=Paper= {{Paper |id=Vol-2665/paper29 |storemode=property |title=Restoring the height of the terrain taking into account the statistical relationship of the interferometric pair of radar images |pdfUrl=https://ceur-ws.org/Vol-2665/paper29.pdf |volume=Vol-2665 |authors=Oleg Goryachkin,Ivan Maslov }} ==Restoring the height of the terrain taking into account the statistical relationship of the interferometric pair of radar images == https://ceur-ws.org/Vol-2665/paper29.pdf
          Restoring the height of the terrain taking into
            account the statistical relationship of the
              interferometric pair of radar images
                        Oleg Goryachkin                                                                      Ivan Maslov
   Image Processing Systems Institute of RAS - Branch of the FSRC                     Image Processing Systems Institute of RAS - Branch of the FSRC
              "Crystallography and Photonics" RAS                                                "Crystallography and Photonics" RAS
                         Samara, Russia                                                                     Samara, Russia
                  oleg.goryachkin@gmail.com                                                                macloff@mail.ru

    Abstract—An algorithm for reconstructing the height is                   Using the technology of multi-pass interferometric imaging,
proposed, which allows, based on the statistical relationship of             it is possible to restore the height of the terrain in the vicinity
the interferometric pair of radar images arising from the                    of the ground receiving point, and further control its change.
influence of the Earth’s atmosphere, to clarify the height of the            The necessary interferometric base can be formed due to the
terrain. The results of numerical simulation are presented with              special ballistic construction of the orbit of the spacecraft.
the initial data corresponding to the parameters of the on-
board equipment of the P-band bistatic radar system installed                          II. ALTITUDE RECOVERY ALGORITHM BASED ON
on the Aist-2D small spacecraft. The results obtained confirm                                            ATMOSPHERIC STATISTICS
the advisability of considering the statistical data on the state
of the ionosphere in the algorithm of radar interferometry.                      Consider the main stages of processing and obtaining a
                                                                             digital elevation model for the interferometric survey mode
   Keywords—height measurement error, ionosphere, P-band,                    in a synthetic aperture radar (SAR):
radar imaging, radar interferometry, synthetic aperture radar.
                                                                                 1. The exact combination of two images (interferometric
                        I. INTRODUCTION                                      pair) obtained under the same conditions, but with a "small"
                                                                             diversity in space.
    Currently, spacecraft equipped with synthetic aperture
radar (SAR) allow you to receive radar (amplitude) images                       2. Finding the interferometric phase difference of the two
with high spatial resolution. However, SARs also make it                     images.
possible to obtain phase information from reflecting objects                     3. Filtering the resulting interferogram to reduce the
and use it to reconstruct the third dimension, i.e. topographic              influence of speckle noise.
elevation. The most developed frequency ranges are X-, C-,
S- and L-bands. The launch of the next spacecraft with the P-                       4. Elimination of linear phase incursion in range.
band SAR of the Biomass of the European Space Agency is
                                                                                5. The elimination of the ambiguity of the interferometric
scheduled for 2021. The main difference between the P-
                                                                             phase difference, which is due to the influence of the terrain.
range and the others used is high penetration and reflection
stability. There are two main schemes for shooting images                        6. Recalculation of the interferometric phase in the height
using SAR: monostatic when the transmitter and receiver are                  of the terrain.
combined in space, and bistatic when the transmitter and
receiver are separated in space. The placement of P-band                            7. The procedure for geocoding.
monostatic SARs is complicated by well-known technical                              Two images can be represented as:
problems [1-4]: the destructive effect of the ionosphere,
restrictions on the radio communication regulations, the need
                                                                                               I 1  f 1 ( h ) I 1 0  n1   and I 2  f 2 ( h ) I 2 0  n 2 ,    (1)
to use large antennas with a wide aperture, and a significant
pulse power of the transmitter. So, for example, the basic
design parameters of a BIOMASS spacecraft with a P-band                      where                   f 1 ( h )  e x p   j  0 12 ( 0 , x 0 , y 0 , 0 ) h    and
monostatic SAR, suggest that the spatial resolution is not
better than 50 m when using a 12-meter diameter antenna                          f 2 ( h )  e x p   j  0 2 2 ( 0 , x 0 , y 0 , 0 ) h  functions describing the
[5]. In [6–9], it was shown that multistatic (in particular                  dependence of the height of the target,  12 ( 0 , x 0 , y 0 , 0 ) and
bistatic, when the transmitter is placed on board the                         2 2 ( 0 , x 0 , y 0 , 0 ) - regular component signal delay, h -
spacecraft and the receiving part on the Earth) radar
observations open up the possibility of creating space-based                 height,                        I 1 0   e x p   j 0  1 ( t k )                 and
radar sounding equipment in the P-bands of high-resolution.                                                            k


The need for a land-based stationary or mobile receiving                     I 2 0   e x p   j 0  2 ( t k )  ,  1 (t k )        and  2 ( t k ) - a random
station at a relatively short distance from the observed object                          k


limits the scope of application of such remote sensing                       component of the signal delay that occurs in the process of
systems. Nevertheless, it is possible to indicate some areas of              signal propagation in the Earth’s atmosphere, n1 and n 2 -
application in which the proposed technologies have                          independent additive complex noises in SAR channels.
advantages: control of landscape changes; control of the ice
situation around offshore oil and gas production platforms;                      An estimate of the maximum likelihood of the desired
precision farming; tactical intelligence; monitoring of forest               height under the conditions of known statistics of
resources, etc. The first in the history of remote sensing                   fluctuations in the time of arrival of a signal in the Earth's
spaceborne radar system operating in the P-frequency range                   atmosphere can be written:
is a bistatic SAR installed on a small spacecraft Aist-2D.


Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)
Image Processing and Earth Remote Sensing

h  m ax p  I1 , I 2 | h                                                                                                                                                                                            1
           h                                                                                                                                          p  I10 , I 20  
                                                                                                                                                                                4   R e 1 0  Im 1 0  R e 2 0  Im 2 0
                                                                                                                                                                                     2
                                                                                                                                                                                                                                             D et
     m a x  p  I 1 , I 2 | I 1 0 , I 2 0 , h  p  I 1 0 , I 2 0  d I 1 0 d I 2 0                                                          (2)
            h                                                                                                         
                                                                                                                                                                                                x1 0  M 0 
                                                                                                                                                                                                                2
                                                                                                                                                                                                                          x 20  M 0 
                                                                                                                                                                                                                                        2
                                                                                                                                                                                
                        G
                                                                                                                                                                                      1
where G is the region of integration on the complex plane,                                                                                                                 exp           D11                   D 33
                                                                                                                                                                                                        R e10                 R e 20
                                                                                                                                                                                                         2                       2
                                                                                                                                                                                    2 D et 
                                                                                                                                                                                         
                                                 
                                                                                                                              
                                                                                                                                       2
                                                    R e  I 1   R e  f 1  h  I 1 0 
p  I1 , I 2 | I10 , I 20 , h  
                                                  1
                                                                                                                                                                                            y1 0
                                                                                                                                                                                                        2
                                                                                                                                                                                                                                            x1 0  M 0   x 2 0  M 0 
                                           e x p
                                                                                                                                                                               D 22                             D13  D 31 
                                  2   n1                         2 n1
                                        2                               2
                                                                                                                                                                                              Im 1 0                                           R e10                   R e 20
                                                                                                                                                                                                   2
                                                 

                                                                                                                                                                                                                                                     y 1 0  
                                                                                                                                                                                                       2

                                                                     Im  I   Im  f  h  I   
                                                                                                                           2
                                                                                                                                                                                             y 20                                            y 20
                                                               
                                                                                   1                     1            10                                                       D 44                         D 24  D 42                                 ,                    
                                                                                                                                                                                          Im 2 0                                           Im 2 0  Im 1 0  
                                                                                                                                                                                               2
                                                                                             2 n1
                                                                                                     2
                                                                                                                               
                                                                                                                               
                                                                                                                                                      where  R e 1 0 ,  Im 1 0 ,  R e 2 0 ,  Im 2 0 - are the standard
                                                          
                                                                                                                                   
                                                                                                                                        2

                                              1              R e  I 2   R e  f 2  h  I 2 0                                                   deviations of the real and imaginary parts of the first and
                                                   e x p 
                                           2  n 2
                                                2
                                                                           2 n 2
                                                                                 2                                                                    second images, respectively, and algebraic additions.
                                                          
                                                                                                                                                           We find the height estimate by integrating analytically.
                                                                                                                                           
                                                                                                                              
                                                                                                                                   2
                                                                           Im  I 2   Im  f 2  h  I 2 0 
                                                                                                                                           ,
                                                                                                                                                           h  m ax p  I1 , I 2 | h 
                                                                                                2 n 2
                                                                                                         2
                                                                                                                                                                     h
                                                                                                                                           
R e  I1           and Im  I 1  - the real and imaginary part of the                                                                                         m a x  p  I 1 , I 2 | I 1 0 , I 2 0 , h  p  I 1 0 , I 2 0  d I 1 0 d I 2 0
                                                                                                                                                                      h

image I 1 , R e  I 2  and Im  I 2  - the real and imaginary part                                                                                            m a x p  x1 , y 1 , x 2 , y 2 | h 
                                                                                                                                                                      h
of the image I 2 ,  n21 and  n2 2 - the noise variance of the first
                                                                                                                                                                m a x   p  x 1 , y 1 , x 2 , y 2 | x 1 0 , y 1 0 , x 2 0 , y 2 0 , h 
and second image.                                                                                                                                                     h

                                                                                                                                                                                         p  x1 0 , y 1 0 , x 2 0 , y 2 0  d x1 0 d y 1 0 d x 2 0 d y 2 0                        
      We introduce the following notation:                                                                          R e  I 1   x1              ,
                                                                                                                                                           1. Simplify p  x1 , y 1 , x 2 , y 2 | x1 0 , y 1 0 , x 2 0 , y 2 0 , h  .
Im  I 1   y 1 ; R e  I 2   x 2                           ,       Im  I 2   y 2                  ; R e  I 1 0   x1 0 ,
Im  I 1 0   y 1 0                 ;           R e  I 20   x 20                    ,             Im  I 2 0   y 2 0                        ;                                                             1  1  x 2  y 2  x 2  y 2  
                                                                                                                                                      p  I1 , I 2 | I10 , I 20 , h                         exp   
                                                                                                                                                                                                                          1     1      2     2
                                                                                                                                                                                                                                               
                                                                                                                                                                                                       4 D n
                                                                                                                                                                                                                2      2

R e  f1 ( h )   k 1 x                 ,      Im  f 1 ( h )   k 1 y                 ;          R e  f2 (h)   k2x                          ,                                                                 2          D n           

Im  f 2 ( h )   k 2 y .                                                                                                                                                             1  1           1        1         1
                                                                                                                                                                                 exp          x1 0     y10     x 20 
                                                                                                                                                                                                    2        2         2         2
                                                                                                                                                                                                                               y 20
                                                                                                                                                                                        2  D n        Dn       Dn        Dn
      Then
 p  I 1 0 , I 2 0   p  x1 0 , y 1 0 , x 2 0 , y 2 0 
                                                                                                                                                                                     2k x  2k
                                                                                                                                                                                              1x        1             1y
                                                                                                                                                                                                                           y1              2k y  2k x 
                                                                                                                                                                                                                                                    1x       1          1y   1
                                                                                                                                                                                                                                 x1 0                                            y1 0
                                                                                                                                                                                                            Dn                                               Dn
                                                                                      
                                                                                                                                   2
                                     1                                            1           x1 0
                                                                       exp            D11 2                                                                   2k          x2  2 k 2 y y2                              2k          y2  2 k 2 y x2               
                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                    y 2 0   , 
                                                                                                                                                                          2x                                                         2x
                                                                              2 D e t      R e10                                                                                                               x 20 
                                                       2 
                                                               4
     R e 1 0  Im 1 0  R e 2 0  Im 2 0                          D et
                                                                                                                                                                                  Dn                                                         Dn                           
                                                                                                                                                                                                                                                                          
                x1 0 y 1 0                        x1 0         x 20                          x1 0            y 20
 D12                                D13                                   D14                                                                           where D n   n 1   n 2 .   2                  2

           R e 1 0  Im 1 0                     R e10  R e 20                         R e 1 0  Im 2 0
                                                          2                                                                                                2. Simplify p  x 1 0 , y 1 0 , x 2 0 , y 2 0  .
                y 1 0 x1 0                        y10                           y10          x 20
 D 21                               D 22                     D 23
           R e 1 0  Im 1 0                     Im 1 0                    Im 1 0  R e 2 0
                                                      2
                                                                                                                                                                                                                                      1
                                                                                                                                                      p  x1 0 , y 1 0 , x 2 0 , y 2 0  
                                                                                                                                                                                                        R e 1 0  Im 1 0  R e 2 0  Im 2 0 4 
                                                                                                                                                                                                                                                         2
               y10           y 20                     x 20         x1 0                        x 20            y10                                                                                                                                               D et
 D 24                                D 31                                      D 32
           Im 1 0  Im 2 0                        R e 20  R e10                           R e 2 0  Im 1 0                                                  1      D11 M 0
                                                                                                                                                                                    2
                                                                                                                                                                                        D 33 M 0
                                                                                                                                                                                                 2
                                                                                                                                                                                                      D 1 3  D 3 1  2  
                    2
                                                                                                                                                       exp                                                       M 0 
                                                                                                                                                              2 D e t   R e 1 0      R e 20       R e 10 R e 20
                                                                                                                                                                             2             2
            x 20                             x 20 y 20                           y 20         x1 0
 D 33                       D 34                             D 41                                                                                                                                                        
           R e 20                    R e 2 0  Im 2 0                         Im 2 0  R e 1 0
                2

                                                                                                                                                                1      D11          D 22           D 33           D 44
                                                                                                                                                       exp                   x1 0  2       y1 0  2       x 20  2
                                                                                                                                                                                  2              2              2              2
                                                                                                                                                                         2                                                  y 20
                                                           y 20  
                                                                                                         2
         y 20     y1 0              y 20 x 20
                                                                                                                                                              2 D e t                                          
                                                                     ,                                                                   
  D 42                    D 43                     D 44 2                                                                                                             R e10         Im 1 0         R e 20         Im 2 0

         Im 2 0  Im 1 0         Im 2 0  R e 2 0        R e 2 0  
                                                                                                                                                           D13  D 31                       2 M 0 D11    D13  D 31  M 0 
where D e t - is the determinant of the correlation matrix                                                                                                                     x1 0 x 2 0                                  x1 0
                                                                                                                                                           R e 10 R e 20                                    R e10 R e 20
                                                                                                                                                                                                   2
                                                                                                                                                                                                                             
p  R e  I 1 0  , Im  I 1 0  , R e  I 2 0  , Im  I 2 0   ,
                                                                                                                                                                                                   R e10
                                                                    D ij - is the
                                                                                                                                                        2 M 0 D 33    D13  D 31  M 0           D 24  D 42                 
                                                                                                                                                                                                                                  
algebraic complement of the element R i j in the determinant                                                                                                                            x 20                     y 1 0 y 2 0   
                                                                                                                                                         R e 20         R e 10 R e 20            Im 1 0  Im 2 0
                                                                                                                                                            2
                                                                                                                                                                                                                                  
                                                                                                                                                                                                                                  
 D et .
                                                                                                                                                      3. We write p  x 1 , y 1 , x 2 , y 2 | h  down considering the above
   After simplification, we write the multidimensional                                                                                                transformations.
probability density for the quantities x 1 0 , y 1 0 , x 2 0 , y 2 0 :




VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)                                                                                                                                                                                              127
Image Processing and Earth Remote Sensing

                                                    1                                               1
    p  x1 , y 1 , x 2 , y 2 | h                                                                                                                           2k x  2k y     2 M 0 D11       D13  D 31  M 0 
                                                                                                                                                                 1x 1    1y 1
                                              1 6  D n  R e 1 0  Im 1 0  R e 2 0  Im 2 0
                                                     4        2
                                                                                                                          D et                                               2                                    
                                                                                                                                                                     Dn        R e10 D e t     R e10 R e 20 D e t 
                                                                                                                                                                                                                     
                        1  x 2  y 2  x 2  y 2   D11 M 0
                                                               2
                                                                    D 33 M 0
                                                                              2

                  exp                            2            2
                                                                                                                                                                                      2k y  2k x 
                               1     1      2     2


                         2          Dn             R e10 D e t  R e 20 D e t                                                                                                                   1x    1            1y          1




              D13  D 31 
                                                                                                                                                                                                          Dn
                                                                                                                                                                                                                                                                      
                                                   1   1          D11        2                                                            C 
                                M 0     e x p             2                                                                                     2k x  2k y 
                                               2

           R e 10 R e 20 D e t
                                                                                    x1 0
                                                                      R e10 D e t                                                                             2x 2    2y 2   2 M 0 D 33       D13  D 31  M 0 
                                                    2   D n                                                                                                         2                                     
                                                                                                                                                                    Dn        R e 20 D e t     R e10 R e 20 D e t 
                                                                                                                                                                                                                     
                                 1       D 22        2       1       D 33        2
                                    2              y1 0       2
                                 Dn   Im 1 0 D e t          Dn
                                                                                    x 20
                                                                     R e 20 D e t                                                                                                  2k       2x
                                                                                                                                                                                                         y2  2 k2 y x2 

                                                                                                                                                                                                          Dn
                   2k x  2k y     2 M 0 D11       D13  D 31  M 0 
                 
                       1x 1    1y 1
                                     2                                      x1 0                                                                 Define the matrix B :
                           Dn        R e10 D e t     R e 10 R e 20 D e t 
                                                                                                                                                                                             b1 1            0           b1 3                0
                               2k y  2k x 
                                         1x     1            1y       1                 2k            2x
                                                                                                             y2  2 k 2 y x2                                                                   0             b22              0           b24
                                                                           y10                                                   y 20                                           B                                                              ,                  
                                                Dn                                                            Dn                                                                               b31             0           b33                 0

                                         D13  D 31                                   1      D 44        2                                                                                  0             b42              0           b44
                                                                         x1 0 x 2 0      2              y 20
                                     R e10 R e 20 D e t                                D
                                                                                        n   Im 2 0
                                                                                                     D e t                                                              1              D11                        1       D 22       
                                                                                                                                              where b1 1                                                , b22                      ,
               2k x  2k y                                                                                                                                                       R e10 D e t                         
                                                                                                                                                                                     2                                      2

                   2x 2    2y 2   2 M 0 D 33       D13  D 31  M 0                                                                                                    Dn                                          D
                                                                                                                                                                                                                     n     Im 1 0
                                                                                                                                                                                                                                   D e t 
                               2                                       x 20
                       Dn        R e 20 D e t     R e 10 R e 20 D e t                                                                           1        D 33                 1        D 44       
                                                                                                                                            b33                       , b44                      ,
                                                                                                                                                            R e 20 D e t                  Im 2 0 D e t 
                                                                                                                                                             2                               2

                                D 24  D 42                                                                                                     Dn                             Dn
                                                 y 1 0 y 2 0   d x1 0 d y 1 0 d x 2 0 d y 2 0                                   
                            Im 1 0  Im 2 0 D e t                                                                                                                       D13  D 31                                                       D 24  D 42 
                                                                                                                                           b1 3  b 3 1                                         , b24  b42                                                  .
        We calculate the resulting integral.                                                                                                                         R e 10 R e 20 D e t                                              Im 1 0  Im 2 0 D e t
                                                                                                                                                    We write
   As you can see, it is a multidimensional probability
                                                                                                                                                                                      1                                                 1
density of a combination of random variables, then                                                                                                      p  I1 , I 2 | h  
                                                                                                                                                                               1 6  D n  R e 1 0  Im 1 0  R e 2 0  Im 2 0
                                                                                                                                                                                         4      2
                                                                                                                                                                                                                                                           D et
                 1                      1                       
                           ...  e x p    x  a  B  x  a   d x  1 ,
                                                    T

                                       2                       
                                                                                                                                     (9)                                              1  x 2  y 2  x 2  y 2   D11 M 0
                                                                                                                                                                                                                             2


        2  d e t B                                                                                                                                                           exp                            2
             n        1                                                                                                                                                                     1     1      2     2


                                                                                                                                                                                       2          Dn             R e10 D e t
           x1 0 
                                                                                                                                                                                                            D 33 M 0
                                                                                                                                                                                                                               2
                                                                                                                                                                                                                                                D13  D 31          
                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                   2
            y10                                                                                                                                                                                                                                                  M 0 
where x    , a                              is the vector of mean values, B is the                                                                                                                      R e 20 D e t
                                                                                                                                                                                                               2
                                                                                                                                                                                                                                            R e10 R e 20 D e t      
           x 20 
                
           y 20 
                                                                                                                                                                                                  1                 
covariance matrix.                                                                                                                                                                   e x p    x B x  C x   d x 
                                                                                                                                                                                                     
                                                                                                                                                                                                        T
                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                  2                 
        Since the matrix B is symmetric, we can write:                                                                                           Finally, we obtain an algorithm for estimating the height
                                                                                                                                              of the terrain, considering the random nature of signal
                     x  a           B  x  a   x Bx  2a Bx  a Ba                                                                   propagation in the Earth’s atmosphere in a form that does not
                                    T                                      T                        T                 T


                                                                                                                                              contain multiple integrals:
                                                                  x B x  C x  D 
                                                                            T
                                                                                                                                   
                                                                                                    1        1                                     h  m a x p  x1 , y 1 , x 2 , y 2 | h 
                               C  2a B 
                                               T
                                                                                            
                                                                                       T
where                                                                              a                     B        C                then                         h
                                                                                                    2
                                                                                                                                                                    1                                              1
                           1                                                   1                                                                          
                                             B CB             
                                                                  T
                                        1               1                                1
D  a Ba 
             T                                                                                      T
                               CB                                                  CB           C       .                                                     4  D n  R e 1 0  Im 1 0  R e 2 0  Im 2 0
                                                                                                                                                                    2     2
                                                                                                                                                                                                                                       D et        det B
                           4                                                   4
                                                                                                                                                                     1  1  x1  y 1  x 2  y 2
                                                                                                                                                                                                2
                                                                                                                                                                                                     D11 M 0
                                                                                                                                                                                                              2
                                                                                                                                                                                                              2            2               2
We                                                           will                                                                receive                       exp  D                           2
                                                                                                                                                                      2 2          Dn             R e10 D e t
                      1                                                                           1                 1     
 ...  e x p   2  x B x  C x   d x   2   d e t B e x p  2 D  .
                                T                                                       n


                                                                                                                                                                                              D 33 M 0
                                                                                                                                                                                                              2
                                                                                                                                                                                                                                D13  D 31          
                                                                                                                                                                                                                                               M 0   . 
                                                                                                                                                                                                                                                    2

                                                                                                                                                                                              R e 20 D e t                 R e 10 R e 20 D e t
                                                                                                                                                                                                2
        Define a vector C :                                                                                                                                                                                                                           
                                                                                                                                                  The main question that arises in this case is the
                                                                                                                                              advisability of considering the atmosphere in the algorithm
                                                                                                                                              for determining altitude. Will there be a gain in the correct
                                                                                                                                              accounting of the statistical model of the atmosphere. To
                                                                                                                                              answer this question, mathematical modeling was carried
                                                                                                                                              out.




VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)                                                                                                                                                                                   128
Image Processing and Earth Remote Sensing

          III. MATHEMATICAL MODELING RESULTS                                                             IV. CONCLUSION
    Figure 1 show the results of calculations for different                         From the data obtained it follows that the greater the
values of the true correlation coefficient with the following                   correlation coefficients between the real and imaginary parts
initial data:                                                                   of two images (interferometric pair), the greater the value of
                                                                                the gain from the application of the proposed algorithm,
    - signal to noise ratio 23 dB                                               considering statistical data on the state of the ionosphere.
    - interferometric base 10 km.
    - the angle of inclination of the base is zero degrees.                                                  REFERENCES
    - angle of sight 45 degrees.
                                                                                [1]   A. Ishimaru, Y. Kuga, J. Liu, Y. Kim and T. Freeman, “Ionospheric
                                                                                      effects on synthetic aperture radar at 100 MHz to 2 GHz,” Radio
                                                                                      Science (USA), vol. 34, no. 1, pp. 257-268, 1999.
                                                                                [2]   O.V. Goriachkin and D.D Klovsky, “The some problems of
                                                                                      realization spaceborne SAR’s in P,UHF,VHF bands,” Proceedings
                                                                                      IEEE International Geoscience and Remote Sensing Symposium,
                                                                                      Hamburg, Germany, vol. 2, pp. 1271-1273, 1999.
                                                                                [3]   O.V. Goriachkin, “The effect of the Earth’s atmosphere on the
                                                                                      degradation of the characteristics of images of synthetic aperture
                                                                                      space-based radars,” Computer Optics, vol. 24, pp. 177-183, 2002.
                                                                                [4]   O.V. Goriachkin, “Blind signal processing methods and their
                                                                                      applications in radio engineering and communication systems,” M.:
                                                                                      Radio and communication, 2003, 230 p.
                                                                                [5]   T. Fügen, E. Sperlich, C. Heer, S. Riegger, C. Warren, A. Carbone
                                     a)                                               and F. Hélière, “The Biomass SAR Instrument: Development Status
                                                                                      and Performance Overview,” IEEE International Geoscience and
                                                                                      Remote Sensing Symposium, pp. 8571-8574, 2018.
                                                                                [6]   O.V. Goriachkin, “Ways of the development of the radar space
                                                                                      systems of the remot sensing of the Earth,” Vestnik of Samara
                                                                                      University, vol. 2, pp. 92-104, 2010.
                                                                                [7]   O.V. Goriachkin, B.G. Zhengurov, V.B. Bakeev, A.Yu. Baraboshin,
                                                                                      A.V. Nevsky and E.G. Skorobogatov, “Synthetic P-band aperture
                                                                                      bistatic radar for Aits-2D small spacecraft,” Electrosvyaz magazine,
                                                                                      vol. 8, pp. 34-39, 2015.
                                                                                [8]   O.V. Goriachkin, A.V. Borisenkov and B.G. Zhengurov, “Imaging in
                                                                                      ground-based P band bistatic SAR,” Radioengineering, vol. 1, pp.
                                                                                      117-121, 2017.
                                                                                [9]   A.N. Kirilin, R.N. Akhmetov, E.V. Shakhmatov, S.I. Tkachenko, A.I.
                                     b)                                               Baklanov, V.V. Salmin, N.D. Semkin, I.S. Tkachenko and O.V.
                                                                                      Goriachkin, “Experimental and technological small spacecraft AIST-
                                                                                      2D,” Samara: Publishing House of SamSC RAS, 2017, 324 p.




                                     c)
Fig. 1. The true value of the correlation coefficient is 0.7 (a), 0.8 (b) and
0.9 (c), respectively.




VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)                                                               129