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Abstract. This paper describes our VinAI system for the ChEMU task
1 of named entity recognition (NER) in chemical reactions. Our system
employs a BiLSTM-CNN-CRF architecture [6] with additional contex-
tualized word embeddings. It achieves very high performance, officially
ranking second with regards to both exact- and relaxed-match F1 scores
at 94.33% and 96.84%, respectively. In a post-evaluation phase, fixing
a mapping bug which converts the column-based format into the brat

standoff format helps our system to obtain higher results. In particular,
we obtain an exact-match F1 score at 95.21% and especially a relaxed-
match F1 score at 97.26%, thus achieving the highest relaxed-match F1

compared to all other participating systems. We believe our system can
serve as a strong baseline for future research and downstream applica-
tions of chemical NER over chemical reactions from patents.
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1 Introduction

The discovery of new chemical compounds plays an essential key role in the
chemical industry. To disclose newly discovered chemical compounds, patent
documents are often selected as the initial venues; and only a small fraction of
these chemical compounds are published in journals, but this usually takes up
to 3 years after the patent disclosure [14]. Thus patents containing critical and
timely information about the new chemical compounds serve as starting pointers
for chemical research in both academia and industry [1]. Due to a huge volume
of new chemical patent applications [9], it is becoming increasingly important
to develop automatic information extraction approaches for large-scale mining
of chemical information from these patent documents [1].
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Chemical named-entity recognition (NER) is a fundamental step for informa-
tion extraction from chemical patents, supporting many downstream tasks such
as chemical reaction prediction [12,17], chemical syntheses [13] and the like. The
ChEMU—Cheminformatics Elsevier Melbourne University—task 1 provides par-
ticipants with opportunities to develop automatic chemical NER systems from
chemical reactions in chemical patents. This task is to identify crucial elements of
a chemical reaction, including compounds, conditions and yields as well as their
specific roles in the reaction. Details of this task can be found in the overview
paper of the ChEMU lab [3].

In this paper, we present our VinAI team’s system for the ChEMU task
1. Our system is based on the well-known BiLSTM-CNN-CRF architecture [6]
with additional contextualized word embeddings. Our system officially obtains
the second best performance results in terms of both exact- and relaxed-match
F1 scores at 94.33% and 96.84%, respectively. In a post-evaluation phase, fix-
ing a column-brat conversion bug then helps our system to obtain even better
results at 95.21% for exact-match F1 and especially 97.26% for relaxed-match
F1. We thus obtain the highest relaxed-match F1 score in comparison to all
other participating systems. We also provide an ablation study to investigate
the contributions of different types of input word representations in the full sys-
tem, reconfirming the effectiveness of the contextualized word embeddings for
chemical NER [18].

2 Task description

The ChEMU task 1 of “Named entity recognition” involves identifying chemical
compounds and their specific types. In particular, the task assigns the label of
a chemical compound according to the role which it plays within a chemical
reaction. In addition to identifying chemical compounds, the task also requires
identification of the label of the chemical reaction, the temperatures and reaction
times at which the reaction is carried out as well as yields obtained for the final
chemical product. The task defines 10 different entity type labels as listed in
Table 1, involving both entity boundary prediction and entity label classification.
See [3,10] for more details.

3 Our system

In this section, we present our VinAI system for the ChEMU task 1. We formulate
this task as a sequence labeling problem with BIO tagging scheme. Following
[18], our system employs the well-known BiLSTM-CNN-CRF model [6] with
additional contextualized word embeddings.

Figure 1 illustrates the architecture of our participating system. In particular,
our system represents each word token wi in an input sequence w1, w2, ..., wn by
a vector vi which is resulted by concatenating the pre-trained word embedding,
the CNN-based character-level word embedding [6] and the contextualized word



Table 1. Definitions of entity types. “Abbr.” denotes abbreviation.

Label Definition Abbr.

STARTING MATERIAL A substance that is consumed in the course of a chem-
ical reaction providing atoms to products.

ST

REAGENT CATALYST A reagent is a compound added to a system to cause
or help with a chemical reaction.

RC

SOLVENT A solvent is a chemical entity that dissolves a solute
resulting in a solution.

SO

REACTION PRODUCT A product is a substance that is formed during a chem-
ical reaction.

RP

OTHER COMPOUND Other chemical compounds that are not the products,
starting materials, reagents, catalysts and solvents.

OT

TIME The reaction time of the reaction. TI

TEMPERATURE The temperature at which the reaction was carried out. TE

YIELD PERCENT Yield given in percent values. YP

YIELD OTHER Yields provided in other units than %. YO

EXAMPLE LABEL A label associated with a reaction specification. EX

O B-REAGENT CATALYST I-REAGENT CATALYST

CRF CRF CRF

h1 h2 h3

Linear
Layer

Linear
Layer

Linear
Layer

r1 r2 r3

BiLSTM BiLSTM BiLSTM

v1 v2 v3

⊕ ⊕ ⊕
Word
emb.

CNN
char.

ELMo
emb.

Word
emb.

CNN
char.

ELMo
emb.

Word
emb.

CNN
char.

ELMo
emb.

addedw1 sulfuricw2 acidw3

Fig. 1. Illustration of our participating system’s architecture. This figure is drawn
based on [18].

embedding of the word token wi. Here, we utilize the pre-trained word embed-
dings released by [18], which are trained on a corpus of 84K chemical patents
(1B word tokens) using the Word2Vec skip-gram model [7]. In addition, we also
utilize the contextualized word embeddings generated by a pre-trained ELMo
language model [11], which is trained using the same corpus of 84K chemical



patents [18].1 Then vector representations vi are fed into a BiLSTM encoder
to extract latent feature vectors ri for input words wi. Each latent feature vec-
tor ri is then linearly transformed into hi before being fed into a linear-chain
CRF layer for NER label prediction [5]. A cross-entropy loss is computed during
training while the Viterbi algorithm is used for decoding.

4 Experiments

4.1 Experimental setup

Dataset: For system development, the ChEMU task 1 provides a corpus of 1125
chemical reaction snippets with gold standard NER annotations using the brat

standoff format [15]. Although this corpus is pre-split into a training set of 900
snippets and a validation set of 225 snippets, participants are free to use this
corpus in any manner they find useful when training and tuning their systems,
e.g. using a different split or performing cross-validation. Thus we only employ
the first 100 snippets in the provided validation set for validation,2 and merge
the remaining 125 snippets into the provided training set, resulting in a new
training set of 1025 snippets in total. Following [18], we employ the OpenNLP
toolkit [8] for sentence segmentation and the OSCAR4 tokenizer [4] to tokenize
training and validation sentences, then convert these sentences into the CoNLL
column-based format with the BIO tagging scheme.

Implementation: Our system is implemented based on the AllenNLP frame-
work [2]. For training, we use exactly the same hyper-parameters used in [18]
with the exception of using the batch size at 24. Pre-trained word embeddings
and the pre-trained ELMo are fixed while other model parameters are updated
during training. We train our system for 50 epochs and compute the standard
exact-match F1 score after each training epoch on the validation set. We select
the model with the highest exact-match F1 score on the validation set.

Evaluation phase: For the final evaluation phase, the ChEMU task 1 provides
a raw test set consisting of 375 patent snippets. Each test snippet is sentence-
segmented and tokenized using OpenNLP and OSCAR4, respectively. We then
convert tokenized test sentences into the column-based format and apply our
selected model to predict NER labels. We then use our own mapping script to
convert the predicted BIO-based NER outputs into the brat standoff format,
and submit the brat-formatted test outputs for evaluation.

Evaluation metrics: The ChEMU task 1 uses three metrics, namely preci-
sion, recall and F1 scores for evaluation, under both “exact” and “relaxed” span
matching conditions [16].

1 https://github.com/zenanz/ChemPatentEmbeddings
2 Sorted by file names: 0050–0690.

https://github.com/zenanz/ChemPatentEmbeddings


Table 2. Our official evaluation results (in %) on the test set, i.e. the predicted test
outputs are submitted during the evaluation phase. The subscripts denote our ranking.

Entity label
Exact-match Relaxed-match

P R F1 P R F1

STARTING MATERIAL 93.24 91.14 92.18 96.40 94.10 95.24

REAGENT CATALYST 88.54 90.48 89.50 91.84 94.04 92.93

SOLVENT 93.64 96.26 94.93 94.55 96.97 95.74

REACTION PRODUCT 89.12 90.99 90.05 94.85 97.18 96.00

OTHER COMPOUND 97.10 95.29 96.18 98.84 97.10 97.96

TIME 98.89 98.67 98.78 100.0 99.56 99.78

TEMPERATURE 95.54 94.44 94.99 99.01 98.68 98.84

YIELD PERCENT 99.74 99.74 99.74 99.74 99.74 99.74

YIELD OTHER 97.68 95.68 96.67 97.91 95.91 96.90

EXAMPLE LABEL 91.10 87.97 89.50 94.07 90.83 92.42

Overall 94.622 94.053 94.332 97.071 96.613 96.842

Table 3. Our post-evaluation results (in %) on the test set, i.e. the predicted test
outputs, which are resulted from fixing the column-brat conversion bug, are submitted
right after the evaluation phase.

Entity label
Exact-match Relaxed-match

P R F1 P R F1

STARTING MATERIAL 93.56 91.98 92.77 96.71 94.94 95.82

REAGENT CATALYST 90.47 92.26 91.36 92.22 94.05 93.12

SOLVENT 94.09 96.73 95.39 94.55 97.20 95.85

REACTION PRODUCT 90.68 92.16 91.42 95.51 96.96 96.23

OTHER COMPOUND 97.05 95.44 96.24 98.68 97.30 97.99

TIME 99.12 99.12 99.12 100.0 99.78 99.89

TEMPERATURE 95.70 94.44 95.00 99.01 99.01 99.01

YIELD PERCENT 99.49 100.0 99.74 99.49 100.0 99.74

YIELD OTHER 97.94 97.05 97.49 98.17 97.27 97.72

EXAMPLE LABEL 97.38 95.70 96.53 97.67 95.99 96.82

Overall 95.382 95.042 95.212 97.371 97.161 97.261

4.2 Main results

Table 2 shows the official results of our system’s outputs on the test set which is
submitted during the evaluation phase. By employing a standard neural archi-
tecture, our system obtains a high performance which is officially ranked second
among 11 participating systems, using both exact- and relaxed-match F1 scores.



Table 4. Ablation “exact-match” results (in %) on the development set.

Model P R F1

Our system (full) 97.41 97.07 97.24

(a) w/o Word2Vec-based pre-trained word embeddings 96.32 96.66 96.49
(b) w/o CNN-based character-level word embeddings 97.24 97.01 97.13
(c) w/o ELMo-based contextualized word embeddings 96.25 96.19 96.22

Note that in the evaluation phase, we unfortunately were unaware of a bug
in our mapping script which converts the predicted test outputs in the column-
based format into the brat standoff format. Right after the evaluation phase,
we fixed the bug, and reran our column-brat conversion script to produce a new
submission, and then asked the ChEMU organizers to help evaluate the new
submission. Table 3 details our post-evaluation results. Fixing the mapping bug
helps improve our exact-match F1 by 0.9% and our relaxed-match F1 by 0.4%,
absolutely; thus leading to the highest relaxed-match F1 score compared to other
participating systems.

4.3 Ablation study

Table 4 presents ablation tests over 3 factors of our system on the develop-
ment set, including (a) removing the Word2Vec-based pre-trained word em-
beddings, (b) removing the CNN-based character-level word embeddings and
(c) removing the ELMo-based contextualized word embeddings. Factor (a) de-
grades the exact-match F1 score by 0.8%, while factor (b) and (c) degrade the
exact-match F1 score by 0.1% and 1.0%, respectively. The contribution of the
CNN-based character-level word embeddings is not substantial because the pre-
trained ELMo language model we employ also builds on character embeddings.

4.4 Error analysis

To understand the source of errors, we perform error analysis on the development
set. Among 56 error cases in total, 34 cases are predicted with correct entity
boundaries (i.e. exact span) but with incorrect labels (See the corresponding
confusion matrix in Figure 2), while there are 17 cases corresponding with correct
entity labels and overlapped inexact span. Figures 3 and 4 show examples of
these two types of errors. In particular, Figure 3 shows an example of exact span
and an incorrect label where a reagent catalyst entity of “HCL” is predicted
as another compound type. The reason is probably because “HCL” and other
popular chemical compounds such as “water”, “citric acid” and the like play
different/multiple roles in chemical reactions. Note that there is no error case
corresponding with incorrect label and overlapped inexact span. The remaining
5 errors belong to the group of predicted entities in which their span is not
overlapped with the span of any gold standard entity, i.e. non-chemical “O”-
labeled words are predicted as REACTION PRODUCT (RP) chemical entities
as shown in the column O in Figure 2.



Fig. 2. Confusion matrix of our system on the development set w.r.t. the correct entity
boundary prediction. Label abbreviations are presented in Table 1.

Fig. 3. An example of incorrect NER type prediction.

Fig. 4. An example of incorrect NER span prediction.

5 Conclusion

In this paper, we have presented our VinAI system for participating in the
ChEMU task 1 of named entity recognition in chemical reactions from patents.
We use a BiLSTM-CNN-CRF architecture with additional ELMo-based contex-
tualized word embeddings to handle the task. Our system is officially ranked the
second best performing one with regards to both the exact- and relaxed-match



F1 scores. In addition, fixing the column-brat conversion bug then helps our
system to obtain the highest relaxed-match F1 score in a post-evaluation phase.
We believe our system can serve as a strong baseline for future work on chemical
NER in chemical reactions from patents.
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