
Priberam at MESINESP Multi-label
Classification of Medical Texts Task

Rúben Cardoso, Zita Marinho, Afonso Mendes, and Sebastião Miranda

Priberam Labs, Lisbon, Portugal
labs.priberam.com

{rac,zam,amm,ssm}@priberam.com

Abstract. Medical articles are a crucial tool to provide current state
of the art treatments and diagnostics to medical professionals. However,
existing public databases such as MEDLINE contain over 27 million arti-
cles, making the use of efficient search engines crucial in order to navigate
and provide meaningful recommendations. Classifying these articles into
broader medical topics can improve retrieval of related articles [1]. The
set of medical labels considered for the MESINESP task is on the or-
der of several thousands of labels (DeCS codes), which falls under the
extreme multi-label classification problem [2]. The heterogeneous and
highly hierarchical structure of medical topics makes the task of man-
ually classifying articles extremely laborious and costly. It is, therefore,
crucial to automate the process of classification. Typical machine learn-
ing algorithms become computationally demanding with such a large
label set and achieving better recall becomes an unsolved problem.
This work presents Priberam’s participation at the BioASQ task Mesinesp.
We address the large multi-label classification problem through the use
of four different models: a Support Vector Machine (SVM) [3], the cus-
tomised search engine Priberam Search [4], a BERT based classifier [5],
and a SVM-rank ensemble [6] of all the previous models. Results show
that all three individual models perform well and the best performance
is achieved by their ensemble, granting Priberam the 6-th place in the
present challenge and making it the 2-nd best team.

1 Introduction

A growing number of medical articles is published every year, with a current es-
timated rate of at least one new article every 26 seconds [7]. The large magnitude
of both the documents and the assigned topics renders automatic classification
algorithms a necessity in organising and providing relevant information. Search
engines have a vital role in easing the burden of accessing this information effi-
ciently, however, these usually rely on the manual indexing or tagging of articles,
which is a slow and burdensome process [8].

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2020, 22-25 Septem-
ber 2020, Thessaloniki, Greece.

http://labs.priberam.com

The Mesinesp task consists in automatically indexing abstracts in Spanish
from two well-known medical databases, IBECS and LILACS, with tags from
a pool of 34118 hierarchically structured medical terms, the DeCS codes. This
trilingual vocabulary (English, Portuguese and Spanish) serves as a unique vo-
cabulary in indexing medical articles. It follows a tree structure that divides the
codes into broader classes and more refined sub-classes respecting their concep-
tual and semantic relationships [9].

In this task, we tackle the extreme multi-label (XML) classification problem.
Our goal is to predict for a given article the most relevant subset of labels
from an extremely large label set (order of tens of thousands) using supervised
training.1 Typical multi-label classification techniques are not suitable for the
XML setting, due to its large computational requirements: the large number
of labels implies that both label and feature vectors are sparse and exist in
high-dimensional spaces; and to address the sparsity of label occurrence, a large
number of training instances is required. These factors make the application of
such techniques highly demanding in terms of time and memory, increasing the
requirements of computational resources.

The Mesinesp task is even more challenging due to two reasons: first, the
articles’ labels must be predicted only from the abstracts and titles; and sec-
ond, all the articles to be classified are in Spanish, which prevents the use of
additional resources available only for English, such as BioBERT [11] and Clin-
icalBERT [12].

This paper describes our participation at the BioASQ task Mesinesp. We ex-
plore the performance of a one-vs.-rest model based on Support Vector Machines
(SVM) [3] as well as that of a proprietary search engine, Priberam Search [4],
which relies on inverted indexes combined with a k-nearest neighbours classifier.
Furthermore, we took advantage of BERT’s contextualised embeddings [5] and
tested three possible classifiers: a linear classifier; a label attention mechanism
that leverages label semantics; and a recurrent model that predicts a sequence
of labels according to their frequency. We propose the following contributions:

– Application of BERT’s contextualised embeddings to the task of XML clas-
sification, including the exploration of linear, attention based and recurrent
classifiers. To the best of our knowledge, this work is the first to apply a
pretrained BERT model combined with a recurrent network to the XML
classification task.

– Empirical comparison of a simple one-vs.-rest SVM approach with a more
complex model combining a recurrent classifier and BERT embeddings.

– An ensemble of the previous individual methods using SVM-rank, which was
capable of outperforming them.

1 The task of multi-label classification differs from multi-class classification in that
labels are not exclusive, which enables the assignment of several labels to the same
article, making the problem even harder [10].

2 Related Work

Currently, there are two main approaches to XML: embedding based methods
and tree based methods.

Embedding based methods deal with the problem of high dimensional feature
and label vectors by projecting them onto a lower dimensional space [8,13]. Dur-
ing prediction, the compressed representation is projected back onto the space of
high dimensional labels. This information bottleneck can often reduce noise and
allow for a way of regularising the problem. Although very efficient and fast, this
approach assumes however that the low-dimensional space is capable of encod-
ing most of the original information. For real world problems, this assumption
is often too restrictive and may result in decreased performance.

Tree based approaches intend to learn a hierarchy of features or labels from
the training set [14, 15]. Typically, a root node is initialised with the complete
set of labels and its children nodes are recursively partitioned until all the leaf
nodes contain a small number of labels. During prediction, each article is passed
along the tree and the path towards its final leaf node defines the predicted set
of labels. These methods tend to be slower than embedding based methods but
achieve better performance. However, if a partitioning error is made near the
top of the tree, its consequences are propagated to the lower levels.

Furthermore, other methods should be referred due to their simple approach
capable of achieving competitive results. Among these, DiSMEC [10] should
be highlighted because it follows a one-vs.-rest approach which simply learns a
weight vector for each label. The multiplication of such weight vector with the
data point feature vector yields a score that allows the classification of the label.
Another simple approach consists of performing a set of random projections
from the feature space towards a lower dimension space where, for each test
data point, a k-nearest neighbours algorithm performs a weighted propagation
of the neighbour’s labels, based on their similarity [16].

We propose two new approaches which are substantially distinct from the
ones discussed above. The first one uses a search engine based on inverted in-
dexing and the second leverages BERT’s contextualised embeddings combined
with either a linear or recurrent layer.

3 XML Classification Models

We explore the performance of a one-vs.-rest SVM model in §3.1, and a cus-
tomised search engine (Priberam Search) in §3.2. We further experiment with
several classifiers leveraging BERT’s contextualised embeddings in §3.3. In the
end we aggregate the predictions of all of these individual models using a SVM-
Rank algorithm in §3.4.

3.1 Support Vector Machine

Our first baseline consists of a simple Support Vector Machine (SVM) using a
one-vs.-rest strategy. We train an independent SVM classifier for each possible

label. To reduce the burden of computation we only consider labels with fre-
quency above a given threshold fmin. Each classifier weight w ∈ Rd measures
the importance assigned to each feature representation of a given article and is
trained to optimise the max-margin loss of the support vectors and the hyper
plane xi ∈ Rd [3]:

min
w

1

2
wwT + C

l∑
i=1

ξ(w;xi, yi) (1)

s.t. yi(w
>xi + b ≥ 1− ξi)

where (xi, yi) are the article-label pairs, C is the regularisation parameter, b is
a bias term and ξ corresponds to a slack function used to penalise incorrectly
classified points and w is the vector normal to the decision hyper-plane. We used
the abstract’s term frequency–inverse document frequency (tf-idf) as features to
represent xi.

3.2 Priberam Search

The second model consists of a customised search engine, Priberam Search, based
on inverted indexing and retrieval using the Okapi-BM25 algorithm [4]. It uses an
additional k-nearest neighbours algorithm (k-NN) to obtain the set of k indexed
articles closest to a query article in feature space. This similarity is based on
the frequency of words, lemmas and root-words, as well as label semantics and
synonyms. A score is given to each one of these articles and to each one of their
labels and label synonyms, and a weighted sum of these scores yields the final
score assigned to each label.

3.3 XML BERT Classifier

Language model pretraining has recently advanced the state of the art in several
Natural Language Processing tasks, with the use of contextualised embeddings
such as BERT, Bidirectional Encoder Representations from Transformers [5].
This model consists of 12 stacked transformer blocks and its pretraining is per-
formed on a very large corpus following two tasks: next sentence prediction
and masked language modelling. The nature of the pretraining tasks makes this
model ideal for representing sentence information (given by the representation
of the [CLS] token added to the beginning of each sentence). After encoding a
sentence with BERT, we apply different classifiers, and fine tune the model to
minimise a multi-label classification loss:

BCELoss(xi;yi) = yi,j log σ(xi,j) + (1− yi,j) log(1− σ(xi,j)), (2)

where yi,j denotes the binary value of label j of article i, which is 1 if it is present
and 0 otherwise, xi,j represents the label predictions (logits) of article i and label
j, and σ is the sigmoid function.

3.3.1 In-domain transfer knowledge Additionally, we performed an extra
step of pretraining. Starting from the original weights obtained from BERT
pretrained in Spanish, we further pretrained the model with a task of masked
language modelling on the corpus composed by all the articles in the training
set. This extra step results in more meaningful contextualised representations
for this medical corpus, whose domain specific language might differ from the
original pretraining corpora.

After this, we tested three different classifiers: a linear classifier in §3.3.2, a
linear classifier with label attention in §3.3.3 and a recurrent classifier in §3.3.4.

3.3.2 XML BERT Linear Classifier The first and simplest classifier con-
sists of a linear layer which maps the sequence output (the 768 dimensional
embedding - corresponding to the [CLS] token) to the label space, composed by
33702 dimensions corresponding to all the labels found in the training set. Such
architecture is represented in figure 1. We minimise binary cross-entropy using
sigmoid activations to allow for multiple active labels per instance, see Eq. 2.
This classifier is hereafter designated Linear.

Fig. 1: XML BERT Linear Classifier: Flowchart representing BERT’s pooled
output (in blue) and the simple linear layer (W in green) used as XML classifier.

3.3.3 XML BERT With Label Attention For the second classifier, we
assume a continuous representation with 768 dimensions for each label. We ini-
tialise label embeddings as the pooled output embeddings (corresponding to
the [CLS] token) of a BERT model whose inputs were the string descriptors
and synonyms for each label. We consider a key-query-value attention mecha-
nism [17], where the query corresponds to the pooled output of the abstract’s
contextualised representation and the keys and values correspond to the label
embeddings. We further consider residual connections, and a final linear layer
maps these results to the decision space of 33702 labels using a linear classifier,
as shown in figure 2. Once again, we choose a binary cross-entropy loss (Eq.2).
This classifier is hereafter designated Label attention.

Fig. 2: XML BERT with Label Attention Classifier: Article’s pooled output
(blue) is followed by an extra step of attention over the label embeddings (red)
which are finally mapped to a XML linear classifier over labels (green).

3.3.4 XML BERT With Gated Recurrent Unit In the last classifier, we
predict the article’s labels sequentially. Before the last linear classifier used to
project the final representation onto the label space, we add a Gated Recurrent
Unit (GRU) network [18] with 768 units that sequentially predicts each label
according to label frequency. A flowchart of the architecture is shown in figure
3. This sequential prediction is performed until the prediction of the stopping
label is reached.

Fig. 3: XML BERT GRU Classifier: The GRU network precedes the linear layer
and sequentially predicts the labels. The symbol ++ stands for vector concate-
nation and lt is the label representation predicted by the GRU at time-step
t.

We consider a binary cross-entropy loss with two different approaches. On
the first approach, all labels are sequentially predicted and the loss is computed
only after the stopping label is predicted, i.e., the loss value is independent of
the order in which the labels are predicted. It only takes into account the final
set. This loss is denominated Bag of Labels loss (BOLL) and it is given by:

LBOLL = BCELoss(xi;yi) (3)

where xi and yi are the total set of predicted logits and gold labels for the
current article i, correspondingly. The models trained with this loss are hereafter
designated Gru Boll.

The second approach uses an iterative loss which is computed at each step
of the sequential prediction of labels. We compare each predicted label with the
gold label, the loss is computed and added to a running loss value. In this case,
the loss is denominated Iterative Label loss (ILL):

LILL =
∑
t∈T

BCELoss(x
(t)
i ;y

(t)
i) (4)

where T is the length of the label sequence, t denotes the time-steps taken by

the GRU until the “stop label” is predicted, and x
(t)
i and y

(t)
i are the predicted

logits and gold labels for time-step t and article i, respectively. Models trained
with this loss are hereafter designated Gru Ill.

Although only one of the losses accounts directly for prediction order, this
factor is always relevant because it affects the final set of predicted labels. This
way, the model must be trained and tested assuming a specific label ordering.
For this work, we used two orders: ascending and descending label frequency on
the training set, designated Gru ascend and Gru descend, respectively.

Additionally, we developed a masking system to force the sequential predic-
tion of labels according to the chosen frequency order. This means that at each
step the output label set is reduced to all labels whose frequency fall bellow or
above the previous label, depending on the monotonically ascending or descend-
ing order, respectively. Models in which such masking is used are designated
Gru w/ mask.

3.4 Ensemble

Furthermore, we developed an ensemble model combining the results of the pre-
viously described SVM, Priberam Search and BERT with GRU models. This
ensemble’s main goal is to leverage the label scores yielded by these three indi-
vidual models in order to make a more informed decision regarding the relevance
of each label to the abstracts.

We chose an ensembling method based on a SVM-rank algorithm [6] whose
features are the normalised scores yielded by the three individual models, as
well as their pairwise product and full product. These scores are the distance to
the hyper-plane in the SVM model, the k-nearest neighbours score for Priberam
Search and the label probability for the BERT model.

An SVM-rank is a variant of the support vector machine algorithm used to
solve ranking problems [19]. It essentially leverages pair-wise ranking methods to
sort and score results based on their relevance for a specific query. This algorithm
optimises an analogous loss to the one shown in Eq. 1. Such ensemble is hereafter
designated SVM-rank ensemble.

4 Experimental Setup

We consider the training set provided for the Mesinesp competition containing
318658 articles with at least one DeCS code and an average of 8.12 codes per
article. We trained the individual models with 95% of this data. The remaining
5% were used to train the SVM-rank algorithm. The provided smaller official
development set, with 750 samples, was used to fine-tune the individual model’s
and ensemble’s hyper-parameters, while the test set, with 500 samples, was used
for reporting final results. These two sets were manually annotated by experts
specifically for the MESINESP task.

4.1 Support Vector Machine

For the SVM model we chose to ignore all labels that appeared in less than
20 abstracts. With this cutoff, we decrease the output label set size to ≈ 9200.
Additionally, we use a linear kernel to reduce computation time and avoid over-
fitting, which is critical to train such a large number of classifiers. Regarding
regularisation, we obtained the best performance using a regularisation param-
eter set to C = 1.0, and a squared hinge slack function whose penalty over the
misclassified data points is computed with an `2 distance.

Furthermore, to enable more control over the classification boundary, after
solving the optimisation problem we moved the decision hyper-plane along the
direction of w. We empirically determined that a distance of −0.3 from its
original position resulted in the best µF1 score. This model was implemented
using a scikit-learn.2

4.2 Priberam Search

To use the Priberam Search Engine, we first indexed the training set taking
into account the abstract text, title, complete set of gold DeCS codes, and also
their corresponding string descriptors along with some synonyms provided3. We
tuned the number of neighbours k = [10, 20, 30, 40, 50, 60, 70, 100, 200] in the
development set for the k-NN algorithm and obtained the best results for k = 40.
To decide whether or not a label should be assigned to an article, we fine-
tuned a score threshold over the interval [0.1, 0.5] using the official development
set, obtaining a best performing value of 0.24. All labels with score above the
threshold were picked as correct labels.

2 scikit-learn.org
3 https://temu.bsc.es/mesinesp/wp-content/uploads/2019/12/DeCS.2019.v5.

tsv.zip

https://scikit-learn.org
https://temu.bsc.es/mesinesp/wp-content/uploads/2019/12/DeCS.2019.v5.tsv.zip
https://temu.bsc.es/mesinesp/wp-content/uploads/2019/12/DeCS.2019.v5.tsv.zip

4.3 BERT

For all types of BERT classifiers, we used the Transformers and PyTorch Python
packages [20,21].

We initialised BERT’s weights from its cased version pretrained on Spanish
corpora, bert-base-spanish-wwm-cased4.

We further performed a pretraining on the Mesinesp dataset to obtain better
in domain embeddings. For the pretraining and classification task, table 1 shows
the training hyper-parameters.

For all the experiments with BERT, the complete set of DeCS codes was
considered as the label set.

Hyper-parameter Pretraining Classification

Batch size 4 8
Learning rate 5 · 10−5 2 · 10−5

Warmup steps 0 4000
Max seq lenght 512 512
Learning rate decay - linear
Dropout probability 0.1 0.1

Table 1: Training hyper-parameters used for BERT’s pretraining and classifica-
tion tasks.

4.4 Ensemble

Our ensemble model aggregates the prediction of all the individual contenders
and produces a final predicted label set. To improve recall we lowered the thresh-
olds set for each individual model until the value for which the average number
of predicted labels per abstract was approximately double the average number
of gold labels. This ensures that the SVM-rank algorithm was trained with a
balanced set, resulting in a system in which the individual models have very
high recall and the ensemble model is responsible for precision.

We trained the SVM-rank model with the 5% hold-out data of the training
set. Furthermore, SVM-rank returns a score for each label in each abstract,
making it necessary to define a threshold for classification. This threshold was
fine-tuned over the interval [−0.5, 0.5] using the official Mesinesp development
set, yielding a best performing cut-off score of −0.0233.

We also fine-tuned the regularisation parameter, C. We experimented the
values C = [0.01, 0.1, 0.5, 1, 5, 10] obtaining the best performance for C = 0.1.
The current model was implemented using a Python wrapper for the dlib C++
toolkit [22].

4 https://github.com/dccuchile/beto

https://github.com/dccuchile/beto

5 Results

Table 2 shows the µ-precision, µ-recall and µ-F1 metrics for the best performing
models described above, evaluated on both the official development and test sets.

The comparison between the scores obtained for the one-vs.-rest SVM and
Priberam Search models shows that the SVM outperforms the k-NN based Prib-
eram Search in terms of µF1, which is mostly due to its higher recall. Note that,
although not ideal for multi-label problems, the one-vs.-rest strategy fro the
SVM model was able to achieve a relatively good performance, even when the
predicted label set was significantly reduced.

Model
Development set Test set

µP µR µF1 µP µR µF1

SVM 0.4216 0.3740 0.3964 0.4183 0.3789 0.3976

Priberam Search 0.4471 0.3017 0.3603 0.4571 0.2700 0.3395

Bert-Gru Boll ascend 0.4130 0.3823 0.3971 0.4293 0.3314 0.3740

SVM-rank ensemble 0.5056 0.3456 0.4105 0.5336 0.3320 0.4093

Table 2: Micro precision (µP), micro recall (µR) and micro F1 (µF1) obtained
with the 4 submitted models for both the development and test sets. For each
metric, the best performing model is identified in bold.

Table 3 shows the performance of several classifiers used with BERT. Note
that, for these models, in order to save time and computational resources some
tests were stopped before achieving their maximum performance, allowing nonethe-
less comparison with other models.

We trained linear classifiers using the BERT model with pretraining on the
MESINESP corpus for 660k steps (≈ 19 epochs) and without such pretrain-
ing (marked with *). Results show that, even with an under-trained classifier,
such pretraining is already advantageous. This pretraining was employed for all
models combining BERT embeddings with a GRU classifier. The label-attentive
Bert model (Gru Boll ascend) shows negligible impact on performance, when
compared with the simple linear classifier (Linear).

We consider three varying architectures of the Bert-Gru model: Bag of
Labels loss (Boll) or Iterative Label loss (Ill), ascending or descending label
frequency, and usage or not of masking. Taking into account the best score
achieved, the BOLL loss performs better than the ILL loss, even with a smaller
number of training steps. For this BOLL loss, it is also evident that the ordering
of labels with ascending frequency outperforms the opposite order, and that
masking results in decreased performance.

On the other hand, for the ILL loss, masking improves the achieved score
and the ordering of labels with descending frequency shows better results. The

best classifier for a BERT-based model is the GRU network trained with a Bag
of Labels loss and with labels provided in ascending frequency order (Gru Boll
ascend). This model was further trained for a total of 28 epochs resulting in
a µF1=0.4918 on the 5% hold-out of the training set. It is important to notice
the performance drop from the 5% hold-out data to the official development set.
This drop is likely a result of the mismatch between the annotation methods
used in the two sets, given that the development set was specifically manually
annotated for this task.

Surprisingly, the BERT based model shows worse performance than the SVM
on the test set. Despite their very similar µF1 scores for the development set,
the BERT-GRU model suffered a considerable performance drop from the de-
velopment to the test set due to a decrease in recall. This might indicate some
over-fitting of hyper-parameters and a possible mismatch between these two ex-
pert annotated sets.

Additionally, as made explicit in table 2, the ensemble combining the results
of the SVM, Priberam Search and the best performing BERT based classifier
achieved the best performance on the development set, outperforming all the
individual models.

BERT classifier Training steps µF1

Linear* 220k 0.4476

Linear 250k† 0.4504

Label attention* 700k 0.4460

Gru Boll ascend 80k 0.4759

Gru Boll descend 40k 0.4655

Gru Boll ascend w/ mask 100k† 0.4352

Gru Ill descend 240k† 0.4258

Gru Ill descend w/ mask 240k† 0.4526

Gru Ill ascend w/ mask 240k† 0.4459

Table 3: µF1 metric evaluated for the 5% hold-out of the training set. All
models have been pretrained on the Mesinesp corpus, except for those duly
marked. BOLL: Bag of Labels loss. ILL: Iterative Label loss. *: not pretrained
on Mesinesp corpus. †: training stopped before maximum µF1 was reached.

Finally, table 4 shows additional classification metrics for each one of the
submitted systems, as well as their rank within the Mesinesp task. The analysis
of such results makes clear that for the three considered averages (Micro, Macro
and per sample), the SVM model shows the best recall score. For most of the
remaining metrics, the SVM-rank ensemble is able to leverage the capabilities of

the individual models and achieve considerable performance gains, particularly
noticeable for the precision scores.

Metric SVM
Priberam
Search

BERT-GRU
boll ascend

SVM-rank
ensemble

µF1 0.3976 (7o) 0.3395 (13o) 0.3740 (9o) 0.4093(6o)

µP 0.4183 (17o) 0.4571 (10o) 0.4293 (15o) 0.5336(6o)

µR 0.3789(6o) 0.2700 (13o) 0.3314 (8o) 0.3320 (7o)

MaF1 0.4183(8o) 0.1776 (13o) 0.2009 (11o) 0.2115 (10o)

MaP 0.4602 (9o) 0.4971 (8o) 0.4277 (11o) 0.5944(3o)

MaR 0.2609(8o) 0.1742 (16o) 0.2002 (11o) 0.2024 (10o)

EbF1 0.3976 (7o) 0.3393 (13o) 0.3678 (9o) 0.4031(6o)

EbP 0.4451 (15o) 0.4582 (12o) 0.4477 (14o) 0.5465(3o)

EbR 0.3904(6o) 0.2824 (13o) 0.3463 (8o) 0.3452 (8o)

Table 4: Micro (µ), macro (Ma) and per sample (Eb) averages of the precision,
recall and F1 scores, followed by score position within the Mesinesp task. For
each metric, the best performing model is identified in bold.

6 Conclusions

This paper introduces three type of extreme multi label classifiers: an SVM, a
k-NN based search engine and a series of BERT classifiers. Our one-vs.-rest SVM
model shows the best performance on all recall metrics. We further provide an
empirical comparison of different variants of multi-label BERT based classifiers,
where the Gated Recurrent Unit network with the Bag of Labels loss shows the
most promising results. This model yields slightly better results than the SVM
model on the development set, however, due to a drop in recall, under-performs
it on the test set. Finally, the SVM-rank ensemble is able to leverage the label
scores yielded by the three individual models and combine them into a final
ranking model with a precision gain on all metrics, capable of achieving the
highest µF1 score (being the 6-th best model in the task).

7 Acknowledgements

This work is supported by the Lisbon Regional Operational Programme (Lisboa
2020), under the Portugal 2020 Partnership Agreement, through the European
Regional Development Fund (ERDF), within project TRAINER (No 045347).

References

1. Yi X, Allan J. A comparative study of utilizing topic models for information re-
trieval. European conference on information retrieval, pp. 29-41. Springer (2009).

2. Shen Y, Yu HF, Sanghavi S, Dhillon I. Extreme Multi-label Classification from
Aggregated Labels. arXiv preprint arXiv:2004.00198 (2020).

3. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. LIBLINEAR: A library for large
linear classification. Journal of machine learning research (2008).

4. Miranda S, Nogueira D, Mendes A, Vlachos A, Secker A, Garrett R, Mitchel J,
Marinho Z. Automated Fact Checking in the News Room. In The World Wide Web
Conference (2019).

5. Devlin J, Chang M, Lee K, Toutanova K. BERT: pretraining of Deep Bidirectional
Transformers for Language Understanding. Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics
(2019).

6. Joachims T. Optimizing search engines using clickthrough data. InProceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining (2002).

7. Garba, S., Ahmed, A., Mai, A., Makama, G. and Odigie, V. Proliferations of scien-
tific medical journals: a burden or a blessing. Oman medical journal, 25(4), p.311
(2010).

8. Zhang W, Yan J, Wang X, Zha H. Deep extreme multi-label learning. Proceedings
of the 2018 ACM on International Conference on Multimedia Retrieval (2018).

9. VHL Network Portal. Red.bvsalud.org. 2020. Decs. [online] Available at:
http://red.bvsalud.org/decs/en/about-decs/ (Accessed 2 May 2020).

10. Babbar R, Schölkopf B. DiSMEC: Distributed Sparse Machines for Extreme Multi-
label Classification. Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining (2017).

11. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. BioBERT: a pre-trained
biomedical language representation model for biomedical text mining. Bioinformat-
ics (2020 Feb).

12. Alsentzer E, Murphy JR, Boag W, Weng WH, Jin D, Naumann T, McDermott
M. Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323
(2019).

13. Tai F, Lin HT. Multilabel classification with principal label space transformation.
Neural Computation (2012).

14. Prabhu Y, Varma M. Fastxml: A fast, accurate and stable tree-classifier for ex-
treme multi-label learning. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (2014).

15. Agrawal R, Gupta A, Prabhu Y, Varma M. Multi-label learning with millions of
labels: Recommending advertiser bid phrases for web pages. Proceedings of the 22nd
international conference on World Wide Web (2013).

16. Verma Y. An Embarrassingly Simple Baseline for eXtreme Multi-label Prediction.
arXiv preprint arXiv:1912.08140 (2019).

17. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L,
Polosukhin I. Attention is all you need. Advances in neural information processing
systems, pp. 5998-6008 (2017).

18. Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Ben-
gio Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (2014).

19. Liu TY. Learning to rank for information retrieval. Springer Science & Business
Media (2011).

20. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T,
Louf R, Funtowicz M, Brew J. HuggingFace’s Transformers: State-of-the-art Natural
Language Processing. ArXiv (2019).

21. Paszke A, Gross S, and Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Advances in Neural
Information Processing Systems 32, p.8024–8035 (2019)

22. King DE. Dlib-ml: A machine learning toolkit. The Journal of Machine Learning
Research (2009).

	Priberam at MESINESP Multi-label Classification of Medical Texts Task

