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Abstract. We present the Credal-FOIL system for structure learning
of probabilistic logic programs under the credal semantics. The credal
semantics is a generalisation of the distribution semantics based on the
answer set semantics. Our learning approach takes a set of examples that
are atoms with target lower and upper bounds probabilities and a back-
ground knowledge that can have negative loops. We define accuracy in
this setting and learn a set of normal rules without loops that maximises
this notion of accuracy. We showcase the system on two proof-of-concept
examples.
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1 Introduction

Probabilistic Logic Programming is a field that has its roots in the nineties. It
augments the field of Logic Programming to allow probabilistic inference using
logical rules. While there exist many formulations, a major approach is based on
the Distribution Semantics [22] (DS). In this context, a possible syntax consists
in dividing probabilistic logic programs (PLP) into a logic program detailing
deterministic relations and a set of independent probabilistic facts (events) to
yield a single probability distribution over the atoms of the program (through
a probability distribution over possible worlds). A well-known tool based on the
DS is ProbLog [8] where programs are stratified.

The credal semantics [3] is a generalisation of the DS for unstratified prob-
abilistic logic programs under the answer set semantics [10]. Informally, this
semantics attributes to the atoms of a program a set of probability measures
(instead of a single one) and by taking the extremums of this set, we obtain the
notion of a lower-bound and upper-bound for the probability of each atom.

Rule learning is a well studied subject in logic programming and is often
called inductive logic programming [17] (ILP). The goal is to find an hypothesis
that, together with a background knowledge, covers a set of positive examples
while not covering any of the negative examples. Its probabilistic variant is called
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probabilistic inductive logic programming [6, 21]. Another popular type of learn-
ing with PLP is parameter learning: with one set of rules, we aim to estimate the
best probabilities of the initial events to describe the data [22, 1]. Some systems
do both types of learning at the same time [5, 2].

In this paper we introduce Credal-FOIL, a framework and algorithm for
learning the structure of probabilistic logic programs under the credal semantics.
In Credal-FOIL the learned hypothesis is a non-probabilistic set of normal rules
with no negative loops and the logic program in the background knowledge is
expressed as a non stratified answer set program. Examples in our Credal-FOIL
learning task are single atoms with an associated target lower and upper bound
probability. To the best of our knowledge no attempt had been proposed yet
for structure learning under the credal semantics. Our system defines a notion
of coverage over our examples and learns incrementally a hypothesis that max-
imises a notion of accuracy. We showcase our system using two proof of concept
examples: the first example shows that in the specific case when the background
knowledge is stratified the learning task coincides with the ProbFOIL [7] learn-
ing task. In the second example we show that our algorithm allows also for
a background knowledge that is not stratified so exploiting in full the credal
semantics.

The rest of the paper is composed as follows: Section 2 presents the back-
ground necessary for reading this paper, Section 3 presents our learning task and
our methodology to solve it. We apply our system to two examples in Section 4
and talk about related works in Section 5. Finally we discuss our work and next
steps in Section 6 and conclude in Section 7.

2 Background

This section introduces notions of logic programming [14] and answer set seman-
tics [10] to then present the credal semantics [4].

2.1 The answer set semantics

In a logic program, a term is either a constant a, b, c.. or a variable X,Y, Z.., an
atom is of the form p(t1, ..., tn) where p is a predicate of arity n and t1, ..., tn are
terms (n can be 0). A literal is an atom p or a negated atom not p (negation as
failure), a normal rule is of the form A :- B1, ..., Bn where A is an atom (called
the head of the rule) and B1, ..., Bn are literals (called the body of the rule). A
rule with an empty body is called a fact. A ground literal is a literal with no
variable, a ground rule contains only ground literals. A normal logic program is
a set of normal rules. The Herbrand universe of a program is the set of all the
ground terms appearing in the program. The Herbrand Base HBP of a program
P is the set of all the ground atoms that can be formed from the predicates in P
and the ground terms in the Herbrand universe. A substitution θ is a mapping
from variables to terms. The grounding of a program P is the set of all ground
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rules rθ where r is in P and θ is a mapping from variables to ground terms in
the Herbrand universe. We call an interpretation of P any subset of HBP .

We can now introduce the answer set semantics. Given a program P and an
interpretation I, the reduct P I is the program made from the grounding of P
in the following way: remove all rules that has in the body the negation of an
atom in I and then delete all negative literals from the body of the remaining
rules. The reduct P I is a ground definite program and thus has a single minimal
model. I is an answer set of P if it is the minimal model of P I . We denote the
set of answer sets of P as AS(P ). A stratified program P is a program that can
be divided in the form P = P1∪P2∪ ...∪Pm where Pi and Pj are disjoint for all
i 6= j such that if an atom occurs positively in Pi then it appears in the head of
a rule in Pj with j ≤ i and if an atom appears negatively in Pi then it appears in
the head of a rule in Pj with j < i. It is known that a stratified program admits
one single answer set if any, and that unstratified programs can admit more than
one. As a program may have multiple answer sets, the entailment of an atom
can be of two types: brave and cautious. An atom p is cautiously entailed by P
if p is in all the answers sets of P and bravely entailed by P if p is in at least one
answer set of P. For an interpretation I and conjunctive formula F , we denote
I |= F if F is entailed (true) in I. The notion of brave and cautious entailment
is extended to conjunctive formulas.

2.2 The credal semantics

The credal semantics is a generalisation of the Distribution semantics [22]: it uses
the same interpretation for probabilistic facts given in the PLP but attributes
to it a set of probability measures. For an extensive review of probabilistic logic
programming we redirect the reader to [20] and for a more in-depth description
of the credal semantics to [15, 3, 4].

The syntax we consider in this paper for probabilistic logic programs is as
follows: a PLP is a pair < P,PF > where P is a logic program and PF is a
set of independent ground probabilistic facts. A probabilistic fact is of the form
α :: p (using the Problog notation [8]) where p is an atom (of any arity) and
α ∈ [0, 1] is the probability with which p is true. We say that a PLP is stratified
if P is a stratified logic program. Let n be the cardinality of PF . Informally,
we can choose a probabilistic fact α :: p with probability α and discard it with
probability 1 − α. A total choice C is a subset of PF in which we consider to
have “chosen” p if p ∈ C (p is chosen true) and “discarded” p if p /∈ C (p is
chosen false). There exist 2n total choices. To each total choice C we associate the
probability Prob(C) =

∏
α::p∈C α (as the probabilistic facts are independent).

Let’s define PFC = {p|α :: p ∈ C} to be the set of facts that correspond to the
total choice C and ∧C = ∧α::p∈C p the formula corresponding to the conjunction
of all the facts in C.

We denote HB∗P the Herbrand Base HBP augmented with the atoms in
the probabilistic facts. When referring to interpretations of P in the context of
a PLP < P,PF >, we mean subsets of HB∗P . Probabilities are defined over
interpretations of P using probability measures Pr: for an interpretation I ⊆
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0 . 4 : : sunsh ine ( d1 ) .
0 . 8 : : warm( d1 ) .
0 . 3 : : t i r e d ( d1 ) .
0 . 2 : : wind ( d1 ) .
var1 ( d1 ) .
run (X) :− var1 (X) , not walk (X) , sunsh ine (X) , not wind (X) .
walk (X) :− var1 (X) , not run (X) .
s i c k (X) :− var1 (X) , run (X) , t i r e d (X) .
s i c k (X) :− var1 (X) , walk (X) , not warm(X) .

Fig. 1. Probabilistic logic program with a negative loop. It can be sunny, warm or
windy and I can be tired on day 1. I can always go for a walk, and I can only go for
a run if it is sunny and not windy. Obviously, I cannot go for a run and a walk at the
same time. Note that I can decide to go for a walk even if it is sunny and not windy.
If I go for a run when I’m tired or if I go for a walk and it is not warm then I get sick

HB∗P and a probability measure Pr over 2HB
∗
P , Pr(I) denotes the probability

associated to I by Pr. We surcharge the notation and define the probability of
a conjuctive formula F as Pr(F ) =

∑
I∈2HBP ,I|=F Pr(I) for a given probability

measure Pr over 2HB
∗
P . A PLP is consistent if there is at least one answer set

for each total choice, meaning that ∀C ∈ 2PF , AS(P ∪ PFC) 6= ∅. We give the
definition from Cozman and Mauá [3]: a probability model for a consistent PLP
< P,PF > is a probability measure Pr over interpretations of P such as:

– every interpretation I ⊆ HB∗P with Pr(I) > 0 has to be an answer set for a
total choice: Pr(I) > 0⇒ ∃C ∈ 2PF such that I ∈ AS(P ∪ PFC)

– for C total choice: Pr(∧C) = Prob(C)

The credal semantics of a PLP is the set of all its probability models.
In other words, we accept all probability measures that only give non-zero prob-
ability to elements of {AS(P ∪ PFC)|C total choice} such that for each total
choice, the sum of the probability of the corresponding answer sets equals the
probability of the total choice. Now, the probability of a conjunctive formula F
can be different depending on the probability model considered. However there
exists a minimum value [3] Pr(F ) to this probability: whatever the probability
model Pr considered we have Pr(F ) ≤ Pr(F ). Similarly there exists a maximum
value Pr(F ) to this probability: whatever the probability model Pr considered
we have Pr(F ) ≥ Pr(F ). We call Pr(F ) (resp. Pr(F )) the lower bound proba-
bility of F (resp. upper bound probability of F ). Naturally, it always holds that
Pr(F ) ≤ Pr(F ).

An algorithm is given in [3] for computing the lower and upper bound prob-
ability using the answer sets of P ∪ PFC . Informally, Pr(F ) (resp. Pr(F )) is
the sum of the probabilities of the total choices Prob(C) where F is cautiously
(resp. bravely) entailed by P ∪ PFC .

We give an example of probabilistic logic program in Figure 1. It defines 4
probabilistic facts with their corresponding probabilities, which yield 24 = 16
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total choices. There will be a negative loop in P ∪PFC for all the total choices C
where sunshine is true and wind is false at the same time (that is with probability
0.4 ∗ 0.8 = 0.32), so run(d1) appears in one out of two answer sets for these
total choices. Otherwise run is always false. That makes for: Pr(run(d1)) = 0
and Pr(run(d1)) = 0.32. While the atom sick(d1) is not in a negative loop,
it depends on run(d1) or walk(d1) and so will have different lower and upper
bound probabilities: Pr(sick(d1)) = 0.15 and Pr(sick(d1)) = 0.27.

3 Structure learning under the credal semantics

The first difficulty of learning a probabilistic program under the credal semantics
is that we aim to learn a set of probability distributions instead of a single one.
We use as targets the lower and upper bound probabilities of example atoms.
Our approach builds on ProbFOIL [7] to adapt inductive logic programming
paradigms to our setting. Calling the hypothesis space SM , we define our learning
task:

Definition: Learning task. Given a set of examples E = {(ei, pi, pi)|i = 1, .., n}
where each ei are grounded atoms, p

i
(resp. pi}) is the target lower (resp. upper)

bound probability for ei and a background knowledge B =< P,PF > in the form
of a (possibly non-stratified) PLP, find an hypothesis H ∈ SM that maximises
accuracy (as defined later in Equation 3).

The hypothesis we learn here is a set of rules with no negative loops. In
practice, these examples are different groundings of the same predicate (the
target predicate) and the rules in the hypothesis all have the same head. We
extend ProbFOIL [7] to define the coverage of our probabilistic examples and
notions such as accuracy, precision and recall.

Each example can be interpreted in the following way: they provide infor-
mation about the proportion of the worlds (total choices) in which the atom ei
should be true or false, the probability of each total choice being given by the DS.
In this context, we interpret the probabilities as percentages and when talking
about proportions of the worlds, we mean taking into account the probabilities
of each world. For example when writing “in 0.5 of the worlds”, we do not mean
in exactly half of them but in a certain amount such that their probabilities sum
to 0.5. Now as in our setting one total choice can lead to multiple answer sets, we
not only have atoms being true or false but also the notion of brave and cautious
inference for each total choice. Each example provides targets for these differ-
ent inference types. Informally, (ei, pi, pi) can be interpreted as meaning that
ei should be cautiously entailed (cautiously true) in p

i
(in percentage) of the

worlds, bravely entailed (bravely true) in (pi−pi) of the worlds and not entailed
(false) in (1−pi) of the worlds. We call respectively these quantities the “True/-
Positive” (ti = p

i
), “Brave” (bi = pi − pi) and “False/Negative” (fi = 1 − pi)

parts of example (ei, pi, pi). This is illustrated in Figure 2. We can then define
the Positive, Brave and Negative parts of the dataset as:
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p
i

pi

Negative

Brave

Positive

ei0

1

Cautiously
entailed

Bravely
entailed

Not entailed

Set of total choices

Fig. 2. Example (ei, p
i
, pi) can be divided into three parts: positive, brave and nega-

tive. Respectively, each part represents in how many total choices (in percentage) the
example atom should be cautiously entailed, bravely entailed and not entailed.

T =
∑
i=1..n

ti B =
∑
i=1..n

bi N =
∑
i=1..n

fi (1)

To rate an hypothesis, we use the notions of ROC analysis (True Positive,
False Positive, True Negative, False Negative) to which we introduce two new
categories: True Brave (TB) and False Brave (FB). These are aimed at defining
the coverage over the brave part of the dataset. It is important to note that each
example participates at the same time to the Positive, Brave and Negative parts
of the dataset. Given the PLP B∪H =< P ∪H,PF > composed of background
B =< P,PF > together with an hypothesis H and an example (ei, pi, pi), let q

i
=

PrB∪H(ei) and qi = PrB∪H(ei) the predicted lower probability and predicted
upper probability for atom ei. The aforementioned quantities are defined on each
example (ei, pi, pi) as follows:

– true positive tpi = min(p
i
, q
i
)

– true negative tni = min(1− pi, 1− qi)
– true brave tbi = max(0,min(pi, qi)−max(p

i
, q
i
))

– false positive fpi = max(0, q
i
− p

i
)

– false negative fni = max(0, pi − qi)
– false brave left fbli = max(0,min(p

i
, qi)− qi)

– false brave right fbri = max(0, qi −max(q
i
, pi))

These quantities are illustrated in Figure 3. If q
i
< p

i
(ex. 1,2 and 5 of Figure

3), that means that in q
i

of the worlds, we rightfully predict that ei is cautiously
entailed so tpi = q

i
. However if q

i
> p

i
(ex. 3,4 and 6 of Figure 3), we predict

that ei is cautiously entailed in q
i

of the worlds, which is “too many”. Thus
tpi = p

i
and fpi = q

i
− p

i
, meaning that we predict that in fpi worlds ei is
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ex. 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p
i piq

i qi

tpi fbli fni tni

ex. 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p
i piq

i qi

tpi fbli tbi fni tni

ex. 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p
i piq

i qi

tpi fpi tbi fbri tni

ex. 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p
i pi q

i qi

tpi fpi fbri tni

ex. 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p
i piq

i qi

tpi fbli tbi fbri tni

ex. 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p
i piq

i qi

tpi fpi tbi fni tni

Fig. 3. Graphical representation of all the 6 possible arrangements of predicted (q
i
, qi)

and target (p
i
, pi) low and upper bound probabilities together with the associated tpi,

tbi, tni, fpi, fni, fbli, fbri quantities. The target lower p
i

and upper pi probabilities
are unchanged between the examples. Let’s call [q

i
, qi] the predicted segment and [p

i
, pi]

the target segment. Example 1 is the case when the predicted segment is “to the left”
of the target segment and does not intersect. Example 2 is the case when the predicted
segment “overflows” to the left of the target segment. Example 3 is the overflow to the
right. Example 4 is when the predicted segment is to the right of the target segment
without intersecting. Example 5 shows the case when the predicted segment contains
the target segment and example 6 the case when the predicted segment is contained in
the target segment.
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cautiously entailed when it should not be. The argument is of the same nature
for tni and fni depending on pi and qi. Now the true brave part of the example
is the intersection of the two segments [p

i
, pi] and [q

i
, qi]. There are two “ways

of obtaining” some false brave: the segment [q
i
, qi] overflows [p

i
, pi] to the left

or to the right. When it overflows to the left then q
i
< p

i
(assume qi > p

i
, ex.

2 and 5 of Figure 3), then we predict that in fbli = p
i
− q

i
of the worlds ei

is bravely entailed when it should be cautiously entailed. Symmetrically, when
[q
i
, qi] overflows to the right, qi > pi (assume q

i
< pi, ex. 3 and 5 of Figure 3), we

predict that in fbri = qi − pi of the worlds ei is bravely entailed when it should
no be entailed. Informally, false brave left can be seen as “we predict bravely
entailed when it should be cautiously entailed” and false brave right as “we
predict bravely entailed when it should not be entailed”. The same arguments
hold when the segments [p

i
, pi] and [q

i
, qi] do not intersect (ex. 1 and 4 of Figure

3). We compute these quantities over the entire dataset by summing them over
each individual example:

TP =
∑
i=1..n

tpi TB =
∑
i=1..n

tbi

TN =
∑
i=1..n

tni FP =
∑
i=1..n

fpi

FN =
∑
i=1..n

fni FBR =
∑
i=1..n

fbri

FBL =
∑
i=1..n

fbli FB = FBL+ FBR

(2)

The false brave (FB) quantity is the sum of the false brave left (FBL) and
the false brave right (FBR). These allow us to define the following loss functions:

accuracy =
TP + TN + TB

TP + TN + TB + FN + FP + FB

precision =
TP

TP + FP + FBR

recall =
TP

TP + FN + FBL

m-estimate =
TP +m ∗ P

P +N +B
TP + FP + FBR+m

m-estimatetb =
TP + TB +m ∗ P +B

P +N +B
TP + TB + FP + FBR+m

(3)

They are a modification of the usual heuristics from ROC analysis used in
inductive logic programming [9]. For example precision usually represents the
ratio of true positives over all predicted positive examples. We add FBR to the
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denominator to penalise an hypothesis that is also “too bravely optimistic”,
while not adding TB to the numerator to get the precision to prioritise keeping
q
i

under p
i
. We defined m-estimatetb to favor hypotheses with better TP and

TB at the same time. In the case of a stratified background knowledge we get
q
i

= qi and p
i

= pi which makes that TB = FBR = FBL = 0. Thus our loss
functions reduce to the usual ones and the other quantities (TB, TN, FP, FN)
are equivalent to their definition in ProbFOIL [7].

Our algorithm (Figure 4) is a version of the coverage algorithm and is similar
to that of ProbFOIL+’s [5]. The algorithm is composed of an outer loop which
iteratively adds a rule to the hypothesis. The outer loop stops once adding a new
rule does not improve the accuracy. At each iteration, it finds a most specific
rule (line 6 of Algorithm 1) that is then pruned (line 7) to get the sub-rule that
maximizes the localscore:

localscore(H, c) = m-estimatetb(H ∪ {c})−m-estimatetb(H) (4)

This pruning checks for which i the rules h ← b1, .., bi maximises this lo-
calscore. As such, multiple (or none or all) literals might be removed from the
body. The refinement process is shown in Algorithm 2: from a rule with empty
body, we iteratively refine it until either it does not increase the TP or TB part
of the dataset or does not have any FP or FBR (line 2). The first step to the
refinement loop consists of finding the set of all possible literals that can be
added at the end of the rule r (line 3). Next we reject some possible refinements
(line 4) to compensate for the fact that we do not discard covered examples as a
normal FOIL algorithm would. In our case, we cannot discard the examples as
a rule might only cover a part of that example. This implies that when learning
a second rule, we need to make sure it is not going to cover exactly the same
part of the examples as the first one. The reject function checks each possible
refinement (literal) by appending it to the body of the rule r and checking if
adding this latter to the hypothesis changes the computed probabilities. If the
probabilities stay the same, that means that this potential rule would not be
useful, thus the refinement is rejected. Finally, the refinement process selects the
best literal in the set of retained refinements (lines 7-8) and appends it to the
current rule. This process is repeated until the stopping criteria is met.

In practice, the refinement process of Algorithm 2 is included within a beam
search to allow for a better search through the hypothesis space. We keep the
rules that had the best maximum localscore until none can be refined further,
at which point we return the one with the maximum potential localscore.

4 Proof of concept

We demonstrate our system Credal-FOIL on two examples of probabilistic pro-
gram reconstruction and then give some implementation details about our ex-
periments. The first is the surfing example from De Raedt et Thon [7] while the
second is the program in Figure 1 which has a negative loop in the background
knowledge. To define the hypothesis space, we use a simple mode declaration [16]:
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Algorithm 1: Covering algorithm

1 H = ∅
2 h = target_predicate

3 Let SM be the hypothesis space

4 stop_search = False

5 While not stop_search:

6 Let (h ← b1, .., bn) be find_best_rule(SM, H, h)

7 new_rule = argmaxi localscore(H, h←b1,..,bi) % i ∈ [1,n]

8 if accuracy(H) ≥ accuracy(H ∪ {new_rule}):

9 stop_search=True

10 else:

11 H = H ∪ {new_rule}

12 return H

Algorithm 2: find best rule(SM , H, h)

1 r = h ←
2 While not (TP(H∪{r})-TP(H)+TB(H∪{r})-TB(H)) == 0 OR (FP({r}) +

FBR({r})) == 0):

3 refinements = refinement(SM, r) %Set of all possible

literals that can be added to c based on SM

4 refinements = reject(H, r, refinements) %We reject some

refinements

5 Let (h ← b1, .., bi) be r % i ≥ 0

6 Let N be the cardinality of refinements

7 l = argmaxk∈[1,N ] localscore(H, h ← b1,..,bi,refinements[k])

8 r = h ← b1,..,bi,refinements[l]

9 return r

Fig. 4. Listing of the algorithm of our system Credal-FOIL.

modeh(pred1(Var)) (mode head) and modeb(pred2(Var)) (mode body) respec-
tively define that “pred1(X)” can be in the head of a rule and that “pred2(X)”
and “not pred2(X)” can be in the body of a rule. In our examples, we only use
predicates of arity one. Of course with our learning setting, there can only be
one mode head declaration.

In the following examples, an added atom var1(X) appears in the programs.
It is automatically added by our learning system for practical reasons but does
not influence the probabilities. We explain why we do so in section 4.3.
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0 . 0 3 : : pop ( t1 ) .
0 . 6 7 : : windok ( t1 ) .
0 . 6 : : sunsh ine ( t1 ) .
var1 ( t1 ) .
s u r f i n g (X) :− var1 (X) , not pop (X) , windok (X) .
s u r f i n g (X) :− var1 (X) , not pop (X) , sunsh ine (X) .

Fig. 5. Full program of the surfing example from De Raedt et Thon [7]. The goal is to
learn the last two rules.

4.1 Surfing example

The surfing example has three probabilistic facts per example: pop(ti), windok(ti)
and sunshine(ti) which each have a probability. The full program is given in Fig-
ure 5. The mode bias allows only for surfing in the head and for pop, windok and
sunshine (and their negation by failure) in the body. We generated 50 different
examples by grounding each set of three probabilistic facts 50 times and attribut-
ing to each grounding a random probability. We then computed the probability
of surfing(ti) (where i = 1..50) using the full program to obtain a set of examples
of the form: e(surfing(t1); 0.84; 0.84) (which correspond to probabilities 0.03,
0.67 and 0.6 to pop(t1), windok(t1) and sunshine(t1) respectively). We can note
here that as the PLP is stratified, the target upper and lower probabilities are
the same. Using the value m = 5 for the m-estimatetb, the program terminated
after 3 iterations of the outer-loop with the following rules:

surfing(X) :- var1(X), not pop(X), windok(X).

surfing(X) :- var1(X), sunshine(X), not pop(X).

surfing(X) :- var1(X).

The third rule was rejected by Credal-FOIL as it lowered the overall accu-
racy. This example aims to show that our system works in the case of point
probabilities and is not only tailored for unstratifed background knowledge.

4.2 Sickness example

We now consider the program in Figure 1 and use as target predicate sick. The
mode declaration allows for tired, run, walk and warm (and their negation by
failure) in the body. We proceed in the same way as with the surfing example
to compute (using the full program) the examples of the form: e(sick(t1); 0.15;
0.27). For learning, we delete from the program the two rules with sick in the
head. The logic program part of the background knowledge thus contains the
two rules with run and walk in the head, forming a negative loop. We attempt
to reconstruct the original program using 50 examples (sick(ti) for i = 1..50).
Using the value m = 5 for the m-estimatetb, after three outer-loop iterations we
obtain the following rules:
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sick(X) :- var1(X), not warm(X), not run(X).

sick(X) :- var1(X), run(X), tired(X).

sick(X) :- var1(X).

The third rule is of course discarded by the algorithm as it lowers the accu-
racy. As not run(X) and walk(X) are logically equivalent in this PLP, Credal-
FOIL is capable here to recover the two missing rules.

4.3 Comments on the proof of concept

We give here some additional information about our experimental setting. Our
system does not use knowledge compilation to compute the probability values
but instead simply computes the answer sets for each total choice using CLINGO
[23]. This is highly inefficient so, to make it tractable, we run every example
separately. It makes that instead of having 2150 total choices, we only have
50 ∗ 23. We also paralellise the calls to CLINGO to speed up execution. The
choice of using 50 examples was made to keep the run-time relatively low. In
average, running time for the sickness task is of 8 and 14 minutes for 30 and
50 examples respectively. For the surfing example running time is of 5 and 7
minutes for 30 and 50 examples respectively. Experiments were run on a Intel
i7-7700K 4.20GHz.

In fact, the sickness learning only needed two examples to find the original
rules while surfing needed five examples at minimum. The factor that explains
this difference is probably that m-estimatetb had access to more information
(TB, FBR) in the sickness case.

CLINGO uses GRINGO to ground programs. Thus rules need to be safe,
meaning amongst other things that negative literals cannot appear alone in the
body of rules. To avoid this problem altogether, we automatically add to the
body of rules the atom var1(X) and add ground facts var1(ti) (i = 1..50) in the
program.

5 Related Works

Structure learning is not new in probabilistic logic programming and comes from
the field of inductive logic programming. We took inspiration from ProbFOIL
[7] which learns the same types of hypothesis under the DS (with a stratified
background PLP). This system has been extended to simultaneously learn the
structure and probability values in ProbFOIL+ [5]. One recent system is SLIP-
COVER [2] that allows to learn multi-head rules together with probabilities.
While ProbFOIL uses an approach similar to the one we presented, SLIPCOVER
first generates a set of best rules and then inserts them one by one in the theory
if it improves its score. SLIPCOVER is also capable of learning rules that have
in the head a non target predicate. An interesting point is that each system
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has a different learning task: we maximise our definition of accuracy, ProbFOIL
defines a regression problem and SLIPCOVER maximizes the log-likelihood of
its examples.

While (to the best of our knowledge) our work is the first attempt at structure
learning under the credal semantics, previous work has been done in learning us-
ing semantics that are based on the answer set semantics. PrASP [18] is such a
system allowing definition of rules in first-order logic and probability intervals.
The weight learning as described in Nickles and Mileo [19] aims at maximising
the likelihood of the set of examples and is defined in the case of point prob-
abilities. Another system called LPMLN [12], bringing together the answer set
semantics with markov-logic-networks, also allows for weight learning [13] with
point probabilities.

6 Discussion

We discuss in this section our work and future steps. We will first comment on
practical sides of our approach. We would like to point out that different parts of
our system are based on empirical choices. The first is the choice of m-estimatetb
in the local score: it has shown to perform better than the other candidates for
unstratified PLPs. Also, the construction of our heuristic functions aimed to fol-
low the original goals of each loss function in ROC analysis, but one might decide
to use entirely new metrics based on the new categories we defined. Finally, our
way to formulate our TB and FB quantities can be debatable. Consider the case
where, for an example ei, we have p

i
= 0.5, pi = 0.7, q

i
= 0.1 and qi = 0.3. Our

system would consider that fbli = 0.2 and fni = 0.4 but one can argue it to
be unfair as pi − pi = qi − qi, which means that we predict the example to be
bravely entailed in the right amount of worlds. We could instead compute the
quantities using the following formulas:

tbi = min(pi − pi, qi − qi)
fbli = 0

fbri = qi − qi − tbi
(5)

We can see it as favoring the intervals [p
i
, pi] and [q

i
, qi] to be of the same

lengths instead of intersecting. Empirically this formulation did not make much
of a difference in our tests.

We made the choice of maximising our notion of accuracy which is intuitive,
but a case could be made to instead formulate the learning task using a regression
loss of the form (find H such as):

H = argminH
∑

(ei,p
i
,pi)∈E

|PrB∪H(ei)− pi|+ |PrB∪H(ei)− pi| (6)

This would require the definition of a specific heuristic function as it is not
equivalent to maximising accuracy because of specific cases illustrated by exam-
ples 1 and 4 in Figure 3.
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While we fulfilled our goal of proving the feasibility of learning under the
credal semantics, expanding it in a concrete context will be complex. The main
difficulty comes from our definition of examples: we required the target lower
and upper bound probabilities. We do not have at the time a protocol to extract
them from statistical data. While artificial intelligence has used semantics based
on intervals (Dempster-Shafer Belief Functions [11] for example), they differ a
lot in term of interpretation. As such more in-depth studies are necessary to
understand how to extract from statistical data the lower and upper bounds
probability for them to correspond to the meaning given by the credal seman-
tics. Immediate future work will thus look into more applicable learning tasks
which will require to define a precise context for the interpretation of the credal
semantics. We also aim to add weight learning to our algorithm and will consider
allowing negative loops in the hypothesis.

7 Conclusion

In this paper we presented the system Credal-FOIL aimed at learning the struc-
ture of a probabilistic logic program interpreted under the credal semantics.
Credal-FOIL is capable of learning a set of normal rules with a single head
using an unstratified background knowledge. From the set of examples and an
hypothesis, we introduce heuristic functions that are inspired by ROC analy-
sis. We make a proof-of-concept using two examples of program reconstruction
using possibly non-stratified background knowledge. Future work will focus on
learning weights and negative loops as well as considering alternative learning
tasks.
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