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Abstract: The theory of P systems or membrane systems,
a vivid scientific area in bio-inspired computing, deals
with computational models inspired by architecture and
functioning of living cells and tissues, and neural systems.
This paper contains ideas on why and how purely commu-
nicating P systems (important variants of P systems) can
be interpreted as complex natural systems. We give a sum-
mary of the most relevant results concerning these P sys-
tems and provide their interpretation in terms of complex
systems. We propose open problems and new directions
for future research.

1 Introduction

P systems or membrane systems are distributed parallel
computing devices, inspired by architecture and function-
ing of living cells. The original concept of a P system was
introduced by Gheorghe Păun in 1998, for details see the
seminal paper [17]. Later the concept has been extended to
model living tissues and neural systems. Recently, mem-
brane computing and its applications are a vivid, well-
established scientific area in natural computing and related
fields of computer science.

The basic model, the cell-like system consists of a hier-
archically embedded structure of membranes where each
membrane encloses a region which contains objects and
may also contain other membranes (regions). The regions
are associated with rule sets. These rules describe the evo-
lution and communication of the objects present in the re-
gions. P systems can also be considered as distributed par-
allel multiset rewriting systems, since the rules describe
the evolution and/or communication of multisets of ob-
jects in the actions. The P system operates with changing
its configurations, in other words, with transitions from
one configuration to some other one. A configuration of
a P system is the underlying graph structure of its regions
and the multisets of objects in the regions ( in other words,
compartments, nodes of the graph). The architecture of
a cell-like P systems, called also a transition P system or
symbol-object P system, has a tree as underlying graph,
has a rooted tree architecture. In case of tissue P sys-
tems, and P systems modeling neural systems the under-
lying graph is an arbitrary graph.
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A computation is a sequence of configurations where
the subsequent elements are obtained by transitions and
the sequence starts with a so-called initial configuration.
The result of the computation is usually defined by the
number of objects found in the so-called output region
when the operation of the P system halts (no rule in any
of the regions can be performed). Instead of sets of num-
bers, sets of vectors of multiplicities of objects can also be
considered as result.

P systems have intensively been studied during the
years; for concepts, results, and a detailed overview of the
area consult [18].

Since one of the main goals of introducing the notion of
a P system was to define a bio-inspired distributed com-
puting device that is as powerful as Turing machines and
combines properties of natural systems and classical mod-
els of (distributed) computation, the investigations in the
field have mainly focused on computability and complex-
ity questions. Recently, other areas of the theory of com-
putation, algorithms, simulations, applications in com-
puter science have enhanced the research scope, only men-
tioning a few. Since P systems exhibit properties of both
qualitative and quantitative models, features, approaches
and aspects of this scientific area can be compared to that
of various disciplines.

Studying how P systems can be used for modeling nat-
ural, complex systems is a reasonable research direction
from this point of view. Some initial ideas on connections
between natural complex systems and P automata (partic-
ular variants of P systems) can be found in [4]. In the
following we discuss the relation between purely commu-
nicating P systems (important variants of P systems) and
complex systems, with the approach used in [4] and con-
tinue developing the ideas presented in that paper.

We first provide a brief description of interpretation of
components and properties of cell-like P systems in terms
of complex systems. Then we present such a compari-
son in case of symport/antiport P systems and generalized
communicating P systems, both models are purely com-
municating variants of membrane systems. We close the
paper with some conclusions.

2 Complex Systems and P Systems

Complex systems theory is an important scientific area
studying how parts of a system give rise to the collective



behaviors of the system, and how the system interacts with
its environment. One of the main questions in the area is
whether or not the system as a whole is more powerful
than the sum of the power of their individual components.
Examples for complex systems are, for example, social
systems, social networks formed out of people, molecules
formed out of bio-chemical ingredients, systems of agents,
only to mention a few. Thus, the study of complex sys-
tems is an interdisciplinary scientific field which focuses
on questions about wholes, parts, and relationships. For
detailed information the reader is referred to [2], [15].

Examining cell-like P systems, we can conclude that the
above properties and features of complex systems are char-
acteristic of P systems as well. Objects of a P system can
be considered as elementary agents, elementary ingredi-
ents of the complex system; multisets of objects form com-
munities of agents or collections of ingredients. Regions
(or compartments) of the P system correspond to com-
ponents of the complex system, however not elementary
components. The rules associated to the regions represent
interactions between communities of agents, they can be
classified according to their forms and application mode.
The rules describe local activities, since they affect either
the region in which they are executed or the neighboring
regions. The neighboring regions of the P system represent
components of the complex system being in close connec-
tion (neighboring components), and the environment itself
can also be considered as a special, distinguished compo-
nent. The P system operates with applying its rules in the
same way as the complex system operates with interac-
tions between its components and its environment. The
behavior of a P system can be described by its configu-
ration (state) sequences or the result of a halting configu-
ration sequence which starts from an initial configuration.
Analogous description can be used in case of complex sys-
tems as well. This approach provides the option to iden-
tify behavioral patterns and related properties as well. By
behavioral complexity we mean the complexity of the de-
scription. For example, a family of P systems computing
the recursively enumerable family of numbers is a family
of complex systems that exhibits maximal complexity.

Various variants of P systems are as powerful as Tur-
ing machines, thus provide maximal computational power,
and in terms of complex systems exhibit behavior of max-
imal complexity. An important problem area is whether
or not restricted P systems are able to exhibit such com-
plex behavior. Furthermore, how we can interpret them in
terms of complex systems. In the following, we deal with
these questions.

Throughout the paper we assume that the reader is fa-
miliar with the theory of computation, thus we recall only
a very few notations and notions. An alphabet V is a finite
nonempty set; the set of all strings over V is denoted by
V ∗, and λ denotes the empty word. A finite multiset over
an alphabet V is a mapping M : V → N where N is the no-
tation for the set of non-negative integers; M(a) is said to
be the multiplicity of a in M. A finite multiset M can also

be represented by any string x ∈V ∗ where |x|a = M(a) for
all a ∈ V (clearly, for a given string x, any permutation of
x represents the same multiset).

3 Symport/antiport P Systems

In the case of transition P systems (the basic, cell-like
model), the multisets of objects are able to change (to
be rewritten) and to move across the membranes, i.e., the
agents can evolve and can be communicated. In the fol-
lowing we will discuss purely communicating P systems,
where objects can only be transported between neighbor-
ing compartments (including the environment), i.e., only
communication of agent communities can be performed.

P systems having rules that only allow to move multisets
of objects from one compartment to one of its neighbors
or simultaneously in opposite directions across the mem-
brane, are called symport P systems or antiport P systems,
respectively; we use term symport/antiport P systems for
these two types of P systems. These notions have biologi-
cal motivation and were introduced in [16].

Formally, a P system with symport and/or antiport rules
(a symport/antiport P system, for short) is a construct
Π = (O,T,E,µ,(w1,R1), . . . ,(wn,Rn,), i0), where n ≥ 1,
O is the finite alphabet of objects; T ⊆ O is the alphabet
of terminal objects; E ⊆ O is the set of objects in the en-
vironment which appear in infinitely countable number of
copies; µ is a membrane structure of n membranes, where
1 indicates the skin membrane; wi ∈ V ∗, 1 ≤ i ≤ n, is the
initial contents (finite multiset) of region i; Ri is a finite set
of rules associated to membrane i, 1≤ i≤ n. The rules are
of one of the forms (u,out;v, in) with u 6= λ , v 6= λ (an-
tiport rule), (u, in), (u,out) with u 6= λ ( symport rules,)
where u,v ∈ O∗; i0 ∈ {1, . . . ,n} is the label of an elemen-
tary membrane, called the output membrane.

The skin membrane separates the P system from the en-
vironment; its region is in the root of the tree representing
the architecture, the structure of the system.

An antiport rule, (u,out;v, in)∈Ri, 1≤ i≤ n, exchanges
multiset of objects u in region i with multiset v from the
parent region of i. The symport rule (u,out) moves multi-
set u out of region i, to its parent region, and symport rule
(u, in) imports u from the parent region into region i. If
the rules are associated with the skin membrane, then the
parent region is the environment. In the case of symport
rules, if the parent region of i is the environment, then the
imported multiset must contain at least one symbol not in
E (otherwise an infinite number of objects would enter in
the system). Multisets wi, 1 ≤ i ≤ n, and the membrane
structure µ represent the initial configuration of Π. At the
beginning, the environment does not contain any element
of O\E.

Symport/antiport rules can also be associated with pro-
moters and/or inhibitors. In this case the objects are al-
lowed to be transported between the regions, if the cor-
responding regions have (do not have) the promoter (in-



hibitor) multiset included in their current multiset of ob-
jects.

Similarly to other types of P systems, symport/antiport
P systems compute by performing transitions between
subsequent configurations. The configurations consists of
the multisets of objects that belong to the regions and the
multiset of the non-environmental objects (not elements of
E) which appear in the environment. Symport/antiport P
systems usually use the non-deterministic maximally par-
allel working mode, but other derivation modes have also
been considered (for more details, see [18, 12]). A se-
quence of transitions starting with the initial configuration
is a computation.

The result of the computation in Π is the number of ob-
jects from T that can be found in region i0 when the sys-
tem halts. If no terminal alphabet is distinguished, then the
number of all objects in i0 at the end of a halting compu-
tation is the result of the computation.

Instead of sets of numbers, sets of vectors of multiplic-
ities of elements of T can also be considered as results.
Symport/antiport P systems can also be not only generat-
ing, but accepting devices. In this case, the input is the
initial contents of a distinguished region. The symport/an-
tiport P system accepts the input if starting with this initial
configuration it enters a halting configuration by a compu-
tation.

It can be observed that symport/antiport P systems can
be considered as models for complex systems. The objects
in the membrane architecture represent very simple, ele-
mentary components of the system, the agents, collections
of which interact with each other and with the environ-
ment of the system. The interactions, defined by the sym-
port/antiport rules, are local interactions. Locality arises
from the fact that both symport and antiport rules involve
only neighboring regions (we consider the environment as
the parent region of the skin region). Antiport P systems
behave in non-linear manner, since they behave in differ-
ent ways to the same input multisets from the environment
depending on their current state.

Symport/antiport P systems are computationally com-
plete computing devices [16]. Furthermore, for any regis-
ter machine, a P system of this type with only one region
(one membrane) can be constructed such that it simulates
the register machine. Extensive investigations proved that
symport/antiport P systems with small size parameters are
as powerful as register machines, i.e., are computationally
complete. These parameters are, for example, the number
of regions, the number of rules in the system, the number
of objects in the multisets of the rules (for more details on
these results, see [18]).

Notice that the fact that symport/antiport P systems are
computationally complete prove that these systems as for-
mal models of complex systems demonstrate emergent be-
haviour since the power of the system as a whole signif-
icantly exceeds the power of a single component without
any interaction. Furthermore, like in case of Turing ma-
chines, universal antiport P systems can be constructed.

Moreover, their size parameters are bounded by constants
[6]. Universal antiport P systems correspond to certain
"core" complex systems.

Recall that the result of the computation of symport/an-
tiport P systems is the number of (terminal) objects or
the set of vectors of (terminal) objects in the output re-
gion in a halting configuration. However, the computation
can also be described by the sequence of multisets which
enter the P system during its functioning. This observa-
tion inspired to develop the concept of a P automaton [7],
a variant of accepting purely communicating P systems.
In this case, the input sequences of multisets imported by
the symport/antiport P system from the environment are
mapped onto words over a finite alphabet, thus, form a
language. The mapping is “easily” computable, usually
computable in linear space. A similar notion, called an
analysing P system, [13] uses another mapping to define
words of the language, the mapping that orders to every
multiset the set of words which are permutations of all el-
ements of the multiset. This mapping is denoted by fperm.
The concept of a P automaton combines features of a P
system and that of variants of classical automata. Sev-
eral intersting results have been obtained on this model.
For example, P automata working in the non-deterministic
maximally parallel manner and with mapping computable
in linear space describe the class of context-sensitive lan-
guages, while using mapping fperm, it defines a class of
languages of sublogarithmic space complexity. For more
information the reader is referred to [18, 5].

P automata are models of complex natural systems (a
detailed discussion on the topic can be found in [4]). To
prove that the statement holds, we recall some observa-
tions from [4]).

An important property of complex systems is that the
interactions between the agents and the environment may
imply changes in the system itself. This is exactly the case
for P automata, since the multisets of objects entering the
system from the environment can significantly change the
coming configuration sequence. The P automaton as com-
plex system is an open system, since (multisets) of agents,
i.e., (multisets of) objects can join and leave the system
via symport/antiport rules. The standard P automaton is
given with a static membrane structure, that is, its archi-
tecture does not change during the functioning of the sys-
tem, which is a rather restrictive condition. Examples for P
automata with dynamically changing membrane structure
are the P automata with marked membranes [8]) (inspired
by biology) and the active P automata [3] (motivated by
natural language processing), however in these cases the
underlying P systems is not a symport/antiport P system.

P automata can also be considered as tools for describ-
ing languages over infinite alphabets without any exten-
sion or additional component added to the construct, since
in the case of maximally parallel rule application the num-
ber of objects entering the skin region not necessarily can
be bounded by a constant. This means that in this case
the agent population can increase fast and the number of



simultaneous interactions with the environment cannot be
bounded by any constant.

It would be worth studying P automata with adding
the features of membrane creation, dissolution, division
[18], P automata with dynamically varying structure. The
obtained new variants can be used for modeling self-
configurating systems and systems re-configurating their-
selves under control coming from outside, since both the
objects inside the regions and the objects entering the sys-
tem from the environment can launch a re-configuration in
the membrane structure.

4 Generalized Communicating P Systems

As we discussed in the previous section, purely commu-
nicating P systems like symport/antiport P systems are of
particular interest in membrane computing, since several
variants of P systems with only communication rules are
computationally complete, thus these restricted systems
are able to obtain maximally complex behavior (with re-
spect to descriptions by computable sets of numbers, sets
of vectors of natural numbers, and languages). An intrigu-
ing question is what can we say about the type and form
of interactions between the agents in these systems, how
much extent the interactions can be simplified.

Generalized communicating P systems give an answer
to this question. We note that the concept was originally
introduced with the aim of providing a common general-
ization of various purely communicating models [19].

A generalized communicating P system (a GCPS for
short), is a tissue-like P system where each node repre-
sents a cell and each edge is represented by a rule (an in-
teraction). Each node contains a multiset of objects that
can be communicated, i.e., it may move between the cells
according to interaction (communication) rules.

The form of an interaction rule is
(a, i)(b, j)→ (a,k)(b, l) where a and b are objects
and i, j,k, l are labels identifying the input and the output
cells. Such a rule means that an object a from cell i and
an object b from cell j move synchronously (in one step)
to cell k and cell l, respectively. These interactions are
particularly simple, since there are only two objects (two
agents) involved in them.

Formally, a generalized communicating P system (a
GCPS) of degree n, where n ≥ 1, is an (n + 4)-tuple
Π = (O,E,w1, . . . ,wn,R,h) where O is an alphabet, called
the set of objects of Π; E ⊆ O; called the set of environ-
mental objects of Π; wi ∈ O∗, 1 ≤ i ≤ n, is the multiset
of objects initially associated to cell i; R is a finite set
of interaction rules or communication rules of the form
(a, i)(b, j)→ (a,k)(b, l), where a,b ∈ O, 0 ≤ i, j,k, l ≤ n,
and if i = 0 and j = 0, then {a,b}∩(O\E) 6= /0; i.e., a /∈ E
and/or b /∈ E; and h ∈ {1, . . . ,n} is the output cell.

The generalized communicating P system is embedded
in an environment, called cell 0, which may have certain
objects in an infinite number of copies and certain objects

only in a finite number of copies. The GCPS and the en-
vironment interact by using the rules given above, with
the restriction that at every computation step only a finite
number of objects are communicated to each cell by the
environment. As usual in P systems’ theory, the rules are
applied in a maximally parallel manner. This implies a
possible change in the current state of the GCPS (the mul-
tisets representing the contents of the cells). A computa-
tion in a GCPS is a sequence of states directly following
each other that starts from the initial state and ends in a
halting state. The result of the computation is the number
of objects found in a distinguished cell, the output cell.

It can be seen that GCPSs are formal models of com-
plex systems as well: the objects correspond the elemen-
tary components, agents and the system operates with the
interactions of agents. However, in this case the nodes are
not explicitly given, instead they are defined by the interac-
tion rules between the agents. In this way, the architecture
of the system emerges in the course of functioning.

To apply an interaction rule only two objects and at most
four locations (nodes) are involved, thus it is worth study-
ing the form of interaction rules.

We recall the possible restrictions on the interaction
rules (modulo symmetry). The following cases are distin-
guished, and then the systems is called GCPSs with mini-
mal interaction (for details see [10]. The reader may easily
observe that these rules represent minimal interaction pat-
terns.

1. i = j = k 6= l: the conditional-uniport-out rule (the
uout rule) sends b to cell l provided that a and b are
in cell i;

2. i = k = l 6= j: the conditional-uniport-in rule (the uin
rule) brings b to cell i provided that a is in that cell;

3. i = j, k = l, i 6= k : the symport2 rule (the sym2 rule);

4. i = l, j = k, i 6= j : the antiport1 rule (the anti1 rule)
, i.e., a and b are exchanged in cells i and k;

5. i = k and i 6= j, i 6= l, j 6= l: the presence-move rule
(the presence rule) moves the object b from cell j to
l, provided that there is an object a in cell i and i, j, l
are pairwise different cells;

6. i = j, i 6= k, i 6= l, k 6= l : the split rule sends a and b
from cell i to cells k and l, respectively;

7. k = l, i 6= j, k 6= i, k 6= j : the join rule brings a and b
together to cell k;

8. l = i, i 6= j, i 6= k and j 6= k : the chain rule moves a
from cell i to cell k while b is moved from cell j to
cell i, i.e., to the cell where a located previously;

9. i, j,k, l are pairwise different numbers: the parallel-
shift rule (the shi f t rule) moves a and b from two
different cells to another two different cells.



During the years, GCPSs have been studied in detail.
The investigations have mainly been focused on their com-
putational power and their relation to other models like
Petri nets.

It has been shown that GCPSs in general, and even with
minimal interaction are able to generate any recursively
enumerable set of numbers. Furthermore, to obtain com-
putational completeness a relatively small number of cells
and a simple underlying hypergraph architecture is suffi-
cient [10, 14, 11]. Thus, for example GCPSs with three
cells and with only join, or only split, or only chain rules
are computationally complete computing devices [11]. It
is also shown that the maximal expressive power can also
be obtained with GCPSs where the alphabet of objects is a
singleton [9]. Moreover, computational completeness with
small number of cells can also be obtained if the objects
of the environment are provided with a rewriting system
generating multisets of objects step by step [1].

If we consider GCPSs as formal models of complex sys-
tems, we may derive interesting consequences. Namely,
the maximal complexity of the collective behavior of the
system (represented by the generated sets of numbers) can
be obtained with very simple, uniform interaction patterns,
with only one type of elementary actions. Furthermore, at
any moment of operation the number of groups, collec-
tions of agents is a very small number. It is also proved
that in case of certain type of the interaction rules there
is no need to distinguish different types of agents in order
to obtain the collective behavior with maximal complexity.
Furthermore, these systems are able to tolerate the changes
in the environment not caused by actions of the agents.

Although several questions and problems concerning
generalized communicating P systems have been investi-
gated, some ideas would be worth studying. For exam-
ple, what can we say about GCPSs where the interaction
rules change in time. Namely, the new locations of the
objects depend on the number of performed computation
steps. One other interesting aspect could be to introduce
concepts from evolutionary computing in this area: those
interactions which are not used or rarely used change their
form or are dismissed from the set of rules. It also would
be interesting to examine the concept of similarity in case
of these systems, especially concerning behavior or the se-
quence of (multi)sets of performed interactions.

5 Conclusion and Open Problems

P systems, even purely communicating variants, can be
considered as formal models of natural complex systems,
since they are dynamically changing systems which are
in communication (interaction) with their environments.
To explore this relation, further investigations are needed
to interpret such concepts as emergent phenomena, non-
linearity, interaction complexity, behavioral complexity in
P systems theory, in case of different variants of P systems.
Especially interesting problems are to define these notions

for P systems with dynamically changing underlying ar-
chitecture, with division and membrane creation. The re-
lation between P systems with infinite runs and complex
systems would also be a challenging topic for future re-
search.
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