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Abstract. In this contribution we give a general overview of our work
in progress on incorporating proportional dependencies in statistical re-
lational frameworks. We describe the problem of domain-size dependent
probabilities that proportional dependencies set out to tackle and explain
how they help to solve that problem and how they are implemented in
relational logistic regression models, Markov logic networks and general
relational Bayesian networks. We then pose the open problem of how to
transfer those concepts and results to probabilistic logic programming
settings such as Problog.

1 Introduction

In the last 20 years, Statistical Relational Artificial Intelligence (StarAI) has
developed into a promising approach for combining the reasoning skills of classic
symbolic AI with the adaptivity of modern statistical AI. It is not immediately
clear, however, how StarAI behaves when transitioning between domains of dif-
ferent sizes. This is a particularly pertinent issue for StarAI since the template-
like design of statistical relational formalisms, that are presented independently
of grounding to a concrete domain, is one of their main attractions. Further-
more, scalability has proven a key barrier to their widespread deployment in
applications.

The topic of scaling across domain sizes has therefore received some attention
from the literature, and general patterns of behaviour have become clear. On the
one hand, Jaeger and Schulte [3] have provided very limiting necessary conditions
under which domain size does not affect inference in different StarAI approaches.
On the other hand, Poole et al. [6] have characterised the scaling behaviour of
both Markov Logic Networks (MLN) and Relational Logistic Regression (RLR)
on a small class of formulas on which the inferences turn out to be asymptotically
independent of the learned or supplied parameters. This characterisation was ex-
tended and partly corrected by Mittal et al. [5] with considerable analytic and
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numerical effort. They also present a proposal to mitigate the domain-size depen-
dence in MLN by scaling the weights associated with formulas according to the
size of the domain, calling the resulting formalism Domain-size Aware Markov
Logic Networks (DA-MLN). With similar computational effort, they prove that
asymptotic probabilities in DA-MLN are dependent on the supplied parameters
for some example cases. However, a general and systematic investigation of this
dependence is still lacking

In this short note, we give a general overview of the work we have done
so far to alleviate this problem, and outline the difficulties experienced when
trying to transfer our results to the setting of probabilistic logic programming
as exemplified by the ProbLog language..

2 Proportional dependencies

2.1 General concept

A common example in statistical relational AI is that of smoking and friendship
groups, where one is more likely to be a smoker if one has friends that also smoke.
In the simplest possible representation, this could be modelled as a domain of
one’s friends with a single unary predicate “smokes” and then one proposition
“I_smoke”. The probability of “I_smoke” would then depend on the number of
friends which smoke (i. e. objects in the domain for which “smokes” is true). It
is easy to see that if there is a fixed probability of ’smokes(x)’, then with more
friends the number of smoking friends will increase proportionally. Thus, if every
smoking friend has a certan likelihood of making me smoke, I will eventually
smoke with arbitrarily high probability if I have many friends.

This asymptotic behavior (that the probability of “I_smoke” converges to 1
as the domain size increeases) is completely independent of the likelihood that
one given friend convinces me of smoking, or the percentage chance that any
given friend smokes. It might rather be appropriate, therefore, to consider the
proportion of my friends that smoke as the determining factor, rather than the
raw number. Then, the asymptotic behaviour does indeed depend both on the
likelihood of any given friend smoking and on the effect that smoking in my
friends has on me as such.

This proportional dependence is asymptotically well-behaved, at least for di-
rected models and a fragment of undirected Markov Logic Networks. An interest-
ing question is however, to what extent proportional dependencies are adequate
to practical cases of changing domain sizes. While this will generally depend on
the domain and on the interpretation of the data, proportional representation is
particularly suitable for randomly sampled subdomains, since random sampling
conserves mean proportions.

The way we model such proportional dependencies depends on the knowl-
edge representation formalism used. In [10] we have shown that for weight-
parametrised directed models (such as the RLR formalism developed by Kazemi
et al. [4] ) scaling the weight parameters with the domain size leads to such a pro-
portional influence and that indeed the asymptotic properties are both readily



computable and depend on the factors parametrising the model (such as weights
and probabilities of the parent formulas). We will briefly outline the scope and
limitations of our approaches to proportional dependencies in RLR, MLN and
Relational Bayesian Networks (RBN). For the sake of brevity, we refer to the
respective literature (e. g. [4,8,2] respectively) for a description of the formalisms
themselves.

2.2 RLR

In an RLR model, the probability of an atomic formula at a child node depends
on the truth values of the atoms of the parent nodes, grounded for all those
variables that do not (also) occur in the child. Thus the maximum number of
connections in the ground network is given by

∏
x
|Dx| where the product is taken

over all variables occurring in a parent node that do not occur in the child node.
To ensure proportion, we then have to scale the sum of the weights of a formula
by that number.

In [10] we show that when we scale the weight parameters, the asymptotic
probabilities of all literals vary with the weights in an intuitive way. Furthermore,
the asymptotic distribution can in fact be computed directly over a proportional
relational belief network, a Bayesian network that incorporates deterministic de-
pendencies wherever the law of large numbers provides certain proportions al-
most surely.

2.3 MLN

In Markov logic networks, where weight scaling with the domain size had first
been suggested by Mittal et al. [5], there is the added complexity that the number
of connections induced by a formula differs between the atoms in a formula.
Therefore, each formula has a connection vector associated with it, rather than
just a single number. When scaling, then, one has to aggregate the entries into
a single scaling factor. Mittal et al. [5] chose the maximum as a scaling factor,
and they show examples in which the asymptotic limit probability of an atom in
a formula depends on the weight of the formula. However, in all those examples,
this atom coincides with the atom of maximal connection number. In [10], we
show using examples that where the number of connections of a literal in a
formula has a lower order of magnitude than the maximum, the asymptotic
probability will tend to 0.5 regardless of the weight of the formula. Thus, weight
scaling in MLN is most appropriate when the number of connections is the same
for all literals in a formula, and we believe that in those cases the asymptotic
probabilities will always depend in a transparent way on the weights provided.
This is however still work in progress.

2.4 RBN

In the RBN formalism which differs from RLR in that it allows for different
combination rules rather than the default sigmoidal aggregator used in RLR,



proportional reasoning is implemented by the ’mean’ combination function. This
behaves similarly to the weight-scaling in RLR; however, since it applies the mean
directly on the level of the probabilities rather than on the level of weights, it
scales linearly rather than logistically with proportions.

2.5 Projectivity

In [3], Jaeger and Schulte introduce the notion of projectivity as the strongest
form of well-behavedness under increasing domain size: The induced probabil-
ity distribution on a set is independent of which superset it is embedded in.
The authors also show that a certain fragment of unscaled statistical regression
models are projective; they are those which only involve local influences. The
question naturaly arises whether the asymptotically well-behaved formalisms we
introduce here are in fact projective. However, this is generally not the case:
Consider a proportional RLR, say, with structure Q(y) −→ P (x), a probability
of Q(y) of 0.5 and a probability of P (x) given by the atomic formula Q(y) with
weight 2. Now consider the conditional probability Pr(P (a)|Q(a)). On a domain
of size 1, Q(a) implies that all y satisfy Q(y), and the probability evaluates to
around 0.88. On a very large domain, however, Q(a) does not significantly im-
pact the proportion of y for which Q(y) holds, and therefore the probability will
limit to the asymptotic unconditional probability of P (a), which turns out to be
0.73.

3 What about probabilistic logic programming?

While Problog is akin to Bayesian networks in its inherent directedness (see [7]),
the semantics is very different to the relational Bayesian networks above. While
the main attraction of the RBN are the combination rules, which determine the
probabilities at interior nodes from their parents, current ProbLog semantics only
attach probabilities to the ground facts, all of which are evaluated independently,
and then model all dependencies deterministically.

This is in fact a general trait of logic programming languages that has its
root in Sato’s distribution semantics [9], which makes it difficult to adapt the
methods outlined above in an obvious way; the scaling of the weights is indeed
performed everywhere but at the leaves, which gels badly with a syntax and
semantics that confines the probabilities to just those leaf nodes.

One approach one might consider would be to use the translation to weighted
Boolean formulas provided by Fierens et al. [1]. In fact, the current implemen-
tation of ProbLog (ProbLog2), outlined there, converts the weighted Boolean
formula to a Markov logic network and then uses a standard MLN algorithm
to solve the approximate inference task. Thus one might think to apply weight
scaling at this level of the architecture. The issue here is, however, that all this
is done after grounding the logic program, and in fact, grounding is applied at
a rather high level: indeed, even a statement such as ’0.5 :: q(X) :- person(X)’ is
only considered as syntactic sugar for the individual ground probabilistic facts.



Thus, combining ProbLog with proportional reasoning seems to require a greater
change to the underlying architecture than in any of the frameworks mentioned
above.
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