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Abstract. Detection and characterization of tuberculosis and the evaluation of 

lesion characteristics are challenging. In an effort to provide a solution for a clas-

sification task of tuberculosis findings, we proposed a laterality-reduction 3D 

CBAM Resnet with balanced-sampler strategy. With proper usage of both pro-

vided masks, each side of the lung was cropped, masked, and rearranged so that 

laterality could be neglected, and dataset size doubled. Balanced sampler in each 

batch sampler was also used in this study to address the data imbalance problem. 

CBAM was used to add an attention mechanism in each block of the Resnet to 

further improve the performance of the CNN. 
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1 Introduction 

Tuberculosis (TB) is a bacterial infection caused by the germ Mycobacterium tubercu-

losis and is a leading cause of death from infectious disease worldwide. An epidemic 

in many developing regions, such as Africa and Southeast Asia, it was responsible for 

1.6 million deaths in 2017 alone. There are different manifestations of TB which require 

different treatments, making the detection and characterization of TB disease and-the 

evaluation of lesion characteristics critically important tasks in the monitoring, control, 

and treatment of this disease. An accurate and automated method for the classification 

of TB from CT images may be especially useful in regions of the world with few radi-

ologists. 
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The ImageCLEF 2020 Tuberculosis – CT report challenge [1,2] was concentrated 

on the automated CT report generation task. This year, three labels for each side of the 

lungs were provided, namely labeling for the presence of TB lesions, pleurisy, and cav-

erns. In addition, a dataset containing chest CT scans of 403 TB patients (283 for train-

ing and 120 for testing) was provided. 

2 Methods 

2.1 Data 

The dataset provided for the CT report task training contained a total of 283 patients, 

with labeling provided for six categories. As seen in Figure 1(a), the training dataset 

distribution of pathology was quite unbalanced, with “lung affected” at both sides being 

the most commonly seen label, caverns being seen less, and pleurisy being the most 

rarely observed condition. 17 sub-category combinations of the six categories are 

shown in Figure 1(b), with “lung affected for both sides” (represented by [1,1,0,0,0,0]) 

as the sub-category with the most dataset counts of 73.  

 

Fig. 1. TB2020 dataset statistics. (a) Original dataset with six categories, (b) 17 sub-category 

combinations with “lung affected with both sides” showing the most counts, (c) dataset after 

laterality-reduction with laterality neglected in three categories, and (d) dataset for all sub-cate-

gory combinations after laterality-reduction.  

 



By neglecting the laterality of the lungs and re-arranging the dataset, we found that the 

dataset counts doubled to 576, but the categories for classification were sharply reduced 

from six to three, as shown in Figure 1(c). When combining these resulting three cate-

gories, there were only five sub-categories, as shown in Figure 1(d). The “lung affected 

by lesion” category (represented by [1,0,0]) had the most counts of 288, while lung with 

all three pathologies present had the fewest counts of 10. 

2.2 Pre-processing 

To perform laterality-reduction, it was necessary to properly obtain images from both 

sides of the lungs from the original dataset. Laterality-reduction images were obtained 

according to the algorithm pipeline as shown in Figure 2. The images for the Im-

ageCLEF tuberculosis task were provided as NIFTI 3D datasets. Two versions of lung 

segmentation masks were also provided [3,4]. The first version of segmentation (de-

noted as Mask 1) provided more accurate masks, containing masks for left and right 

laterality individually (values equal 1 for left and 2 for right), but in the most severe TB 

cases, there was a tendency to miss large abnormal regions of lungs. On the other hand, 

the second segmentation (denoted as Mask 2) provided less precise bounds, but was 

more stable in terms of including lesion areas, though it contained the entire lung area 

(including both left and right sides of the lungs).  

 
 

Fig. 2. Pipeline for the proposed 2-step laterality-reduction segmentation of the lungs. 

In order to take advantages of both masks, a two-step mask-cropping algorithm was 

proposed in this study. As shown in Figure 2, both segmentation versions were used to 

generate a laterality-reduction lung segmentation. First, the original NIFTI-formatted 

dataset was transformed into image data using the NiBabel package [5]. Then, the refor-

matted images were adjusted to three different window levels, namely baseline, lung, 



and soft tissue, and then normalized. For baseline window level, the foreground was 

obtained via the otsu_thresholding algorithm provided in openCV package [6]; for lung 

and soft tissue, the image levels were set as [-600,1500] and [50,350], respectively. 

Then, images were normalized to [0,1] with their mean and std value. Afterward, each 

laterality of the images was cropped according to Mask 1. For the left laterality of the 

lungs, the right boundary of the lungs was found and used to crop the left side from the 

images at stage 1. Similarly, the right laterality used the left boundary to obtain the right 

side from the images at stage 1. Finally, all three windows and levels of laterality-re-

duction data were saved, and annotation file was rearranged for use in further training.  

2.3 Network Design and Training Strategy 

As shown in Figure 3, a 3D convolutional block attention module (CBAM)-Resnet was 

designed to train the model for 3-class binary classification based on the PyTorch 

framework. A standard 3D-resnet34 [7] was used as the convolutional neural network 

backbone, with three fc layers to be the classifier. CBAM [8] was used to implement 

channel and spatial attention mechanisms for each block of the Resnet. Sigmoid was 

used as the activation function for binary classification. 

 

Fig. 3. Proposed laterality-reduction 3D CBAM-Resnet architecture. Each laterality of original 

data is cropped and masked, then fed into a 3D Resnet for training and inference. Each block of 

the Resnet is modified with convolutional block attention module (CBAM).  

To train the neural network, we used a workstation with 4 Nvidia GTX 1080 Ti video 

cards, 128 GB RAM, and a 1 TB solid state drive. The training dataset was randomly 

split to form a validation cohort comprised of 20% of the original dataset. During the 

training process, to avoid over-fitting, image augmentation and balanced sampler were 

implemented in each batch. For each batch, 12 datasets that were fed into the network 

were dynamically generated from saved metadata with different window levels as a 

single channel and were interpolated into a 3*64*256*256 size torch tensor. For the 

image augmentation, traditional data augmentation methods, including brightness, 



shear, scale, and flip were applied. The balanced sampler strategy was adopted during 

the training process, which equalized the data sampled from all three classes for each 

batch [9].  

Binary CrossEntroy (BCE) was used as the baseline for the multi-binary classifica-

tion loss. Then, to improve the performance of the network, weighted BCE loss was 

applied to let the network focus more on the “lung affected” and “caverns” categories. 

Weighted focal loss was also applied in order to let the network focus further on more 

difficult examples [10]. All losses were realized on the PyTorch platform according to 

equations (1) and (2):  

  
loss𝑓𝑜𝑐𝑎𝑙(𝑙𝑏𝑐𝑒 , 𝛼, 𝛾) = α(1 − 𝑙𝑏𝑐𝑒)

𝑟𝑙𝑏𝑐𝑒                                       (1) 

 
𝑙𝑏𝑐𝑒(o, t, w) = −1/n∑ 𝑤[𝑖] ∗ (𝑡[𝑖] ∗ log(𝑜[𝑖]) + (1 − 𝑡[𝑖])log(1 − 𝑜[𝑖]))𝑖 .        (2) 

  
Here, o means calculated output, t means target, and w means weights of classes. When  

𝛼 = 1 and 𝛾 = 0, loss𝑓𝑜𝑐𝑎𝑙  is the same with BCE loss. In this study, w equals [4, 2, 1] 

𝛾 = 2 for focal loss.  

3 Results 

3.1 Experimental Results 

In order to find the best combination of techniques for submission, we tested various 

combinations using half of the dataset with 20 epochs of training. For each epoch, half 

of the dataset was randomly selected for training. The experiments were conducted with 

and without balanced sampling, with and without CBAM, and with various losses (i.e., 

BCE, wBCE, wFocal). During the training, epochs with the best mean AUC value were 

saved. Then, models of different experiments were evaluated using the same validation 

dataset, with the results shown in Figure 4.  

Fig. 4. (a) and (b), which show techniques without and with balanced sampler 

(bsmp), demonstrate that mean AUC is significantly improved from 0.678 to 0.838. 

With CBAM in (c), the mean AUC is slightly improved to 0.844. With wBCE and 

wFocal as the loss instead of BCE in (d) and (e), the mean AUC is improved to 0.885 

and 0.892. Then, with the full dataset used as the training dataset, the mean AUC com-

bined with wFocal achieved the highest mean AUC score of 0.916.  

 



 

Fig. 4. Model performance comparison of different combinations of the techniques, including 

without cbam, without balanced sampler (bsmp), and with different losses (i.e., binary cross en-

tropy (bce), focal losses, weighted bce, and weighted focal) 

A comparison of experiment results is also summarized in Table 1.  

Table 1. Experimental Results Summary 

Experiments Metrics 

CBAM 
Balanced 

Sampler 
Loss 

Dataset 

Scale 
Loss Min AUC Mean AUC 

  BCE Half 0.458 0.55 0.678 

 √ BCE Half 0.553 0.76 0.838 

√ √ BCE Half 0.387 0.81 0.844 

√ √ wBCE Half 0.343 0.83 0.885 

√ √ wFocal Half 0.367 0.87 0.892 

√ √ wFocal Full 0.302 0.90 0.916 

 

3.2 Inference and Submission  

The provided TST dataset included 120 image files for testing. With our pre-processing 

pipeline, the TST data were cropped according to the provided Mask 1 and Mask 2 to 

generate 240 laterality-reduction image files. After prediction by the trained model, the 

results were rearranged so that both lateralities of one patient were combined again 

according to the requirement and saved as the .txt file to be submitted.  

As different techniques were applied, thus generating different results, some results 

were ensembled in order to generate better results. Ensembling results of weighted bi-

nary cross-entropy loss and weighted focal loss gave the best mean AUC. Test time 

augmentation was also attempted, and although it produced the best minimum AUC, it 



did not have the best mean AUC. A detailed description of our submissions is as fol-

lows: 

For submission ID 67838, the technique used was cbam + balanced sampler + 

wBCE, number of epochs was 60, and the best model with validation mean AUC of 

0.916 was saved and used. The mean AUC obtained on the TST dataset was 0.872, with 

min AUC of 0.810.  

For submission ID 67839, the technique used was cbam + balanced sampler + wFo-

cal, number of epochs was 60, and the best model with validation mean AUC of 0.918 

was saved and used. The mean AUC obtained on the TST dataset was 0.874, with min 

AUC of 0.809. 

For submission ID 67920, the technique used was cbam + balanced sampler + Focal, 

number of epochs was 48, and the best model with validation mean AUC of 0.907 was 

saved and submitted. The mean AUC obtained on the TST dataset was 0.832, with min 

AUC of 0.779.  

For submission ID 67921, the technique used was cbam + balanced sampler + BCE, 

number of epochs was 48, and the best model with validation mean AUC of 0.86 was 

saved and submitted. The mean AUC obtained on the TST dataset was 0.737, with min 

AUC of 0.708.  

For submission ID 67950, the submitted results were a combination of submission 

IDs 67838 and 67839. A mean AUC of 0.875 was achieved.   

4 Discussion and Conclusion 

In an effort to provide a CNN solution for a multi-binary classification task of tuber-

culosis findings, we proposed a laterality-reduction 3D CBAM Resnet. As severe class 

imbalance exists in the dataset provided, we tried several techniques to improve the 

model performance. First, with proper usage of both provided masks, each side of the 

lungs was cropped, masked, and rearranged so that laterality could be neglected. By 

cropping each side of the lungs, task number was reduced from six binary classifica-

tions to three, but the size of datasets doubled. Balanced sampler in each batch sampler 

was also used in this study to address the data imbalance problem. CBAM was used to 

add an attention mechanism in each block of the Resnet to further improve the perfor-

mance of the CNN. Modified binary focal loss was also realized in the PyTorch frame-

work to allow the network to focus on more difficult examples. Using all the aforemen-

tioned techniques, we achieved a mean AUC of 0.875 in the evaluation of the test da-

taset, and placed second in this competition.  

5 Perspectives for Future Work 

In this study, we only tested Resnet-based CNN architecture, as there was a limited 

timeframe and as the 3D dataset-based CNN was slow to train. In the future, more CNN 

architectures should be tested, such as 3D Resnet 50, 3D Resnet 101, 3D Densenet [11], 

3D Efficientnet [12], etc. Besides, even with our best performing model, the overfit still 



existed during training. While this was mostly due to the limited training dataset, addi-

tional image augmentation techniques, such as non-linear transformation, contrast ran-

dom adjusting, channel shuffling, etc. could be tested in the future to obtain even better 

results. Additionally, because we did not perform the k-fold cross-validation, the train-

ing and validation dataset used in this study contained some bias in the distribution of 

the category. In the future, at least a 5-fold cross-validation will be performed, and the 

results will be ensembled to form the final model.  
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