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Abstract. The paper is devoted to statistical methods estimation of probabilistic 

characteristics of rhythmocardiosignal with increased resolution on the basis of 

its model in the form of a vector of stationary and stationary related random 

processes. The hypothesis about the normality of the law of components distri-

bution of the rhythmocardiosignal with increased resolution is confirmed. It was 

made a decomposition of the statistical estimates of autocorrelation and inter-

correlation functions allowed to obtain spectral and inter-spectral power density 

of vector components, that allowed to reduce the space dimension of diagnostic 

features in heart rate analysis systems based on rhythmocardiosignals with in-

creased resolution. That allowed to substantiate the vector of diagnostic features 

in the systems of cardiac rhythm analysis based on the rhythmocardiosignals 

with increased resolution is substantiated. 
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1 Introduction 

Automated heart rhythm analysis systems make it possible to evaluate both the state 

of the cardiovascular system and the state of the adaptive capacity of the human body 

as a whole. Most modern heart rate analysis systems are based on the use of stochastic 

mathematical models of rhythmocardiosignal and methods of its statistical analysis by 

rhythmocardiogram, which is an ordered set of durations of R-R intervals in a regis-

tered electrocardiosignal [1-8].  

However, this approach makes it impossible to detect subtle, more detailed features 

of the heart rhythm, since RR intervals reflect only the change in the duration of the 
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cardiac cycles, and not the whole totality of time intervals between single-phase val-

ues of the electrocardiosignal, which makes it impossible to describe the rhythm of 

hearts in full.  

In papers [9,10], in order to provide a more informative description of the heart 

rhythm, a new approach to its analysis based on rhythmocardiosignal with increased 

resolution has been substantiated. The classical rhythmocardiogram is embedded in 

the increased-resolution rhythmocardiogram, which is the basis for increasing the 

level of informativeness of the heart rate analysis in modern computer systems of 

functional diagnostics of the human heart condition based on the rhythmocardiogram 

with increased resolution. 

In papers [9, 10], the use of a random variable vector as a mathematical model of 

rhythmocardiosignal with increased resolution is substantiated. However, this model 

is a relatively poor mathematical model of rhythmocardiosignal with increased resolu-

tion, since it does not allow to study its time dynamics. To take into account the time 

dynamics of rhythmocardiosignal with increased resolution, it is necessary to use a 

mathematical apparatus of the theory of random processes, that is, to consider it as a 

vector of discrete-time random processes. 

In this paper, we develop methods for the statistical estimation of the probabilistic 

characteristics of a rhythmocardiogram with high resolution based on its model in the 

form of a vector of stationary and stationary related random sequences.  

2 Methods 

One of the simplest stochastic models that take into account the dynamics of 

rhythmocardiosignal with increased resolution is the vector of 
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If 2=s  and 2=p , then from the formula (4) follows such a convergence in the 
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If in the formula (5) 1=p , that is llll p ==== ...21 , then we have the convergence 

of the estimate in the root-mean-square sense to the one-dimensional initial moment 

function ( )mс
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If in the formula (6) 1=s , then we will have the convergence of the estimate in the 
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If 2=s  and 2=p , then from the formula (8) such a convergence follows in the 

root-mean-square sense for the correlation function ( )21,
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If in the formula (9) 2=s  and 1=p , that is llll p ==== ...21
, then we will have a 

convergence of the estimate in the root-mean-square sense to the variance
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The above formulas reflect the convergence in the root-mean-square sense of the 

statistical estimates to the corresponding probabilistic characteristics of rythmo-

cardisignal with increased resolution, and, therefore, the statistical estimates are con-

sistent. 

Since in real computer systems of cardiac rhythm analysis the finite number of cycles 

of electrocardiosignal is always recorded, this fact should be taken into account also 

in the statistical estimation of probabilistic characteristics of the rhythmocardiosignal 

with increased resolution. Namely, the statistical evaluation of the probabilistic char-

acteristics of the rhythmocardiosignal with increased resolution is to obtain the reali-

zations of statistical estimates that can be taken as  pproximation to the correspond-

ing probabilistic characteristics of the analyzed rhythmocardiosignal. 

We write down the expressions to calculate the realizations of the corresponding sta-

tistical estimates of the probabilistic characteristics of the vector of 
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Where )( 11 MMM   – maximum value of arguments pmm ,...,1 , which is selected 

depending on the number of averages in the realization of statistics to provide the 

required level of accuracy and assurance of statistical estimation. 

In particular, if in the formula (11) 1=p , that is llll p ==== ...21 , then we will 

have an expression to calculate the realization of the statistical estimate ( )xF
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An expression to calculate the realization of a statistical estimate of a mixed initial 
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If 2=s  and 2=p , then from formula (13) follows the expression to calculate the 

realization of the statistical estimate ( )21,ˆ
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If in the formula (13) 1=p , that is llll p ==== ...21 , then we get an expression to 

calculate the realization of the statistical estimate 
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If in the formula (15) 1=s , then we get an expression to calculate the realization of 

the statistical estimate 
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An expression to calculate the realization of a statistical estimate of a mixed initial 
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If 2=s  and 2=p , then from the formula (17) follows the expression to calculate 

the realization of the statistical estimation of the correlation function ( )21,
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Since for stationary and stationary random sequences, correlation functions are func-

tions of only one integer argument u , which is equal to 21 mmu −= , then their statis-

tical estimates also depend on only one argument u . In this case, assuming the er-

godicity of the stationary components of the vector ),( mL Ξ , then the formula (18) 

will look like this: 
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If in the formula (19) 0=u , а lll == 21 , then we will have an expression to calcu-

late the realization of the variance estimate 
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3 Normality hypothesis test of the vector components  

The most comprehensive information on the probabilistic characteristics of a in-

creased-resolution rhythmocardiogram is contained in the distribution function family 
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family. However, due to the high computational complexity of the methods of statisti-

cal estimation of multidimensional vector distribution functions ),( mL Ξ , it is nec-

essary to study increased-resolution rhymocardialsignals to substantiate their types of 

distribution, in particular, to test the statistical hypothesis for the normality (Gaussian) 

of the stationary components of a vector, which, if confirmed, will allow us to apply 

the model of the studied rhythmocardiogram within the framework of spectral-

correlation theory, in particular instead of a tedious, computationally complex estima-

tion of distribution functions, to apply simpler computational procedures for estimat-

ing spectral-correlation characteristics of rhythmocardiosignals with increased resolu-

tion. 
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Value 
2  in expression (22) is a random variable, the distribution of which at 

→M , tend to 
2  - distribution )(xPq , which depends on the parameter q , which 

is called the number of freedom degrees equal to: 

,1−−= sIq                                                  (23) 

where s  - the number of theoretical distribution parameters, against which the hy-
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),( mL Ξ  2=s . 

Application of 
2 - test implies that some level of significance is given previously 

  (for example, 05.0;01.0 ==  ), which makes it possible to calculate the quan-

tile 
2
q  of distribution 

2  for a given   and q . If the value 
2 , calculated by the 

formula (22), more than 
2
q , then it is considered, that a theoretical distribution (for 

example, normal) is in poor agreement with the results of observations at a given level 



 

of significance  . Conversely, if the value is calculated 2  less than 
2
q , then it is 

considered, that the theoretical and empirical distributions is in good agreement. 

4 The results of statistical analysis 

In order to obtain the probable result of verification for the normality of the law of 

distribution of the rhythmocardialsignal with the increased resolution, the realization 

of the electrocardiosignal in the second lead, which contained 245 cardiac cycles and 

was generated by the work of the heart of the patient with a conditional norm, was 

processed. From the registered electrocardiogram according to the method of auto-

matic formation of rhythmocardiogram with high accuracy, the realization received 

}245,1,3,1),({)(
__________

3 ===


mlmTm l
Ξ  of tricomponent vector  

}245,1,3,1,),,({),(
__________

3 === mlmTm l ΩΞ   of stationary and stationary-

related random sequences.  

The first component 
),(1 mT 

 of this vector is a random stationary sequence, 

which describes the duration P - intervals in the electrocardiosignal for all of its 245 

recorded cycles.  

The plot of realization 
)(1 mT

  of this component is shown in Figure 1,а. Second 

component 
),(2 mT 

 of this vector is a random stationary sequence, which describes 

the duration R - intervals in the electrocardiosignal.  

The plot of realization 
)(2 mT

  of the second component is shown in the figure 1,b. 

The third component 
),(3 mT 

 of this vector is a random stationary sequence, which 

describes the duration T - intervals in the electrocardiosignal. Plot of realization 

)(3 mT
  the third component is shown in the figure 1,c. 
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a)                                                b)                                                c) 

Fig. 1. Plot of realization: a) )(1 mT


 the first component ),(1 mT  , which describes 

the duration P - intervals in the electrocardiosignal; b) )(2 mT


 the second compo-

nent ),(2 mT  , which describes the duration R - intervals in the electrocardiosignal; 

c) )(3 mT


 third component ),(3 mT  , which describes the duration T - intervals in 

the electrocardiosignal 



 
a)                                                b)                                                c) 

Fig. 2. Histogram for: a) the first component ),(1 mT  , which describes the duration 

P - intervals in the electrocardiosignal; b) the second component ),(2 mT  , which 

describes the duration R - intervals in the electrocardiosignal; c) third components 

),(3 mT  , which describes the duration T - intervals in the electrocardiosignal 

 

The number of freedom degrees was chosen equal 7=q , level of signification 

05.0= , і, respectively quantile 
2  - distribution with q  freedom degrees  

07.142
7,95.0 = . Figures 2, a-c show histograms for realizations )(1 mT


, )(2 mT


 and 

)(3 mT


 the corresponding three stationary components of the vector ),(3 mΞ . 

Table 1 shows the results of application 
2 - test for checking the normality of the 

law of distribution of three stationary components of a vector ),(3 mΞ , that set the 

rhythmcardiosignal with increased resolution. 

Table 1. The results of application 

Station-

ary com-

ponent 

number 

Quantile value 
2
q  at 05.0=  

and 7=q  

The value of re-

alization a random 

variable 
2  

Hypothesis testing 

result 

1 14,067 1,26 22
 q  (confirmed) 

2 14,067 1,02 22
 q  (confirmed) 

3 14,067 0,49 22
 q  (confirmed) 

Thus, based on the results of normality hypothesis testing of the distribution of the 

stationary components of a random vector ),( mL Ξ  by Pearson's criterion, it is 

found that these results do not contradict the hypothesis for normality of its distribu-

tion. Normality of the vector ),( mL Ξ  is the basis for the substantiation of diagnos-

tic features in systems of cardiac rhythm analysis according to rhythmocardiogram 

with increased resolution within the spectral-correlation theory, which significantly 

reduces the computational complexity of such analysis. In this case, to evaluate the 

probabilistic structure of the vector ),( mL Ξ  of stationary and stationary-related 

random sequences, it is sufficient to statistically evaluate only the vector 



 

},1,{
____

1
1 Llс

lTL ==С  his mathematical expectations according to formula (16) and the 

matrix of correlation functions ( ) ],1,,[
___

212
21

Lllur
lTlTT ==R  according to formula (19). 

5 Choice substantiation of diagnostic features in cardiac rhythm 

analysis systems by rhythmocardiosignals with increased 

resolution 

An important step in the development of information systems of cardiac rhythm anal-

ysis is a substantiated choice of diagnostic features set, which will be used for auto-

mated procedure for diagnostic decision making. There are mainly two requirements 

for this set of diagnostic features. The first requirement is the informativeness re-

quirement of many diagnostic features, and the second - the requirement of minimali-

ty of their number.  

The first requirement regarding the informative nature of the diagnostic features is the 

ability to distinguish between different state of the system under study on these fea-

tures. Such informativeness of diagnostic features is determined by two of their char-

acteristics, that is, sensitivity of diagnostic features to change of a state of regulatory 

mechanisms of cardiovascular system and organism as a whole, and also insensitivity 

to various non-informative noise factors (interferences) which are always present in a 

rhythmocardiosignal. One of the possible quantitative informativeness indicators of 

diagnostic features is the ratio of the average distance between the diagnostic classes 

(training sets) and the average diameter of the corresponding classes that corresponds 

to different states of the cardiovascular system in the metric space of diagnostic fea-

tures. If this ratio is significant, then the components of the diagnostic feature vector 

are considered informative.  

The minimum number requirement of diagnostic features provides the minimum di-

mension of diagnostic features space, which, as a consequence, provides the mini-

mum computational complexity of algorithms for diagnostic decision making. 

Let’s substantiate the diagnostic features set to evaluate the state of regulatory mech-

anisms of the cardiovascular system and the organism as a whole, that is, such sets of 

diagnostic features, which, on the one hand, are informative, and on the other - have a 

minimum number. First, let's focus on the procedure for providing the minimum 

number of diagnostic features by rhythmocardiosignals with increased-resolution. 

Since the hypothesis for normality of distribution of the rhythmocardiosignal with 

increased resolution was previously confirmed, as described above,  the initial set of 

diagnostic features is a numeric vector },1,ˆ{ˆ
____

1
1 Llс

lTL ==С  point estimates of mathe-

matical expectations calculated according to expression (16) and an estimates matrix 

of correlation functions ( ) ],1,,ˆ[ˆ
___

212
21

Lllur
lTlTT ==R , which were calculated according 

to the formula (19). One of the obvious ways to reduce the number of diagnostic fea-



tures of the rhythmocardiosignal is to take into account the fact of symmetry 

( ( ) ( )
___

2122 ,1,,ˆˆ
1221

Lllurur
lTlTlTlT

== ) estimates matrix of correlation functions 

( ) ],1,,ˆ[ˆ
___

212
21

Lllur
lTlTT ==R , indicating that it is sufficient to evaluate only those ele-

ments of the matrix TR̂ , what lie on its diagonal and above the diagonal, that is, such 

an ordered set ( ) ],,,1,ˆ[ˆ
____

12

___

12
21

LllLlur
lTlTT ===R . On the diagonal of this matrix, when 

21 ll = , autocorrelation functions estimates are placed, and the elements of the matrix 

TR̂ , which are placed above its diagonal, that is, when 21 ll  , are estimates of cross-

correlation functions.  

Therefore, the matrix ( ) ],1,,ˆ[ˆ
___

212
21

Lllur
lTlTT ==R  without losing the informativeness, 

we can replace with the triangular matrix ( ) ],,,1,ˆ[ˆ
____

12

___

12
21

LllLlur
lTlTT ===R . 

Another way to reduce the number of diagnostic features in cardiac rhythm analysis 

information systems on the basis of rhythmocardiosignal with increased resolution is 

to use spectral decompositions of the triangular matrix elements themselves 

( ) ],,,1,ˆ[ˆ
____

12

___

12
21

LllLlur
lTlTT ===R , in particular, by using a discrete Fourier transform 

of autocorrelation estimates and cross-correlation functions from this matrix. That is, 

instead of a triangular matrix ( ) ],,,1,ˆ[ˆ
____

12

___

12
21

LllLlur
lTlTT ===R  correlation functions 

can be used by a triangular matrix ( ) ],,,1,ˆ[ˆ
____

12

___

12
21

LllLlS
lTlTT === S , elements of 

which are Fourier-images of the corresponding estimates of the correlation functions 

from the matrix TR̂ . That is, Fourier-images from the matrix TŜ  are calculated as 

follows: 

( ) ( ) 1,,,,1,1,0,ˆˆ
____

12

___

1

__________

1

21

0

22
1

1

2121

−===−==

−−

=

 jLllLlMeurS
M

ujM

u
lTlTlTlT





.     (24) 

Based on the Bessel inequality, as diagnostic features we will not choose the whole 

set ( )








−=
__________

12 1,0,ˆ
21

MS
lTlT

  samples of functions ( )
21

2
ˆ

lTlT
S , but only a subset of 

their first 2M  ( 12 MM  ) samples ( )








−=
__________

22 1,0,ˆ
21

MS
lTlT

 , which contribute to 

the full energy of evaluation ( )ur
lTlT
21

2̂  correlation function is not less than 95%.  

Here is an example of the statistical evaluation of vector elements 

},1,{
____

1
1 Llс

lTL ==С  mathematical expectations, elements of the matrix of correlation 



 

functions ( ) 







==

___

212 ,1,,
21

Lllur
lTlTTR  and matrix elements of the Fourier-images 

( ) 







===

____

12

___

12 ,,,1,ˆˆ
21

LllLlS
lTlTT S  by one realization 

}245,1,3,1),({)(
__________

3 ===


mlmTm l
Ξ  tricomponent vector 

}245,1,3,1,),,({),(
__________

3 === mlmTm l ΩΞ   stationary and stationary-related 

random sequences. 

Figure 3 shows the plot of realization ( )ur
TT 11

2̂  statistical estimation of autocorrela-

tion function ( )ur
TT 11

2  ( 121 == ll ) of three vector components ),(3 mΞ . 

Table 2 presents the statistical evaluation results of the mathematical expectations 

of the stationary components of the vector ),(3 mΞ . 
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a)                                                b)                                                c) 

Fig. 3. Plot of realization: a) ( )ur
TT 11

2̂  statistical estimation of autocorrelation function 

( )ur
TT 11

2  ( 121 == ll ), the first component ),(1 mT  , which describes the duration P - 

intervals in the electrocardiosignal; b) ( )ur
TT 22

2  statistical estimation of autocorrela-

tion function ( )ur
TT 33

2  ( 221 == ll ) the second component ),(2 mT  , which describes 

the duration R - intervals in the electrocardiosignal; c) ( )ur
TT 33

2̂  statistical estimation 

of autocorrelation function ( )ur
TT 33

2  ( 321 == ll ) third component ),(3 mT  , which 

describes the duration T - intervals in the electrocardiosignal 

Table 2. The statistical evaluation results 

Stationary component 

number 

Statistical estimation realization value of math-

ematical expectation 

1 88,14
1

1 =
T

с  

2 02,25
2

1 =
T

с  

3 82,73
3

1 =
T

с  

Figure 4 shows the graphs of realization of statistical estimates of the cross-

correlation functions of the vector components ),(3 mΞ . 
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a)                                                b)                                                c) 

Fig. 4. Plot of realization: a) ( )ur
TT 21

2̂  statistical estimation of the cross-correlation 

function ( )ur
TT 21

2  ( 2,1 21 == ll ) first ),(1 mT   and second ),(2 mT   vector compo-

nents ),(3 mΞ ; b) ( )ur
TT 31

2̂  statistical estimation of the cross-correlation function 

( )ur
TT 31

2  ( 3,1 21 == ll ) first ),(1 mT   and third ),(3 mT   vector components 

),(3 mΞ ; c) ( )ur
TT 31

2̂  statistical estimation of the cross-correlation function ( )ur
TT 31

2  

( 3,1 21 == ll ) first ),(1 mT   and third ),(3 mT   vector components ),(3 mΞ  

Figure 5 shows graphs of realization of statistical estimates of the cross-correlation 

functions of the vector components ),(3 mΞ  Figure 6 shows realization plot 

( )
21

2
ˆ

TT
S  statistical estimation of cross-spectral power density ( )

21
2 TT

S  

( 2,1 21 == ll ) first ),(1 mT   and second ),(2 mT   vector components ),(3 mΞ . 

 
a)                                             b)                                           c) 

Fig. 5. Plot of realization: a) ( )
21

2
ˆ

TT
S  statistical estimation of power spectral density 

( )
21

2 TT
S  ( 121 == ll ) the first component ),(1 mT  , which describes the duration P - 

intervals in the electrocardiosignal; b) ( )
22

2
ˆ

TT
S  statistical estimation of power spec-

tral density ( )
22

2 TT
S  ( 221 == ll ) the second component ),(2 mT  , which describes 

the duration R - intervals in the electrocardiosignal; c) ( )
33

2
ˆ

TT
S  statistical estimation 

of power spectral density ( )
33

2 TT
S  ( 321 == ll ) third component ),(3 mT  , which 

describes the duration T - intervals in the electrocardiosignal 



 

 
a)                                                b)                                                c) 

Fig. 6. Plot of realization: a) ( )
21

2
ˆ

TT
S  statistical estimation of cross-spectral power 

density ( )
21

2 TT
S  ( 2,1 21 == ll ) first ),(1 mT   and second ),(2 mT   vector compo-

nents ),(3 mΞ ; b) ( )
31

2
ˆ

TT
S  statistical estimation of cross-spectral power density 

( )
31

2 TT
S  ( 3,1 21 == ll ) first ),(1 mT   and third ),(3 mT   vector components 

),(3 mΞ ; c) ( )
32

2
ˆ

TT
S  statistical estimation of cross-spectral power density ( )

32
2 TT

S  

( 3,2 21 == ll ) second ),(2 mT   and third ),(3 mT   vector components ),(3 mΞ . 

6 Conclusions 

The methods of statistical estimation of probabilistic characteristics of rhythmocardi-

osignal with increased resolution on the basis of model in the form of a vector of sta-

tionary and stationary related random sequences are developed in the paper. Conduct-

ed statistical experiments confirmed the hypothesis for the normality of the law of 

distribution of components of the vector rhythmocardiosignal. The conducted decom-

position of statistical estimates of autocorrelation and сross-correlation functions 

made it possible to obtain spectral and сross-spectral power densities of the vector 

components, which allowed to reduce the dimension space of diagnostic features in 

systems of analysis of cardiac rhythm according to the rhythmocardiosignals with 

increased resolution. 
The developed statistical methods can be used in developing of specialized software in 
automated cardio-diagnostic complexes, in particular, rhythm analysis subsystems. 
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