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ABSTRACT 
In this work we give a delay differential equation, the retarded 
logistic equation, as a mathematical model for the global 
transmission of COVID-19. This model accounts for asymptomatic 
carriers, pre-symptomatic or latent transmission as well as contact 
tracing and quarantine of suspected cases. We find that the 
equation admits varied classes of solutions including self-burnout, 
progression to herd immunity and multiple states in between. We 
use the term “partial herd immunity” to refer to these states, 
where the disease ends at an infection fraction which is not 
negligible but is significantly lower than the conventional herd 
immunity threshold. We believe that the spread of COVID-19 in 
every localized area can be explained by one of our solution 
classes.  
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1 Introduction 
Three kinds of models to study COVID-19 are currently in 

vogue – lumped parameter or compartmental models (ordinary 
differential equation), agent-based models and stochastic 
differential equation models. The first option affords maximum 
conceptual clarity at the expense of some simplifying assumptions 

(homogeneous mixing etc). The second option affords maximum 
potential versatility at the cost of huge computational complexity 
and variability in the network structure. The third option 
combines features of the previous two – whether the features 
being synergized are the positive or the negative ones depends to 
a large extent on the modeler. 

In this work we use delay differential equations (DDE) to 
propose a simple, single-variable, lumped parameter model for the 
spread of Coronavirus. Jahedi and Yorke [1] make a strong case 
for simpler models relative to complex and elaborate ones. In the 
Literature, DDE has been used for modeling COVID-19, for 
example in Refs. [2]–[4]. These authors however ignore features 
such as contact tracing, asymptomatic carriers and latent 
transmission; our results too have a richer structure. 

 

2 Derivation of the model 
We measure time t in days and use as our basic variable y(t) 

which is the cumulative number of corona cases, including active 
cases, recovered cases and deaths, in the region of interest. The 
following “word-equation” summarizes the approach : 

Rate of emergence Interaction rate of

of new cases each existing case

Probability of Number of 

transmission existing cases

= 



   
   
   

   
   
   

   (0) 

The left hand side (LHS) here is just dy/dt whereas the right 
hand side (RHS) needs a detailed derivation. 

Equation (0) assumes that the disease is transmitted from 
infected to susceptible people via interaction, and not via airborne 
transmission. Due to asymptomatic and pre-symptomatic carriers, 
there are always cases moving about in society who are oblivious 
to their infectivity. Each such case interacts with other people at 
a different rate. For example, a working-from-home professor 
might venture outside once every three days and interact with one 
person on each trip while a grocer might go to work and interact 
with 10 customers every day. The professor has an interaction rate 
of 1/3 persons/day while the grocer has interaction rate of 10 
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persons/day. For a compartmental model, one must average over 
the professor, the grocer and all the other un-quarantined cases to 
generate an effective per-case interaction rate q0.  

Every interaction of course does not result in a transmission – 
there is a probability strictly less than unity that the virus jumps 
from the infected person to the person whom s/he is interacting 
with. This probability has two components. The first component 
is that the healthy person must be susceptible to begin with. While 
we ignore intrinsic insusceptibles, there will be people who have 
recovered from the disease and are therefore not susceptible 
again. In this Article, we assume that one bout of infection brings 
permanent immunity. The assumption is valid so long as the 
immunity period exceeds the total epidemic duration. Till date, 
there is little credible evidence for re-infection [5]–[7]; contrarily, 
a very recent and thorough study [8] based on monitoring of huge 
patient cohort has found significant evidence of long-lasting and 
effective antibodies. If N be the initial number of susceptible 
people (recall that y is the case count), then the probability that a 
random person is a recovered case is approximately y/N and the 
probability that s/he is susceptible is (approximately) 1−y/N. This 
expression is approximate because the true number of recovered 
cases at any time is less than y; the error however is small since 
the recovery period is much shorter than the overall course of the 
epidemic. Note that 1−y/N is a logistic term, and a herd immunity 
effect. 

Given susceptibility, the next probability is that the virus 
actually does jump from the un-quarantined case to the 
susceptible person. This probability depends on the level of 
precaution such as face covering or mask, handwashing and 
disinfection being adopted by the case as well as the susceptible 
person. For a compartmental model, the probability must be 
averaged over all the un-quarantined cases. If this average 
probability is P0, then q0(1−y/N)P0 gives the per-case spreading 
rate. Since q0 and P0 are both dependent on public health 
measures, and are both difficult to measure independently, we can 
club those two together into a single parameter which we call m0. 

So far we have accounted for the rate at which each cases 
spreads the disease; now we have to count the number of cases 
out of quarantine. Let us start with an asymptomatic carrier, who 
remains in open society throughout. S/he typically transmits the 
disease for 7 days, which is called the infection period. Then, new 
healthy people can be only be infected by those asymptomatic 
cases who have fallen sick within the last 7 days, and not those 
who have fallen sick earlier. The number of such people is the 
number of asymptomatic sick people today minus the number of 
those 7 days earlier. Mathematically, let μ1 (between 0 and 1) 
denote the fraction of asymptomatic carriers and τ1 the 
asymptomatic infection period. Then, the number of 
asymptomatic transmitters today is μ1(y(t)−y(t−τ1)). Here we can 
see the emergence of the delay term. 

The remaining fraction 1−μ1 of cases are symptomatic. Let τ2 
be the latency period during which these cases remain 
transmissible prior to displaying symptoms. It is assumed that 
they isolate themselves thereafter. Assumption is also made that 
the incubation period is equal to the latency period. Finally, the 

contact tracing drive conducted by public health department is 
taken into account. Assumption is made that this drive is 
instantaneous and proceeds in forward direction starting from 
freshly arriving symptomatic cases. The contact trace captures 
patients who were exposed to the new case τ2 days ago, as well as 
patients who were exposed immediately before the new case 
manifested symptoms. The average duration for which these 
secondary patients have remained at large is τ2/2, be they 
symptomatic or asymptomatic. The assumption of instantaneous 
contact tracing, which decreases the average time that contact-
traced cases spend out of quarantine, opposes the error arising 
from the assumption of zero non-transmissible incubation period, 
which increases the average time for which the contact-traced 
cases transmit before quarantine. These two effects are assumed 
here to cancel. Let μ3 (between 0 and 1) denote the fraction of all 
cases who escape from contact tracing drives – the 
complementary fraction 1−μ3 get caught. Thus, we have three 
classes of un-quarantined cases : (a) 1−μ3 are contact-traced cases 
who remain in society for a time τ2/2, (b) μ3 (1−μ1) are untraced 
symptomatic cases who go into isolation only after time τ2, and (c) 
μ3μ1 are undetected asymptomatic cases who transmit for the 
entire infection period τ1. Arguments similar to those of the 
previous paragraph yield the total number of un-quarantined 
cases as 
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The preceding arguments now yield the mathematical form of 
(0) as 
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(2) 
which is the retarded logistic equation. 
 

3 Solutions of the model 
Due to complexity of the equation (2), analytical solution using 

perturbation theory etc has not been attempted in this case. 
Instead we have used numerical integration to obtain the 
solutions of (2). Before giving the solutions however, we present 
the calculation of the reproduction number R. To find R at any 
state of evolution of the disease, we first treat y in the logistic term 
to be constant, and then carry out the steps described in Ref. [9]. 
This yields the expression 

( )( )3 1 3

0 2 1 3 1

1 2
1

2

y
R m

N

μ μ μ
τ μ μ τ

+ −
= − +    . (3) 

The ease of calculating R with respect to the ordinary 
differential equation based models [10] is noteworthy. 

Solution classes of logistic DDE (2) are now demonstrated. The 
numerical integration routine used is second order Runge Kutta 
with a time step of 1/1000 day. As the testbed for the simulations, 
we consider a Notional City having N=300000, μ1=0.8, (maximum 
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value as per our knowledge [11]–[13]), τ1=7 days and τ2=3 days 
[14]. The initial condition needs to be a function having the length 
of the maximum delay involved in the problem, which is seven 
days; we take this function to be zero cases to start with and 
constant increase of 100 cases/ day for a week.  

Notional City A has m0=0.23 and μ3=1/2, which describes a 
hard lockdown [15] accompanied by good contact tracing. R0 (i.e. 
(3) evaluated at y=0) is 0.886. The epidemic ends with a negligible 
fraction of infected people, as shown below. This and the next five 
plots are three-way – each plot shows y as blue line, its derivative 
y  as green line and the weekly increments in cases, or 

epidemiological curve, as a grey bar chart. These last have been 
reduced by a factor of 7 to ensure clarity of presentation. We 
report the rates on the left hand side y-axis and the cumulative 
cases on the right hand side y-axis. 

 
Figure 1 : City A extinguishes the epidemic in time. 
 
This is exactly what has happened in New Zealand – that il 

fortunatissimo per verita has indeed quashed the epidemic 
completely with the final case count being a negligible fraction of 
its total (tiny and sparsely distributed) population.  

The parameter values for Notional City B are the same as those 
for A except that μ3=0.75; a greater fraction of cases escape the 
contact tracing drive. R0 is 1.16, and R becomes 1 at y=40500 cases. 

  
Figure 2 : City B grows at first before reaching burnout. 

The symbol ‘k’ denotes thousand. 
 
The outbreak enters exponential regime right after being 

released. As y increases, R gradually reduces so the growth slows 
down until it peaks when the case count is about 39,000 [compare 
with the value of 40,500 when R=1 as per (3)]. Thereafter, the 
disease progresses to extinction in time. The overall progression 
is very long but one hopes that the relatively small size of the peak 
can prevent overstressing of medical care facilities and thus avoid 
unnecessary deaths. Delhi and Mumbai in India and Los Angeles 
in USA are in all probability cities of this type since the disease 

there spiraled out of control despite hard lockdowns being 
imposed at an early stage. 

City B also enables us to explain partial herd immunity. Even 
though the initial conditions were unfavourable for containment 
of the epidemic, herd immunity started activating as the disease 
proliferated. A stable zone (R<1) was entered when only 13.5 
percent of the total susceptible population was infected, and a 
similar percentage again got infected before the epidemic ended. 
Thus, herd immunity worked in synergy with non-
pharmaceutical interventions to stop the epidemic at only 26 
percent infection level, which is significantly less than the 
conventional 70-90 percent threshold [16]. This is what we call 
partial herd immunity. Our findings are in agreement with and act 
as an explanation for what has been obtained by Britton et. al. [17] 
and Peterson et. al. [18]. 

We now consider Notional City C which differs from City B in 
that m0=0.5; lockdown is replaced by a much more permissive 
state. R0 is above 2.5; 1,80,000 infections are required to bring it 
below unity. 

 
Figure 3 : City C goes to herd immunity – total not 

partial. The symbol ‘k’ denotes thousand and ‘L’ hundred 
thousand. 

 
Need one mention that this is a public health disaster. Notional 

City D combines features of B and C. This city begins with m0=0.5 
like City C but reduces to m0=0.23 like City B when the case count 
reaches 40,000 (the R=1 threshold for B’s parameters). 

 
Figure 4 : As the input, so the output – D’s response 

combines features of B and C. The symbol ‘k’ denotes 
thousand and ‘L’ hundred thousand. 

 
We can see a case count as well as a total duration intermediate 

to B and C; the epidemic is over in 70 days but the peak rate of 
12,920 cases/day is still very high and likely to load hospital 
facilities beyond their carrying capacity. 

The Cities E and F demonstrate the issues faced in reopening. 
In both these cities, the parameters and case trajectory are 
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identical to those of City A for the first 80 days. Then, E and F 
reopen on the 80th day by increasing m0 from 0.23 to 0.5, and 
simultaneously decreasing μ3 i.e. deploying a more effective 
contact tracing program which had been built up during the 
lockdown. The post-reopening μ3’s for E and F are 0.1 and 0.2 
respectively.  

 
Figure 5 : City E, like City A, is a success story. 
 

 
Figure 6 : Unlike City E, F is a failure story. The symbol 

‘k’ denotes thousand and ‘L’ hundred thousand. 
 
The difference between Cities E and F is dramatic. 

Mathematically, R remained less than unity throughout in E; its 
value after reopening was 0.985. We can see that the case rate 
decreases monotonically all the time. In F, the post-reopening R 
became 1.22 and sent the trajectory haywire. In practice however, 
the incipient increase in case rate after the 80th day acts as an 
advance warning of what has happened – the reopening steps 
should be reversed if it is at all possible to do so while satisfying 
economic and other external constraints. 

 

Conclusion 
In this Article we have presented a new mathematical model 

for COVID-19 which is simple and elegant in structure but can 
generate a variety of realistic solution classes. We hope that our 
work may be of use to mathematicians and data scientists who are 
trying to understand the spread of the disease in a quantitative 
manner. The public health implications of these results are being 
reserved for another study. 
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