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Abstract. In this work, we present the participation of FHDO Biomed-
ical Computer Science Group (BCSG) to the CLEF eHealth challenge
2020 Task 1 on automatic assignment of ICD-10 codes (CIE-10 in the
Spanish translation) to clinical case studies. Training data has been aug-
mented with documents from the Medical Information Mart for Intensive
Care (MIMIC-III), a critical care database. ICD-10 CM General Equiv-
alence Mappings (GEMs) were subsequently used to convert the codifi-
cation from ICD-9 to ICD-10. Recent state-of-the-art Transformer-based
models, such as BioBERT and ClinicalBERT are compared to the Gener-
alized Autoregressive Pretraining for Language Understanding (XLNet)
model. Finally, the apriori algorithm has been applied to build associa-
tion rules by finding frequent item sets. An ensemble of BioBERT and
XLNet achieved a mean Average Precision (MAP) score of 0.259 (0.306
for the subset of codes only present in the training and validation sets).

Keywords: BioBERT· MIMIC-III · Apriori · XLNet · ICD-10 Code
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1 Introduction

This paper describes the participation of FHDO Biomedical Computer Science
Group (BCSG) to the Conference and Labs of the Evaluation Forum (CLEF)
eHealth 2020 Task 1 Subtask 1 on Multilingual Information Extraction (IE),
which focuses on International Statistical Classification of Diseases (ICD) cod-
ing for clinical textual data in Spanish [20,12]. Diagnostic codes are used as a
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billing mechanism in the Electronic Health Record (EHR) and can be used for
automatic semantic indexing of clinical documents, but also to facilitate decision
support systems that aim to help clinical coders by suggesting a relevant subset
of potential codes for selection. The problem can be described as a mapping
from natural language free-texts to medical concepts such that, given a new
document, the system can assign multiple codes to it.

In terms of application in the biomedical field, Bidirectional Encoder Rep-
resentations from Transformers (BERT) has only recently been used for ICD
code assignment tasks, such as classifying German animal experiments in CLEF
eHealth 2019 [3,27,25]. While it has proven to work well on assigning a smaller
subset of ICD codes, it is uncertain how Transformer architecture models can
perform on arbitrary long clinical text and in solving extreme multi-label classi-
fication problems with a high average amount of assigned codes per document.

CLEF eHealth tracks feature the classification of multilingual clinical docu-
ments using ICD codes since 2016 [22,23,24,25]. This work enriches training data
with the Medical Information Mart for Intensive Care (MIMIC-III) database and
compares BERT based models with XLNet [32].

2 Related Work

A hierarchy-based approach with Support Vector Machines (SVM) [8], using the
’is-a’ relationship between ICD-9 codes to model label dependencies has been an
early approach to ICD coding [26]. The hierarchy-based classifier surpassed the
flat SVM, which did not consider code dependencies. Other approaches identified
label density and label noise as useful features [29], while others empirically
evaluated the simultaneous occurrence of labels [16].

ML-NET [10] followed the hierarchy-based approach and extended the coding
of documents. Its deep neural network consists of an additional network for
estimating the number of labels. Instead of separating relevant vs. irrelevant
labels by a threshold value, a network for predicting the number of labels was
built by using the document vector as input.

Baumel et al. [4] evaluated 4 different models for ICD code assignment using
data from MIMIC-II and MIMIC-III data sets. They presented a continuous
bag-of-word model [19] (CBOW), a convolutional neural network, an SVM one-
versus-all model and a bidirectional gated-recurrent unit model with hierarchical
attention (HA-GRU).

Another proposed model is a code-wise attention network [21], where atten-
tion mechanisms are used to extract n-grams from the text that are influential
in predicting each code.

Unified Medical Language System (UMLS) [5] mapping and word embeddings
have shown to be effective within text classification in the biomedical domain and
improved results in automatic ICD coding [28]. The embeddings were selected
by sequentially mapping discharge summaries to UMLS biomedical concepts in
an approach to enrich word representations and to eliminate variations caused
by tense, abbreviations and/or spelling mistakes.



3 Dataset

For training data, two different sources were used: The offical CodiEsp dataset3

with manually generated ICD-10 codifications, and the MIMIC-III database with
the older ICD-9 classification system in use, which are mappable to discharge
summaries [15]. When exploring other additional resources, such as the abstracts
collected from Lilacs and Ibecs4, the MIMIC-III database was selected as the
main data source for augmentation, because it seems to be the most similar
database compared to the CodiEsp corpus. Among the free text narrative struc-
tured documents describing hospital courses, it has a high average amount of
manually assigned codes per document coming from real-world EHRs. With the
decision to use the MIMIC-III dataset for augmentation it was also decided to
focus on the English translated documents of CodiEsp corpus. A key difference
between the two data sources is that the codification for CodiEsp is a seman-
tic mapping of concepts, where the assigned codes do not have to be based on
medical outcome. For example, a negative serum test (as seen in Listing 1.1) for
CodiEsp still results in appropriately assigned ICD-10 codes, whereas it would
not appear on MIMIC-III.

Listing 1.1. Excerpt of CodiESP Document with id S0211-69952009000500014-1,
showing results of a blood serum test and codification (Assigned Codes List: r80.9,
r20.2, b19.20, b19.10, r23.8, r60.0, r10.9, r19.7, m25.50, l98.9, b20).

[ . . . ]
On p h y s i c a l examination : blood pre s su r e 104/76 mmHg,
BMI 27 , minimal edema in lower l imbs and papules in
elbows and arms . Blood count and coagu la t i on were
normal , c r e a t i n i n e 0 .9 mg/ dl , t o t a l c h o l e s t e r o l
238 mg/ dl , t r i g l y c e r i d e s 104 mg/ dl , t o t a l p ro t e in
6 .5 g/ d l and albumin 3 .6 g/ d l . A n t i c a r d i o l i p i n
a n t i b o d i e s a n t i c a r d i o l i p i n : Sero logy aga in s t HBV,
HCV and HIV was negat ive .
[ . . . ]

3.1 CodiEsp Corpus

The CodiEsp corpus consists of 1,000 clinical case studies manually selected
by a practicing physician and a clinical documentarian [20]. The training and
development dataset comprises 750 documents with an average of 11.09 codes
assigned per document. The test set contains 250 documents and was provided
with an additional collection of more than 2,000 documents (background set)
to prevent manual corrections. Within the CodiEsp training and development
dataset there are 26,696 unique tokens with an average of 301 tokens and 19
sentences per document. It contains 2,557 distinct codes in total of which 363

3 https://doi.org/10.5281/zenodo.3625746, last accessed 2020-07-17
4 https://doi.org/10.5281/zenodo.3606625, last accessed 2020-07-17
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unseen codes appear in the test set as seen in Figure 1 (a). 68.24 % of the codes
are explainable with the CodiEsp training and development dataset.

3.2 MIMIC-III Corpus

The MIMIC-III database comprises de-identified records from Beth Israel Dea-
coness Medical Center intensive care unit (ICU) stays, collected between 2001
and 2012. It contains 59,652 discharge summaries with an average of 11.48 codes
assigned per document. It has 119,171 unique tokens with 1,947 tokens and 112
sentences on average. The dataset is in principle very well suited but has some
characteristics that need to be adapted. The coding system is ICD-9, which has
to be converted to ICD-10 accordingly to match the CodiEsp codification. In ad-
dition, the dataset only contains summaries of intensive care unit stays, which
on average exceed the maximum length of tokens available for Transformer ar-
chitectures. After conversion, the dataset contains 5,447 distinct codes as seen
in Figure 1 (b).

Segmentation For BERT [9] models, the maximum length of a sequence after
tokenizing is 512, resulting in an effective limit of 510 tokens for the input layer
after subtracting the [CLS] and [SEP] tokens. Because MIMIC-III discharge
summaries have an average length of 1,947 tokens (see Table 1) with only 11.67 %
of all documents not exceeding 510 tokens, the data has to be truncated in order
to fit into the Transformer model.

A simple approach as supposed by Sun et. al. [30] would be to only use
the first 510 tokens (head-only) or to use the last 510 tokens (tail-only) of a
document, but none of them seem to be appropriate for truncating clinical text
without losing relevant information.

When inspecting the summaries, even though they are free text narratives,
a fixed structure has been identified in most of the documents: They usually
start with a Chief Complaint followed by a historical Background section, which
may include History of Present Illness, Past Medical History, Social History and
Family History. During Diagnostics and Pertinent Results, the structure is no
longer as consistent and different sections appear, which are more dependent on
the individual case. From the middle towards the end of the documents there is
a section called Brief Hospital Course, which summarizes the ICU stay followed
by discharge condition instructions and/or followup instructions.

In early experiments, the effect of using different segments was evaluated.
Here, it was found that using the first 510 tokens (head-only) of discharge sum-
maries decreased the performance in comparison to using the last 510 tokens
(tail-only). It can be assumed that this is because the background history, which
comes at the top of the documents, is not as relevant to the clinical coding as the
narrative over the actual present hospital course. It was decided to remove con-
tent up to the Brief Hospital Course section and sequentially use the remaining
document up to whatever fits into 510 tokens. 7, 822 documents were omitted
where this section was not present, resulting in 13 % loss of data. Descriptive
statistics of the segmented corpus can be seen in Table 1.



Table 1. MIMIC-III, CodiESP Training and Development dataset descriptive statis-
tics. (*) denotes the segmented corpus.

MIMIC-III MIMIC-III* CodiESP Train Dev

Number of records with ICD code 59,652 51,830 750
Number of unique tokens 1,091,025 276,500 26,696
Number of bigrams 10,609,279 2,846,377 114,846
Number of trigrams 27,814,651 7,873,155 180,650
Avg. number of tokens / record 1,947 427 301
Avg. number of sentences / record 112 39 19
Avg. number of labels / record 11.48 11.45 11.09

ICD-9 code Conversion with General Equivalence Mappings ICD-9
codes of the MIMIC-III database have been converted to ICD-10 using the pub-
licly available ICD-10 CM General Equivalence Mappings (GEMs) [6]. Turer et
al. assessed the reliability of conversion between ICD-9 and ICD-10 and found
that manual coding from the forward GEMs and backward GEMs were repro-
ducible by 85.2 % and 90.4 % respectively [31].

Data Selection Because of the different data sources and MIMIC-III being
limited to ICU cases, both datasets have been compared in terms of their dis-
tinct code subsets. As seen in Figure 1 (b), the MIMIC-III data contains 4,156
unique ICD-10 codes that are not present in the CodiEsp train, development,
and testset. These codes are less generic, apply to the ICU cases and are not
covered by the smaller CodiEsp corpus. To make the data augmentation more
practical, only documents where 50 % or more of the assigned codes are present
in the Top 100, Top 250 or Top 500 frequent codes of the CodiEsp training and
development set were used (impact on training size can be seen in Table 3). Only
discharge summaries containing the Brief Hospital Course section were selected
by using a regular expression match, resulting in 51,830 out of 59,652 available
documents.

Available data augmentation increases when changing the Top frequent code
amount, because the criteria/matching rule, if a document has 50 % or more
codes is less strict, resulting in more MIMIC-III documents ending up in training
data. Increasing the augmentation data in that way increases recall, but reduces
precision (see Table 4). A good compromise was to create a model that is able
to predict the Top 100 frequent codes in CodiEsp.

4 Methods

4.1 Transformer architecture and BERT

BERT and Transformer [9] have proven to be extremely effective in many down-
stream natural language processing (NLP) tasks. While it works well on assigning
a smaller subset of ICD codes [3,27], it is uncertain how BERT models can work
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Fig. 1. Venn diagrams showing the distribution of the number of distinct ICD-10 codes
for different datasets and subsets.

with clinical texts of any length and in solving extreme multi-label classification
problems with a high average number of assigned codes per document.

Though the MIMIC-III augmentation does not fit into the token limitation
without clipping documents, the Transformer architecture offers good innova-
tions that can be practical in the classification of clinical text. The word tok-
enizer allows words that are outside the vocabulary to be represented by word
pieces instead of simply assigning them to an unknown token, which is why it
was selected for the first tests. This feature is particularly useful for discharge
summaries, as spelling mistakes and non-standard abbreviations are common.

Bidirectional Encoder Representations from Transformers for Biomedical Text
Mining (BioBERT) [18] and ClinicalBERT [2] have the same architecture but
are pre-trained on large-scale biomedical corpora. BioBERT has been pre-trained



on PubMed abstracts5 and PMC6 full-text articles. Bio ClinicalBERT7 is an ex-
tended model that was also pre-trained on all notes from MIMIC-III (880M
words). The Bio ClinicalBERT model was selected because of the larger pre-
training.

4.2 XLNet

The recently proposed Generalized Autoregressive Pretraining for Language Un-
derstanding (XLNet) model [32] is an autoregressive language model (LM). It
is important to note that although BERT and XLNet have many similarities,
there are some differences that need to be explained. Here, autoregressive means
that XLNet makes use of the TransformerXL [14] to capture information from
previous sequences in order to process the current sequence, and achieving the
regressive effect at the sequence level. XLNet uses relative position coding and
a permutation LM, by factorizing the output with all possible permutations.

The permutation effect is limited to words which are “attended” to. This
is done by changing the attention mask prior to the attention softmax while
keeping track of the positional information in a sequence. For example, during
pre-training, to predict a token t, the attention mask is set to minimum numbers
for tokens that appear after position i > t. Only the tokens before and including
t on the current factorization are used to compute the attention. The advantage
is that the tokens that come before t change with each permutation, but their
positions within the sequence are kept constant, allowing XLNet to capture
bidirectional context.

XLNet implements the Multi-head attention, which is slightly different from
the one in BERT, where it is known that it generates a query Q, a key K, and
a value V projection of each word in the input sentence. For each query Q, the
Multi-head attention Layer uses K to compute an attention score for each value
vector V and then sums the value vectors into a single representation using the
attention weights [7].

For XLNet, linear layers are used to map the input to the Multi-head atten-
tion layer directly. This results in mapping the input into smaller space with the
same number of dimensions that add up to the original dimension as known for
BERT. This allows each word to attend more to other words and not only to
itself, which results in a final richer representation of each word.

4.3 Preprocessing

Because the discharge summaries were de-identified free text narratives, ad-
ditional pre-processing steps were taken to convert them into a sequence of
sentences, removing all numbers, and name placeholders. Leading and trailing

5 https://pubmed.ncbi.nlm.nih.gov/, last accessed 2020-07-17
6 https://www.ncbi.nlm.nih.gov/pmc/, last accessed 2020-07-17
7 https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT, last ac-

cessed 2020-07-17
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spaces, quotations and semicolons have also been removed. For the CodiESP
corpus, no pre-processing was applied.

4.4 Training the models

The experiments were done with the PyTorch-transformers implementations of
BERT and XLNet8. The overall end-to-end training process can be seen in Figure
2. The models were fine-tuned on all layers without freezing. As proposed by the
original papers [9,32], Adam [17] was used in early experiments as the optimizier,
but was then replaced by the Layerwise Adaptive Large Batch (LAMB) optimizer
[33] because it resulted in a slightly reduced training time. The hyperparameters
have been selected and optimized based on the development set performance.
Using a learning rate of 7e-4 or 6e-4 resulted in the best scores, though the
Transformer model seems to react very sensitively to the use of different learning
rates, because selecting different settings often led to poor results.

Different warmup schedules were tried, but had no impact on the results.
Among the two versions of BERT cased and uncased, it was found that overall
the uncased version works slightly better. However, the difference is still very
small. For XLNet, the only available version is cased. The base version of XLNet
was preferred over the large version due to computational expense. The training
batch size was 8 for XLNet and 16 for BERT models. To produce the ranking
of the codes, Binary cross-entropy with logits was used to obtain confidence for
each ICD-10 code during inference. They were then ordered by confidence and
cut off with a threshold of t = 0.4. The prediction pipeline of the BERT model
including the association rules is shown in figure 3.

4.5 Apriori Association Rules

The apriori algorithm [1] has been used to find frequent itemsets in a list of
transactions but recently has also been in use to find association rules and label
co-occurrences in clinical text, such as in autopsy reports [11]. Association rules
can be obtained with the support and confidence parameter, where the support
of a set of items is the probability that this set of items occurs in a transaction.
Confidence refers to the likelihood that an item B will also be purchased when
item A is purchased. It can be calculated by dividing the number of transactions
where A and B are bought together by the total number of transactions where
A is bought. To identify and explore co-occurrences, a low min support (0.02)
value has been used on the CodiEsp train and development set. The resulting
apriori association rules as seen in Figure 6 have been plotted with the arulesviz
[13] R package. The graph shows 59 rules.

One example for a relation is Hepatitis B and C as shown by the rule that
connects b19.10 and b19.20. When exploring the data, it was found that this rule
refers to serology tests, that often include test results for different viruses, such
as hepatitis B and C. An example can be seen in Listing 1.1. Another confident

8 https://github.com/huggingface/transformers, last accessed 2020-07-17
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Fig. 2. Workflow of end-to-end training process. Unannotated pre-training (on large
corpora) and annotated fine-tuning with combined resources (CodiEsp and MIMIC-
III). The weights from pre-training phase were transferred.

R1

r52

r50.9Classifier with
Sigmoid + BCELoss

Text Input

[CLS] Token N...Token 2Token 1

BERT

E[CLS] EN...E2E1

C TNT2T1 ...

Token Embeddings

label
...

label

1

N

Probabilities (t=0.4)

Apriori Association Rules

Visual Paradigm Online Diagrams Express Edition

Visual Paradigm Online Diagrams Express Edition

Fig. 3. Inference for BERT models with apriori association rules. The text-input is
classified with BCELoss function to get probabilities for all available ICD codes. The
confidence must be at least t = 0.4 (threshold) to count as a positive ICD code.



rule is that localized enlarged lymph nodes (r59.0 and r59.9) links to unspecified
fever (r50.9), which then links to unspecified pain (r52). As such rules should be
covered by the trained model, not that many different rulesets have been tested
and added during inference.

However, the 11-ruleset as seen in Figure 5 improved the mean Average
Precision (MAP) results on the development set between 0 % to 1.2 % depending
on the model and was therefore added to the final submission if missed out.
The submission guideline requires that the prediction is ordered by confidence.
Because the predicted confidence cannot be compared with apriori support or
confidence values and because the confidence of the primary model was not high
enough, the association rule codes were added at the end. They were ranked by
highest level of support.

5 Results and Discussion

Figure 4 shows experimental runs on the development set for the tested models
with different pre-trained embeddings and different frequent Top code subsets.
This results in different enriched training data and also in a different amount
of labels a model is able to predict. A comparison of how many documents end
up in the training data can be seen in Table 3. The final best results on the
development set for each model can be seen in Table 2.

While the F1-Score is superior on models which are only able to predict the
Top 50 frequent codes, the MAP score penalises this behaviour on the full set,
because not only the classification but also the positional ranking is taken into
consideration. When matching the Top 50 most frequent codes with MIMIC-III
there is not enough data available for augmentation (363 additional documents).
Starting with the Top 100 most frequent codes, improvements coming from the
additional data can be seen. The augmentation improves the reported MAP
score by 0.097 (0.128 F1) for the XLNet model. Increasing the training data
further increases recall, but decreases precision.

The final test set results for evaluation were reported by the task organisers
and can be seen in Table 4. On the test set, the Bio ClinicalBERT model achieved
the overall best performance for a single model with a MAP score of 0.259. XLNet
on Top 100 frequent codes achieved the best performance in precision.

When the goldstandard for the test set was released, it was evaluated how
many of the unseen codes would have been explainable by keeping the remaining
annotated codes of each MIMIC-III document within the training data (Knowl-
edge Discovery). Figure 1 (d) shows that for the Top 100 most frequent codes
training set, 56 distinct unseen codes would have been explainable. Here, a small
performance improvement can be expected, but it is noteworthy that only a few
of the codes were seen more than once in the test data (76 appearances in total).
Because they were unseen before, it can be assumed that these are codes with
rare appearances. It can be concluded that more resources are needed to be able
to explain the full code set.
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Table 2. Results of the evaluation performed on the development set. MAP and F1-
Score are being reported, where bold indicates best results for a category.

Model MAP F1

XLNet base cased + MIMIC-III - Top 50 0.232 0.608
XLNet base cased - Top 50 0.216 0.602
BERT base uncased + MIMIC-III - Top 50 0.143 0.47
BERT base uncased - Top 50 0.165 0.372
XLNet base cased + MIMIC-III - Top 100 0.247 0.432
XLNet base - Top 100 0.15 0.304
Bio Clinical BERT + MIMIC-III Top 100 0.244 0.361

Table 3. Model size comparison on final submission.

Model Training Data Size Model Size

XLNet mimic 500 19,484 documents 459.78M
XLNet mimic 250 10,754 documents 459.03M
XLNet mimc 100 3,286 documents 458.58M
Bio Clinical BERT 100 3,286 documents 423.43M



Table 4. Results of the final evaluation performed by the task organisers. They re-
port MAP, Precision, Recall and F1 scores. (* Cat) denotes that the score has been
computed for categories determined as the first three digits of a code. (* Codes) de-
notes that the score has been computed for the subset of codes only present in the
train and validation sets. (*) denotes ensemble of Bio ClinicalBERT mimic 100 and
XLNet mimic 100. Bold indicates best results for the category. (BERT†) denotes that
the Bio ClinicalBERT version was used.

Model MAP MAP Codes P R F1 F1 Codes F1 Cat

BERT† mimic 100 apriori 0.242 0.288 0.375 0.285 0.324 0.352 0.373
XLNet BERT† ensemble* 0.259 0.306 0.407 0.287 0.337 0.367 0.387
XLNet mimic 100 apriori 0.231 0.275 0.457 0.244 0.318 0.351 0.366
XLNet mimic 250 apriori 0.21 0.244 0.342 0.28 0.308 0.334 0.366
XLNet mimic 500 apriori 0.128 0.149 0.235 0.215 0.225 0.243 0.276
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6 Conclusions

This work compared BERT based models with XLNet. The effect of enriching
training data with documents from MIMIC-III was evaluated. Here, it was found
that the MIMIC-III augmentation with code conversion was able to improve the
results compared to using only the stock data set. The apriori algorithm has
been applied to build and explore association rules by finding frequent item sets.
The 11-ruleset was able to improve the mean Average Precision (MAP) results
on the development set between 0 % and 1.2 %.

Among the submitted models, the ensemble of BioBERT and XLNet achieved
the highest mean Average Precision (MAP) score of 0.259 (0.306 for the subset
of codes only present in the train and validation sets). In terms of single model
performance, the Bio ClinicalBERT model achieved overall best performance.
The XLNet, even though pre-trained on generic text has the highest precision
value on the test set and overall best performance on the development set.

Though the models are still far from achieving good results on the full label
set, the task has been very challenging with many possible labels, given only a
relatively small dataset. It was found that the large MIMIC-III database is not
able to cover all unseen codes, so it can be concluded that more resources are
needed to be able to explain the full code set.



In future work, XLNets attention should be further evaluated because the
sequence dependency on the hidden states of previous sequences can be adjusted
by a memory length hyper-parameter. It will be interesting to tune and see the
impact of this parameter, but also to test and see how a domain-specific XLNet
model performs when pre-trained on large biomedical data.
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