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Abstract—This work deals with the task of constructing 

quantization scales optimal by an arbitrary criterion. Besides, 

these scales also satisfy the selected constraint. We consider 

a formal description of this optimization problem. We propose 

an algorithm for constructing quasi-optimal quantization 

scales that approximate optimal scales with the required 

precision, subject to the constraint. We formulate 

requirements for the optimization criterion and the restriction, 

ensuring the performance of the algorithm. We investigate the 

proposed quasi-optimal scales using computational 

experiments. The experimental results confirm the advantage 

of the constructed scales over the known ones. 

Keywords—quantization scale, non-uniform scale, 

quantization error, quantizer optimization, standard error 

I. INTRODUCTION 

Quantization [1] is the process of mapping input values 
from a large set to output values in a smaller set. In other 
words, quantization is rounding to a predetermined set of 
values.  

You can use quantization to solve various problems: 
processing the phase space of the heart rhythm [2], 
normalizing the parameters of neural networks [3], 
embedding digital watermarks [4-5], processing spaces of 
semi-differentiable functions [6], and quantization of 
interpolation errors during compression [7-9], etc. 

In this paper, we generalize the quantizer [10], proposed 
as part of the solution to the compression problem, for the 
case of an arbitrary quality measure and arbitrary restriction, 
which we use when optimizing the quantization scale. 
Besides, we also formulate requirements for this quality 
measure and this restriction. The fulfillment of these 
requirements allows us to ensure the performance of the 
optimization algorithm of the quantization scale.  

II. THE MOST COMMON QUANTIZATION SCALES 

We describe the most common quantization scales. We 
divide the set of input values into quantization intervals. We 
specify the quantization level within each quantization 
interval. We call the quantization scale the set of the 
quantization levels and the quantization intervals. 

Quantization means that we replace all input values 
belonging to the quantization interval with the corresponding 
quantization levels. Therefore, the quantization scale 
ultimately determines the quantization result. Most often, we 
use a uniform scale in which the intervals are the same size, 
and the levels are at the centers of the intervals. 

However, the use of uniform scales in many situations 
leads to an unacceptably significant error, in particular with a 
small number of levels. In these cases, we use non-uniform 

scales. Lloyd-Max scales [7] are the most famous of the non-
uniform quantization scales. We build these scales based on 
minimizing the root mean square error. The constraint is 
a given (fixed) number of quantization levels.  

Despite the optimality of the error, the Lloyd-Max scales 
are not the best when solving many applied problems, since 
we often need to optimize not some error, but some other 
quality measure. Besides, the levels number of the 
quantization scale may not be known, which entails the need 
to use a different constraint when optimizing the scale, other 
than the constraint on the number of levels. 

For example, we need to minimize the compressed data 
size with a fixed error in the compression problem [7-10]. 
We have to replace both the quality measure and the 
constraint to optimize the quantization scale for compression. 

In this paper, we propose an algorithm for constructing 
a quantizer that is optimal by the required criterion. Besides, 
we take into account the required constraint when 
constructing this quantizer. We also describe the 
requirements for this criterion and the requirements for this 
constraint necessary for the operability of the proposed 
algorithm.  

III. QUANTIZER OPTIMIZATION 

A. Non-uniform scale quantizer 

We describe a quantizer with a non-uniform [1, 8] scale. 

Let the input value  ,x L R  be an integer (for simplicity). 

We consider the range  ,L R  as the union of quantization 

intervals
1
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where N is the number of boundaries
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We specify the quantization levels
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The quantization level
j

c  belonging to the interval

1
( , ]

j j
b b


 is the result of quantization of the input value x  if 

x  belongs to the interval
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where  q
x  is the quantization function. 

Requirement 1. Let
1

( , )
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C b b
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 there be a function that 

calculates the quantization level
j

c  for the corresponding 

interval
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Then, to set the quantization scale, it suffices to specify 
the vector b  of the boundaries of the quantization intervals 

(and the number N of components of this vector). Therefore,  

we use the terms “quantization scale b ” and “quantization 

scale  0 1
, ...,

N
b b


”. 

B. Statement of the problem of quantizer optimization 

We denote ( )Q b  the quality measure that we optimize 

when constructing a quantization scale. We perform this 

optimization using a constraint metric ( )E b  that should not 

exceed the limit value
m ax

E . 

We need to calculate the number of quantization 

intervals N and the boundaries b  of the intervals to build the 

scale. Thus, we write the task of the scale optimization in the 
form: 
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Requirement 2. There must be a way to calculate the 

quality measure of the scale  0 1
, ...,

N
b b


 through the quality 

measures of the subscale  0 2
, ...,

N
b b


 and the subscale

 2 1
,

N N
b b

 
. For simplicity, we further assume that we can 

simply summarize the quality measures of such scales (we 
can use this algorithm also for more sophisticated ways of 
calculating quality measures):  
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Requirement 3. Let the similar requirement also be true 
for the constraint (the ability to calculate the constraint for 
the scale through the corresponding subscales):  
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N N N N
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We can see that the formulated requirements are quite 
weak, as they are true in most practical situations. 

C. The forward procedure of the quantizer optimization 

algorithm 

Let
E

  be a small step in the value of the constraint 

metric (algorithm parameter). We split the range
m ax

[0 .. ]E  of 

the constraint metric into K  sub-ranges of the equal sizes

m axE
E K  . 

Step number 1. Construction of optimal scales of two 
quantization intervals. 

We build optimal scales at all intervals
[ , ] , [ 1, ]L r r L R  . These scales must satisfy the following 

conditions: 

a) The scale consists of two quantization intervals. 

b) Scale constraint metric ( ) , [0 , 1]
E

E k k K   b . 

We write the quantization intervals of these scales in the 
form: 
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where d is the only interval boundary that we need to 
choose for each desired scale. 

We can write the quality measure of the scale of two 
intervals through the quality measure at intervals: 

    
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We can write the constraint metric of the scale of two 
intervals similarly: 

 (1 )
( , ) ( , ) ( , )e r d E L d E d r   

Then we can put the optimal value of the boundary
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Each element
(1 )

,r k
B  contains the boundary [ , )d L r  of 

the scale of two intervals. This scale is optimal in the range
[ , ] , [ 1, ]L r r L R  . The constraint metric of this scale

( ) , [0 , 1]
E

E k k K   b .  

Besides, we put the corresponding values of the scale 

quality measure in the matrix (1 )
Q : 

(1 ) (1 ) (1 )

, ,
( , ) , [ 1, ] , [0 , 1]

r k r k
Q q r B r L R k K     

Step number j. Construction of optimal scales of  1j   

intervals. 

We build optimal scales at all intervals
[ , ] , [ 1, ]L r r L R  . These scales must satisfy the following 

conditions: 

a) The scale consists of  1j   quantization intervals. 
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b) Scale constraint metric ( ) , [0 , 1]
E

E k k K   b . 

We search through the penultimate boundary

[ 1, )d L j r    of each of these scales. 

We found all the optimal scales of j  quantization 

intervals during the previous step of the algorithm. These 

scales are optimal at intervals [ , ]L d , [ 1, )d L j r   . The 

constraint metric of these scales is equal

( ) ( , )
E

E k E d r  b . Then we can consider scales that 

satisfy the following conditions: 

a) The scale is in the interval [ , ] , [ 1, ]L r r L R  . 

b) The scale consists of  1j   quantization intervals. 

c) The scale contains the optimal subscale of j intervals. 

d) Scale constraint metric ( ) , [0 , 1]
E

E k k K   b . 

We can write the quality measure of all these scales in the 
following form: 

 
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Optimization of this function by d  allows us to calculate 

the penultimate boundary of the desired optimal scale. We 

put this boundary in the matrix ( )j
B : 

( ) ( )

,
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r k
L d r

B q r k d r L R k K
 

      

We also put the appropriate quality measure in the matrix
( )j

Q : 


( ) ( ) ( )

, ,
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j j j

r k r k
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The forward procedure of the quantizer optimization 
algorithm stops at step number 1R L  . Then the reverse 

procedure of the quantizer optimization algorithm starts. 

D. The reverse procedure of the quantizer optimization 

algorithm 

The one-dimensional array  
( )

, 1
, 0

j

R K
Q j Q j R L


     

contains the quality measure of the scales of  1j   

quantization intervals. These scales are optimal in the range 

 ,L R with the constraint metric  ( ) 1
E

E K  b . 

The minimum by j  in the array  Q j  corresponds to the 

step number at which we built the desired optimal scale. The 
number of quantization levels of this scale is two more than 
this step number: 
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We know the first
0

b L  and last
1N
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

  boundaries 

of the quantization intervals of this optimal scale. We get the 

penultimate boundary
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

 of this scale from the matrix B : 
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We calculate the boundaries of the remaining intervals of 
the optimal scale using the following recursive procedure: 
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This completes the construction of the scale. The 
constructed scale is quasi-optimal (asymptotically optimal 

for
E

  tending to zero). The constraint metric of the 

constructed scale is in the range  m ax m ax
,

E
E N E   since the 

deviation of the constraint metric of the constructed scales 
from the constraint metric of the optimal scale increases no 

more than
E

  at each step of the algorithm. 

IV. EXPERIMENTAL STUDY  

OF THE QUANTIZER OPTIMIZATION ALGORITHM 

We performed computational experiments to study the 
effectiveness of the proposed quantizer optimization 
algorithm. We investigated the problem of constructing 
quantization scales that are optimal for the compression 
problem with a controlled error [7-12]. These scales allow us 
to minimize the compressed size data with a fixed error. 

We used the quality measure equal to the entropy ( )H b  

[7] of the quantized values since this entropy approximates 
well the compressed data size. We also used the scale 

constraint metric equal to the variance 2
( )

M S E
 b  of the 

quantization error [12]. Therefore, we solved the 
optimization problem (6) in the form: 
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Here ( )f x  is the probability density of the input value x  

equal to the interpolation error of the compressible signal 
samples.  

We describe the probability ( , )P l r  of falling x  into the 

interval  ,l r  and the function ( , )C l r  of calculating the 

quantization level from the quantization interval ( , )l r  as 

follows: 

1

( , ) ( )

r

x l

P l r f x

 

  
1 1

( , ) ( ) ( )

r r

x l x l

C l r x f x f x
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Here, the quantization level ( , )C l r is equal to the local 

average over the quantization interval ( , )l r . 

We used the distribution density

   ( ) ex p / 2f x x   . This type of distribution density 

is natural for the interpolation error of differential [11], 
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hierarchical [9], and many other [7, 12] compression 
methods. 

We used uniform quantization scales and non-uniform 
Lloyd-Max scales [7] as a basis for comparison. We built the 
Lloyd-Max scales based on minimizing the root mean square 

(RMS) error 2
( )


b  while limiting the number of 

quantization levels
m ax

N N : 


  

12
2

2
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0
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( ) ( ) , m in
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j
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
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




 
b

b
 

We show a graph of the dependence of the entropy of 
quantized interpolation errors on the RMS interpolation error 
in Fig. 1. You can see that the proposed algorithm allows you 
to build scales that have an advantage in the “error-entropy” 
coordinates over uniform scales and Lloyd-Max scales. 

The proposed quantizer provides a smaller compressed 
data size with the same error. Accordingly, this quantizer 
provides a smaller error with the same compressed data size. 
This advantage increases with the increase in the 
quantization error. 
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Fig. 1. The study of the algorithm for constructing optimal quantization 

scales. 

V. CONCLUSION 

We considered the problem of constructing quantization 
scales that are optimal by a given criterion and satisfy the 
chosen constraint. We considered the precise formulation of 
such an optimization problem. We proposed an algorithm for 
constructing quasi-optimal quantization scales approximating 
optimal scales with a given precision, subject to the 
constraint. 

 

 

 

We formulated requirements for the optimization 
criterion and the constraint, ensuring the operability of the 
optimization algorithm of the quantization scale. We 
performed computational experiments to construct quasi-
optimal scales. The obtained experimental results confirmed 
the advantage of the constructed quantization scales over the 
known ones. 
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