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Abstract—An algorithm for reconstructing the height is
proposed, which allows, based on the statistical relationship of
the interferometric pair of radar images arising from the
influence of the Earth’s atmosphere, to clarify the height of the
terrain. The results of numerical simulation are presented with
the initial data corresponding to the parameters of the on-
board equipment of the P-band bistatic radar system installed
on the Aist-2D small spacecraft. The results obtained confirm
the advisability of considering the statistical data on the state
of the ionosphere in the algorithm of radar interferometry.
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I. INTRODUCTION

Currently, spacecraft equipped with synthetic aperture
radar (SAR) allow you to receive radar (amplitude) images
with high spatial resolution. However, SARs also make it
possible to obtain phase information from reflecting objects
and use it to reconstruct the third dimension, i.e. topographic
elevation. The most developed frequency ranges are X-, C-,
S- and L-bands. The launch of the next spacecraft with the P-
band SAR of the Biomass of the European Space Agency is
scheduled for 2021. The main difference between the P-
range and the others used is high penetration and reflection
stability. There are two main schemes for shooting images
using SAR: monostatic when the transmitter and receiver are
combined in space, and bistatic when the transmitter and
receiver are separated in space. The placement of P-band
monostatic SARs is complicated by well-known technical
problems [1-4]: the destructive effect of the ionosphere,
restrictions on the radio communication regulations, the need
to use large antennas with a wide aperture, and a significant
pulse power of the transmitter. So, for example, the basic
design parameters of a BIOMASS spacecraft with a P-band
monostatic SAR, suggest that the spatial resolution is not
better than 50 m when using a 12-meter diameter antenna
[5]. In [6-9], it was shown that multistatic (in particular
bistatic, when the transmitter is placed on board the
spacecraft and the receiving part on the Earth) radar
observations open up the possibility of creating space-based
radar sounding equipment in the P-bands of high-resolution.
The need for a land-based stationary or mobile receiving
station at a relatively short distance from the observed object
limits the scope of application of such remote sensing
systems. Nevertheless, it is possible to indicate some areas of
application in which the proposed technologies have
advantages: control of landscape changes; control of the ice
situation around offshore oil and gas production platforms;
precision farming; tactical intelligence; monitoring of forest
resources, etc. The first in the history of remote sensing
spaceborne radar system operating in the P-frequency range
is a bistatic SAR installed on a small spacecraft Aist-2D.
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Using the technology of multi-pass interferometric imaging,
it is possible to restore the height of the terrain in the vicinity
of the ground receiving point, and further control its change.
The necessary interferometric base can be formed due to the
special ballistic construction of the orbit of the spacecraft.

Il. ALTITUDE RECOVERY ALGORITHM BASED ON
ATMOSPHERIC STATISTICS
Consider the main stages of processing and obtaining a
digital elevation model for the interferometric survey mode
in a synthetic aperture radar (SAR):

1. The exact combination of two images (interferometric
pair) obtained under the same conditions, but with a "small"
diversity in space.

2. Finding the interferometric phase difference of the two
images.

3. Filtering the resulting interferogram to reduce the
influence of speckle noise.

4. Elimination of linear phase incursion in range.

5. The elimination of the ambiguity of the interferometric
phase difference, which is due to the influence of the terrain.

6. Recalculation of the interferometric phase in the height
of the terrain.

7. The procedure for geocoding.
Two images can be represented as:

I = ()1, +n, and I, = f (h)I, +n, (1)

where f,(h) = exp (- jo,7.,(0, %, y,,0)h) and
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fz(h) = exp (- jw,7,,(0,x,,y,,0)0h) functions describing the

0" 22
dependence of the height of the target, </, (0,x,,y,,0) and
z,,(0,x,,y,,0) - regular component signal delay, n -

height, I, = exp(-jo,s,(t)) and
by = 3 exp(-j,0,(t)) , 5,t,) and 5,(t,) - a random

component of the signal delay that occurs in the process of
signal propagation in the Earth’s atmosphere, n, and n, -
independent additive complex noises in SAR channels.

An estimate of the maximum likelihood of the desired
height under the conditions of known statistics of
fluctuations in the time of arrival of a signal in the Earth's
atmosphere can be written:
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where G is the region of integration on the complex plane,
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Re[1,] and im[1,] - the real and imaginary part 01J the
image 1,, Re[l1,] and im[1,] - the real and imaginary part

of the image |'2 , o’ and o, -the noise variance of the first
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and second image.
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where Det - is the determinant of the correlation matrix
p(Re(l,).Im(1,),Re(l,),Im(1,)) , D, - is the

algebraic complement of the element R, in the determinant

ij

Det .

After simplification, we write the multidimensional
probability density for the quantities x,,, Y,,. X5+ ¥4 -
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Where o .. v .10 1 Treso '+ Tma - are the standard

deviations of the real and imaginary parts of the first and
second images, respectively, and algebraic additions.

We find the height estimate by integrating analytically.
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3. We write p(x,,y,.%,.y, | h) down considering the above
transformations.
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We calculate the resulting integral.

As you can see, it is a multidimensional probability
density of a combination of random variables, then
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Finally, we obtain an algorithm for estimating the height
of the terrain, considering the random nature of signal
propagation in the Earth’s atmosphere in a form that does not
contain multiple integrals:

h = max P(X,, ¥, %, ¥, h)
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The main question that arises in this case is the
advisability of considering the atmosphere in the algorithm
for determining altitude. Will there be a gain in the correct
accounting of the statistical model of the atmosphere. To
answer this question, mathematical modeling was carried
out.
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I1l. MATHEMATICAL MODELING RESULTS IV. CONCLUSION
Figure 1 show the results of calculations for different From the data obtained it follows that the greater the
values of the true correlation coefficient with the following correlation coefficients between the real and imaginary parts
initial data: of two images (interferometric pair), the greater the value of

the gain from the application of the proposed algorithm,

- signal to noise ratio 23 dB considering statistical data on the state of the ionosphere.

- interferometric base 10 km.
- the angle of inclination of the base is zero degrees. REFERENCES
- angle of sight 45 degrees.
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Fig. 1. The true value of the correlation coefficient is 0.7 (a), 0.8 (b) and
0.9 (c), respectively.
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