the l-dimensional fast-variable factor and the n-

dimensional slow-variable factor. This work is an extension of [6, 11, 13], in [11] l = 1 

and n = 1. 

Process   can represent many economic phenomena and processes. For example, 

inventory value, index price, reliable short interest, etc. More broadly,   is an external 

factor that characterizes the cost of any of the above processes. By physical measure   of 

process  , we understand process  , which has an instant drift   (  ) and stochastic 

volatility  (  ) (                   )   , which contains both components: local 

 (  )and non-local  (                   ). It should be noted, that infinitesimal 

generators for    and    have a form       
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an internal timeline       and 
 

  
    Let’s consider        and       , to make the 

inner time scale    small and the inner time scale    – large. Therefore,              are 

fast variables, and            are slowly variable factors. Note that    
  

 and     
   have 

the form of the Ornstein-Uhlenbeck process [20] 
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III Results and analysis 
 

Let   be the securities without paying dividends on an asset (for example, stock, 

index, etc.). Often,   is modelled as a geometric Brownian motion with constant volatility 

(e.g. Black-Scholes formula) [7]. Consider   as a model of geometric Brownian motion 

with multidimensional stochastic volatility. In particular,   ̃ dynamics in   are given by: 
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For a double barrier option with   and   barrier values, the payout is: 



102 

 (  ) {   }  (    )  {   },   (   ),        , 

To calculate the value of this parameter, at first, it is needed to find the eigenvalues of 
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Calculation    can be found in [1-2] 
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The approximate price of the options can always be calculated and plotted, 

individually in each respective timeline, in the same way as for two components [3]. 

Let’s calculate the approximate price of a zero coupon bond. 

Let’s write the operator 〈  〉  and its associated densities at speed  ( ) 
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For a zero coupon bond, the full payout is: 
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Operators                 ̃     are written on the basis of recurrence ratios: 
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Calculation of    can be found in [1-3] 
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For zero coupon bonds, the profitability curve is considered more often rather than the 

price of the bond itself. Return       in zero-coupon bonds, for which one dollar is paid at 

time   is determined by the ratio: 
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Let’s get an approximation for a zero coupon bond, sorting it out both bond prices  
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Note: the drawings are built by component in each corresponding timeline, similarly 

for the two components as in [2]. 

IV Conclusions 

Thus, the studies conducted in the work allow us to draw the following conclusions. 

An algorithm for finding the approximate price of derivatives has been developed and 

explicit formulas have been found for finding their value based on the decomposition of 

eigen functions and eigenvalues of self-adjoint operators using boundary tasks for singular 

and regular perturbations. The theorem of estimating the accuracy of derivatives prices 

approximation is established, on the scales of systems of slow and fast variable factors on 

which volatility of derivative financial instruments depends. 

The general method of finding the approximate price for a wide range of derivatives 

has been obtained. It has been established that derivative payments can be path-

dependent, and the underlying process may exhibit a jump whose intensity depends on 

multidimensional volatility. The price of options depends on the stochastic 

multidimensional volatility, which is described by a path-dependent process. Finding the 

price of derivatives comes down to the task of finding the eigenvalues and eigenfunctions 

of a particular equation that fits this model. 

The approximate price of bonds and their profitability are determined by the methods 

of spectral theory and wave perturbation theory. The spectral theory and the theory of 

singular and regular perturbations have been applied to short-term interest rates described 

by the Vasicek model. The approximate price of the bonds and their profitability are 

calculated. 
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The main advantage of the reviewed pricing methodology is that, by combining 

methods with spectral theory, regular perturbation theory and singular perturbation theory, 

it reduces to solving equations on finding eigenfunctions and eigenvalues. 
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