
Data-Driven Approaches for Exploring the Effects of
Teacher Instruction on Student Programming Behaviors

Nicholas Lytle
NC State University

nalytle@ncsu.edu

Veronica Catete
NC State University

vmcatete@ncsu.edu

Yihuan Dong
NC State University

ydong2@ncsu.edu

ABSTRACT
As programming activities become integrated into K-12 class-
rooms, teachers with minimal prior programming experience
will instruct students of varying backgrounds. This usually
takes the form of Live Coding, programming on a display
in front of students while they follow along. While effective,
Live Coding prohibits teachers from seeing students current
progress. Though researchers can observe instruction and
can tell teachers when students need the pace altered, this
help will not always be available. To improve and scale
insights and investigate how teacher instruction influences
student programming behavior, we perform several analyses
to visualize the influence of instruction on student assign-
ment progression throughout the class period. We present
case studies featuring teacher and student programming be-
haviors. We end on possible means our methodology can be
extended to create dashboard and other data-driven tools.

Keywords
block-based programming, instructor influence,Live Coding

1. INTRODUCTION
1To address inequities in access to computing education [17],
teachers and researchers have begun partnerships to put
computing activities in required courses. Teachers new to
programming exhibit levels of pedagogical discomfort with
instructing programming assignments. Our prior work has
demonstrated that teachers new to computing curricula of-
ten adopt instructional styles for lessons that are more aligned
with their traditional teaching methods, which for middle
school grades is often direct instruction[3]. Direct instruc-
tion is often done in the form of ’Live-Coding’, showing the
process of developing the final code. This process leaves
teachers without a sense of how the class is doing, whether
or not they are following along, or whether or not what they

1Copyright ©2020 for this paper by its authors. Use per-
mitted under Creative Commons License Attribution 4.0 In-
ternational (CC BY 4.0).

as a teacher are programming is correct. Though obser-
vations provide teachers with information on how students
are following along with the lesson, this methodology is not
scalable and we seek more quantitative data-driven method-
ologies to investigate student programming behavior. To
understand the effects of instructional practices, we exam-
ine student and teacher coding artifacts, utilizing the logged
interactions of the coding environment. We are interested
in ways to visualize how students follow along with teacher
instruction. We perform exploratory analyses to identify
patterns in student behavior concerning completion timing,
paths, and rates. Using visualizations, we present case stud-
ies of teachers instructional style grounded through class-
room observations. We believe these data-driven approaches
could lead to both scaleable offline and online analysis of
programming instruction, informing the development of in-
telligent dashboards designed to aid both novice and expert
programming teachers during live coding instruction.

2. BACKGROUND
2.1 Computing in STEM Education
If children get experience with programming, it is usually
within elective computing classes or outside of school activ-
ities [17]. To reach all students, computing must be inte-
grated into required K-12 courses. In this age-range, curric-
ula that use block-based programming languages are often
employed [8]. Block-based programming languages such as
Snap [9] are increasingly popular and have been shown to
scaffold novices into learning programming in STEM con-
texts better than traditional text-based languages [22]. While
block-based environments can support novice students, teach-
ers must be trained in computing topics and integrated com-
puting lessons must be developed for their classrooms. These
are usually both accomplished during teacher professional
development seminars [12], though this might not be acces-
sible for all teachers. Another avenue like our work[3] is
design-based implementation research [6], where we collab-
orate with in-service teachers to iteratively build and refine
a computing-integrated activity, actively focusing on pro-
fessional development and teacher comfort. These iterative
designs have made us choose to create lessons where teachers
instruct through live coding.

2.2 Instructing Programming in K-12
Teacher’s self-efficacy and discomfort are important factors
when trying to get core subject teachers to add comput-
ing into their classes. Our prior work has demonstrated
the success of lessons often hinge on a teachers comfort



with instructing, and often their self-efficacy is very low
as a novice programmer[15, 3]. Frykholms research backs
this by suggesting a teachers self-efficacy filter in combi-
nation with tolerance for discomfort will affect their will-
ingness to adopt new materials and curricula [7] such as
computing. To mitigate discomfort, teachers tend to em-
ploy more instructional-based practices such as focused or
guided instruction that contrasts the constructionist and
open-ended practices loudly promoted in computing [13].
However, at the middle school level, evidence from controlled
studies demonstrate that direct, strong instructional guid-
ance proves more efficient in terms of long-term learning
than constructivist-based, minimal guidance [13]. This is
further supported by Sweller’s cognitive load theory which
suggests free exploration of a highly complex learning envi-
ronment may generate a heavy working memory load that
is actually detrimental to learning [21]. These prior general
findings apply directly to programming instruction. A study
by Lin and Dalbey [14] shows medium and lower perform-
ing students do better with explicit instruction which has no
negative impacts on high performing students. Husic further
argues that beginners lack a repertoire of useful approaches
to thinking about and learning programming. To build this,
teachers of introductory classes need to be specific when pro-
viding integrated information, problem-solving support, and
feedback [10]. Direct instruction reduces the working mem-
ory load of the students and lets them concentrate on the
tasks at hand [14]. Thus, for introductory students, early
in the learning curve, teachers should provide a supportive
scaffolding to help students carry out a task. Accordingly,
when teachers provide scaffolding, they generally carry out
parts of the overall task that students cannot yet manage.

This research suggests K-12 teachers might benefit from
adopting the pedagogical technique of Live Coding. Live
Coding, often found in university programming courses, has
an instructor start from scratch (or starter code) and build
a program related to the material in front of the students[2].
Unlike code snippits, displaying the construction of code
gives students insight into the programming process [2] and
can usually be done in a manner that allows students to fol-
low along creating an active learning context. Studies have
demonstrated the benefits of live coding for instructing in
block-based programming languages [20]. Recent work has
focused on intelligent dashboard support for Live Coding
[4], though Chen et al. focus on making the process easier
rather than analyzing the dynamics between instructor and
students. It should be noted that nowhere in definitions
for live coding does it specify that students follow along.
However, given the research described above, we feel that
active, follow-along participation driven by instructors will
provide the best platform for students to learn in these con-
texts. Additionally, those who have some prior experience
will be able to independently move on without the instruc-
tor, while novices can follow along intently step by step.
Given this instructional technique and the classrooms that
have already participated in this style, we seek to use ad-
ditional advances in programming trace data analytics to
understand classroom dynamics during live coding sessions.

2.3 Programming Trace Data and Analytics
There are dozens of systems that analyze and collect student
programming data (an introductory review can be found

here: [11]). In programming data-mining, The sequence
of all interactions within the environment is called a trace,
which comprises a list of all states a student environment
is in and the interactions that connect them. An important
subset of this trace is all interactions that result in differ-
ing code (e.g. adding, deleting, and relabeling code), called
a code-trace and all the different code-states (i.e. unique
code) that a user progresses through on the way to complete
a problem. This code trace is used for intelligent program-
ming environments as input for the creation of data-driven
next-step hints [19] as well as other instructional support
like worked examples [23]. While useful for data-driven al-
gorithms, the size of the space of all possible code-states is
in practice incredibly large even for a small programming
problem [24]. As such, methods have been developed to col-
lapse the state-space of programming problems to something
more manageable for analysis. Prior work has represented
the varying pathways of student attempts using a feature-
state representation [24, 16]. In this manner, an assignment
can be seen as a set of features, and a student’s current
state in the assignment can be represented by which features
the student has present or absent in their code. Rui et al
[24] demonstrated techniques to visualize student pathways
through a programming assignment by representing which
features students progressively added to to their code until
reaching a final solution. Lytle et al extended this method-
ology to be useful in informing curricula design by looking
at common pitfalls in student programming pathways [16].
Additional effort has been placed recently in using student
feature completion information to help the instructor dur-
ing classroom implementation [5]. Dashboards have been
developed that use programming trace or compilation in-
formation to aid instructors in finding students in need of
help[5]. Diana et al’s dashboard system is able to use fea-
tures of code-trace data to display to an instructor which
students are lagging behind in the lesson (having fewer fea-
tures complete) in order to aid teachers in selecting which
students to help or group together to peer-help [5]. While
useful, this requires that the dashboard be visible to the in-
structor at all times which may take away from the time
spent live coding. We wish to extend these methodologies
in order to develop ways to provide post-hoc analysis of a
classroom implementation as well as in the future, provide
unintrusive immediate support to instructors live coding in
K-12 environments.

3. METHODS
3.1 Data Collection
The dataset used in this analysis came from several imple-
mentations of a 4-day computing-integrated science lesson.
Nine instructors across three schools led 19 middle-grade
classes in a ‘Food Webs’ unit using a block-based program-
ming environment, Cellular [1] (example code is shown in fig-
ure 2). Cellular is a block-based language to scaffold novices
learning to code, and uses an agent-based environment to aid
in the modelling of scientific phenomena. Approximately
480 students participated in the integrated activity, how-
ever, we are only analyzing trace log data from 287 consent-
ing students with complete participation over the four days.
Classroom observations of each initiative were conducted by
researchers who sat in each classroom watching the teacher
instruct and aiding them as requested if an issue arose.



Table 1: Participants by instructor (* = researcher)

Instructor School Sections Usable N
Teacher A* I 1 10
Teacher B I 1 9
Teacher C* II 2 27
Teacher D II 4 72
Teacher E II 3 61
Teacher F* II 1 11
Teacher G III 1 16
Teacher H II 5 62
Teacher J III 1 19
Total I-2, II-15, III-2 19 287

A breakdown of participating instructors and schools is avail-
able in Table 1. Demographic data for each of the three
schools is provided in Table 2 below. Data for each of the
science classes mirrors the overall school demographics. In-
structors were all trained in the Food Webs course materials
before teaching their class. In schools I and II, Research
instructors (Teacher A, C, and F) led the first class pe-
riod each morning. Teacher instructors led the remaining
class periods. There were a total of 6 researcher-led (or Non
In-Service instructors) class sessions and 13 teacher-led (In-
Service Instructors) class sessions.

3.2 Curriculum
The Food Webs unit is a 4-day activity designed to meet the
state-level education standards for 6th-grade science class-
rooms on the topic of Energy Transfer in a food web. On
the first day of the activity, students use pseudocode to com-
plete scientific worksheets on defining terminology and re-
lationships between organisms in a food chain. Students
work as a class to abstract the behaviors that an organism
in the food chain might exhibit (eat, grow, move, etc.). On
day two, teachers lead students in using their previous pseu-
docode to model the behavior of sunlight as an abiotic factor
in the food web and its effect on producers (plants) using
the Cellular programming environment. Using a companion
worksheet, students manipulate energy values in the code to
see its effects. On day three, teachers help students add in
code for a primary consumer (bunny), again exploring the
propagation of energy in the food chain. Finally, on day
four, teachers instruct students on how to create the basic
functionality for a secondary consumer (fox) as shown in
Figure 1. Students then set up their own scientific experi-
ment determining an independent and dependent variable,
as well as their hypotheses on what will happen. Students
are encouraged to run several trials of their experiments be-
fore declaring a definitive conclusion.

The Food Webs curriculum was chosen as we have data from
the largest set of unique teachers as well as the largest num-
ber of student participants. We choose the 4th day rather
than the other two programming days for our analysis be-
cause as part of our design-based implementation research,
we implemented different versions of Days 2 and 3 for differ-
ent teachers to experiment with different instructional scaf-
folding techniques. However, every teacher implemented the
same final activity. As Day 4 is also the final day of the ac-
tivity, teachers have had multiple class periods of experience
instructing programming assignments and Day 4 serves as a

culmination of their final abilities.

3.3 Data Analysis
The primary data used for our analyses is environment trace
data from the consenting students working within the as-
signment. The 19 classroom implementations of the assign-
ment resulted in over 90,000 interactions from 287 unique
students. To train the teachers in instructing, instructor
guides were developed. These gave the interactions with
the environment (code additions) necessary to complete the
assignments, included images of example final code, and a
suggested order of how to add code in their environment
for instruction. Using these instructor guides, we decom-
pose the assignment into five unique, mutually exclusive
features. These features demonstrate the five additions that
teachers led students into creating in the Cellular Environ-
ment. These features can be detected using an auto-grader
type system and we can determine at any given point in a
students programming trace whether or not that feature is
present or absent in the code. Figure 1 presents a short de-
scription of each feature alongside the corresponding code
blocks.

Figure 1: Food Webs Day 4 student coding tasks.

Feature 1 tasks students to create a local variable, Energy,
that will represent how much energy a Fox agent has in the
Food Web. The instructions explicitly state that the vari-
able must be local as it represents an individual fox’s cur-
rent energy. Furthermore it must be named “Energy” due
to a case-sensitive dependency in custom blocks introduced
later in the program. Feature 2 tasks students to make the
Fox move within a forever loop, as to simulate a Fox moving
around in a biome. The 3rd feature has students decrement
the Energy variable inside the forever loop to simulate the
Fox losing energy with each move. The 4th feature intro-
duces the first If block - If the energy of the Fox is low (but
not 0), the Fox “eats a bunny” in the environment and gains
some energy. The final feature, Feature 5, is a second If
block where if the Fox’s energy is less than 0, the Fox will
die. We use code feature detection to determine, for each
code state in a student’s code-trace, whether or not each
feature is present or absent in a student’s code. We then
use this information to develop the following three analyses:

1. Feature-Time-Completion - A histogram that visu-
alizes when students complete a given feature relative



Table 2: Student demographics at each of the studied schools.

School # Students White Asian Black Hispanic Multiracial Female Low Income
School I 526 31.4% 6.7% 30.8% 24.3% 6.3% 48.3% 47.7%
School II 815 39.5% 5.9% 22.5% 25.8% 5.8% 48.1% 51.0%
School III 919 22.0% 2.6% 42.3% 28.1% 4.7% 52.2% 65.6%

to the feature completion time of the instructor.

2. Cumulative-Feature-Completion - A stair-step graph
indicating when students add features to their code
during the class relative to the instructor.

3. Feature-Path-Graph - A state-space representation
outlining what features students add in what order,
showing the varying paths they take compared to the
path taken by the instructor.

4. RESULTS
4.1 Feature Time Completion
Our first methodology, Feature Time Completion, produces
a histogram showing the timing in which students complete
a feature relative to when the instructor completes the fea-
ture. In the three graphs in Figure 2, we present exemplar
cases of the “I do, We do, You do” instructional strategies
introduced in the Gradual Release of Responsibility (GRR)
model [18]. This is a common instructional strategy taught
to teachers, that progresses a teacher from modeling a step
to students (I do) to completing a step together with stu-
dents (We do) to finally allowing students to try on their
own (You do), giving the correct answer after their attempts.
The histograms shown show the timing of when the students
complete the feature relative to when the teacher completes
the feature (minute 0). In subfigure 2a we can see evidence
of focused instruction, or “I do”, where the teacher demon-
strates procedures before students attempt to solve problems
on their own. The graph is right-skewed and close to the cen-
ter signifying students completing the task directly after the
instructor. The second strategy, guided collaborative learn-
ing, or “We do”, is characterized by students working as a
class to complete the feature while being guided along by the
instructor. An exemplar of this strategy is shown in graph
‘2b’. This has students completing the feature very close
(within 5 minutes) of the instructor centering around the
instructor’s completion time. This suggests an instructional
strategy where students are following along and completing
the assignment with the instructor in a “we do” fashion. Fi-
nally, the last graphs depict independent learning, or a “You
do” strategy where students attempt to solve the problem
before reviewing as a group. Graph ‘2c’ shows the major-
ity of students completing the feature prior to the instruc-
tor demoing, with a subset of students (around 25%) com-
pleting the feature after the instructor reviews the solution.
The median student (the red-dashed line) is either right,
near-center, or left-adjusted for the three cases respectively.
Classroom observations confirm that the Teacher scaffolded
students by providing students with the blocks they would
need to complete the feature (but not giving the full an-
swer or how to combine them). Many students, given the
appropriate building blocks, were then able to assemble the
answer very quickly (10 minutes before the demonstration).
We turn to Figure 4, which provides an alternative represen-
tation of the same information for one class period taught

by Teacher B. Here, colored points are shown in order to
be able to track students across different features. It should
be noted that outlier points are removed for scaling pur-
poses (5 total features are completed by 3 students past the
100 second marker). Teacher B completed 4 features in in-
tended sequential order (F1,F2,F3,F4) which is important
to note as this was not always the case (as we will see later).
Most students complete the same feature within a minute
of when Teacher B completes the feature (minus the visibile
and non-visible outliers).

4.2 Cumulative Feature Completion
Our second representation shows how students cumulatively
add features to their code relative to each other as well as
relative to the instructor. Using the timestamps of when
students add their next feature to their code, we are able
to chart out in a Stair-step fashion students progressing
through the assignment, going from having nothing com-
plete to having more and more of the 5 features added. We
are also able to see based off the final placement of each line,
how many features students ended the lesson with. In the 3
cases and 4 classrooms described below, each student trace is
an individual stair-step function. Instructor feature comple-
tion is denoted by the dashed vertical lines, and comparing
when teachers and students complete features (in combina-
tion with the additional classroom observation data) allows
us to understand different instructional patterns and their
consequences.

4.2.1 Teacher G
Figure 3 describes one teacher doing the Food Web Assign-
ments with their class. After the teacher completes their
first feature (with the majority of the class following very
closely, within 2 minutes of him completing it) 15 minute
without progress pasess. A strand of students make progress
independently of the teacher, but the majority are stuck
at only completing one feature. From classroom observa-
tions, we know that the majority of students had followed
the instructor in naming their variable “energy” (though the
instructional guide says to name it “Energy” as custom func-
tions expect that name and are case sensitive). A strand of
students are able to recognize the error from their student
guides and are able to independently make progress. At
around 10:00, the teacher fixes the error, and announces it
to the class). The wide range of students jumping in progress
at varying different times reflects a change in instructional
style adopted by the teacher. As it was a simple naming fix
that affected every other Feature, fixing it resulted in mak-
ing progress on multiple features near simultaneously (seen
in the tall jumps in each stair step graph).

4.2.2 Teacher E: Period 4 vs 6
We now present a case study of the same instructor teach-
ing two different periods. As part of the faded scaffolding
teaching approach, a research member (Teacher C) taught



(a) TeacherD - I do (b) TeacherA - We do (c) TeacherH - You do

Figure 2: Gradual Release of Responsibility as shown by student interaction data

Figure 3: A flat-line after Teacher G’s first task - students
caught in the same error the Teacher does while live coding.

the first class period (Period 2) where Teacher E observed.
Teacher E then taught Period 4. Teacher E requested that
Teacher C instruct the next period (Period 5) to observe
once more how the lesson should go and then afterwards,
the teacher instructed Period 6. From Figure 4, we can see
the difficulties that Teacher E had with their first attempt
teaching. Teacher E completes all of her features for the
class after nearly 45 minutes of instruction with sometimes
nearly 8 minute gaps between feature additions. Many stu-
dents are intently following Teacher E adding a feature when
she does, but the number of bands that seem to be moving
independently before the teacher suggests that the students
were at varying paces not at the instructors. This is backed
by the classroom observations with researchers noting that
some students were ahead of the teacher and the teacher
actually asked students for help on what to add next in the
sequence. In the next attempt, Figure 5, Teacher E was able
to complete features much faster, adding 4 of the 5 neces-
sary features in an 8 minute span of time. This latter period
dramatically changes the pace at which the students add the
features, and the closeness of bands suggests that students
were more intently following the instructors pace. There are
common patterns that can be seen across both graphs. One
is the presence of outlier students who complete things at
a dramatically faster pace than the teachers. From the two
graphs, it also should be noted that the teacher does not
demonstrate the last feature to the class (unlike in her pre-
vious teaching period), and many of her students therefore

do not get all 5 features in their code. We do acknowledge
two outliers, one who jumps 4 features (around 11:15) and
the other who more gradual progress, but still faster than
the group. Classroom observations confirm that that stu-
dent was copying code that the previous instructor had left
on the projector during the transition period.

Figure 4: Teacher E’s first attempt teaching the lesson.

Figure 5: Teacher E’s second attempt teaching the lesson.

4.2.3 Teacher F
We now highlight a period taught by Teacher F, a research
instructor with a large amount of prior informal computer
science teaching experience. Teacher F elected to lead the
assignment without demonstrating to the students what the
code should look like. Instead, she instructed students in



what features they should be adding next, facilitating, and
helping students by walking around the room. After each
feature, she would then recap verbally with the whole class
to review what they needed to have done in order to add the
feature before moving on to the next one. We can see that
student progress is very independent of one another, with
the timing of each successive feature addition (i.e. when
students go from having 1 to 2 features) varying widely.
While students add their first feature within 5 minutes of
each other, Students add their 2nd, 3rd, and 4th feature
within 10 minutes of each other. This reflects the choice of
instruction style, with Teacher F walking around the room
independently helping students. In contrast to the end of
Teacher G’s lecture, progress in Teacher F’s class is lim-
ited, usually, to only adding the next feature and nothing
else. This reflects the teaching style of only giving students
limited information about what the next tasks are, focus-
ing the instruction on one feature at a time. Teacher F’s
students that complete their fifth feature (adding death),
do it near simultaneously, reflecting the change in instruc-
tion style recorded where the teacher instructs the class in
completing the feature together.

Figure 6: Teacher F instructs without demoing steps.

4.3 Feature-Path-Graph
In our final visualization, we remove the temporal informa-
tion of the last two graph-types and focus solely on Feature-
paths, the order in which students add features to their code.
In Figure 7, we highlight three Feature State representations
of three classes taught by three different instructors (Teacher
C, B, and H). Each state in the graph represents a unique set
of features complete by a student. For example, following
the path of Teacher B (the states marked ’TB’) in the sec-
ond graph, the states progress from the one with 0 features
to the one having only feature 1, to having both feature 1
and 2, to having features 1,2, and 3, and ending having fea-
tures 1 through 4. Conversely, the state spaces for Teach-
ers H and C show different sequences of feature additions
(for C in the order 2,1,3,4,5 and for H in the order 4,2,3,5).
Common state transitions, (those where a large proportion
of students transitioned) are marked with the Feature that
was added during the transition. The size of each state rep-
resents the proportion of students in the class that visited
that state. As some students do not finish the assignment
fully (getting “stuck” at certain points) we represent these
as “stuck-states” in which a grayed proportion of the state
represents how many students who visited that state did not

Figure 7: Feature-Path Graphs for Students (and teachers)
within sample classes for Teachers C, B, and H.

progress. We also denote the beginning and end state with a
special circle state and star-shaped state respectively. This
is similar to the representation introduced in Rui et al [24].

The three feature graphs show different instructional strate-
gies at play. The first, TC, show most students following the
path of the teacher, adding features as they do. However,
it also includes many individual paths taken by students
not necessarily following the teachers instruction sequence
explicitly, but following the general direction, denoted by
the number of ’confluence’ points or rejoining back into the
Teachers state of various different paths. This classroom had
the largest proportion of students actually finish the assign-
ment compared to the other two classrooms. Teacher B’s
more narrow state-space with the largest states being those
that the teacher traversed suggest that most students were
following along with the instructors code additions (corrob-
orated by Figure 4 as well as observations), adding in the
order that they did. While Teacher H had a subset of stu-
dents add features in the order they did as well as a subset
chosing a separate path, these paths seemed to converge in
state 2,3,4 then leading to the addition of Feature 5. While
Teacher H and C both show variance in student feature
paths, it should be noted that both Teacher H and B did
not add all 5 features to their code (Teacher H did not add
Feature 1, and Teacher B did not add feature 5). As such,
all students in Teacher B’s classroom and all but one stu-
dent in Teacher H’s class failed to complete all features of
the assignment highlighting scenarios in which intent direct
mimicry did not fully benefit students.

5. DISCUSSION
5.1 Feature Time Completion
As shown in Figure 2, while there are indeed examples of
“I do” sequences, where a teacher demonstrates a task and



then students replicate it, we also find examples of “We do”
and “You do” sequences rounding out Pearson’s Gradual Re-
lease of Responsibility model. Our observations triangulate
the “We do” pattern to actually involve the class working
together with the teacher to solve a problem, as opposed
to Pearson’s more traditional interpretation of the teacher
working with just a small group of students. We find “I
do” and “We do” strategies often adopted for the first fea-
tures that students work on together in the assignment with
the instructor with “You do” strategies prominent in fea-
tures later in the assignment (the last features students work
on). This would corroborate teaching progression strategies
pushed for in the GRR model, transitioning students from
“I do” to“We do” to“You do” feature completion throughout
the course of an assignment.

5.2 Cumulative Feature
By separating out the individual traces of each student into
their own function, we can see how a student temporally
progresses through the assignment in relation both to the
teacher and the other students in the class. From the stu-
dent perspective, we see many examples of students who
work in lock-step with the instructor (or with each other),
adding features as they do. But we also see students who
trail and lag behind as well as students who rapidly add
features before the instructor has even introduced them.
This differentiation is to be expected in a core classroom
where students have varying access to computing outside of
school and therefore different experiences with block-based
programming environments. The ability to identify students
who are not following along with the instruction, either as
the pace is too fast or too slow, can aid instructors in identi-
fying when to create more extension activities to high achiev-
ers or when to give more support to students in need.

5.3 Feature-Path
The state-space focuses on which features are being added
in what order, and can grant information about the way
teachers set up instruction (how they choose to pace the
students through the task). Very narrow state-space graphs
like shown for Teacher B can demonstrate a classroom that is
explicitly following along with the instructions as sequenced
by the teacher (even if they might be working on the tasks
at different times). Conversely, wider state-spaces like those
shown for Teachers C and H can be more indicative of class-
rooms where students had more agency over the order in
which they choose tasks. We make no argument that more
explicit instruction, or a higher path“follow”rate leads to ei-
ther more or less students completing the assignment. Teacher
B and Teacher H had a high proportion of students following
along with their path, however, this might have left students
unable to complete the assignment independently as neither
teacher added the fifth and final feature.

5.4 Instruction
Looking through the teacher perspective, we can identify
patterns indicative of increased teacher discomfort. As men-
tioned in Teacher G’s case study, as he erred in making the
variable, he his following students all flat-lined in their cod-
ing progress. This highlighted the loss of the teacher as the
“keeper” of knowledge and exposed the vulnerability that
they had to problem-solve along with the students, thus in-
curring pedagogical emotional discomfort. Similar signs of

discomfort are suggested in Teacher E’s case study where
there are long pauses between teacher actions and student
reactions. These graphs contrast Teacher F’s, the experi-
enced computing instructor, which had students clustered
on the same features, moving at a steady interval. Teacher
F did not feel the need to explicitly direct students with
live coding, but instead was able to guide their exploration
through facilitation. Conversely, we also discovered evidence
of change in instructional practice, both within a class pe-
riod and between them. In many cases, these changes lead
to more students following along and getting through the
material. As the anxieties that novice teachers tend to have
focus on not doing things ’correctly’, showing evidence of
positive change between implementations could potentially
inspire confidence in novice teachers that they are capable
of instructing computing curricula.

5.5 Limitations
The drawn conclusions that we outline in our case studies
are supported in part by our classroom observations, corrob-
orating what we find within the data-driven visualizations.
Because of the nuanced and varied ways in which classroom
behavior can manifest within the data, it is important that
we frame these results with our understanding of what hap-
pened within the classroom. As such, we understand the
reliance our methodology has on observational data, and
make no advocacy that our method acts as a complete re-
placement for it. In the same way that no single one of the
three graphs tell the full set of information of a classroom,
we believe that these quantitative analysis methods act as
an additional tool to act alongside qualitative data collec-
tion methods, ones that scale much better though than the
observational-based ones. We also understand that other
limitations present themselves with aspects of our method-
ology such as only focusing on one lesson with only 5 possi-
ble features. In addition, only having the set of consenting
students out of the entire classroom trace data could have
created a sampling bias that might alter any and all of our
graphs and therefore our analysis. We intend to try and
offset these effects by replicating this with the multitude of
lessons that are being developed by our teacher partners in
the upcoming academic year. Our methodology described is
agnostic to the assignment, the features, and how they are
tested for (though we acknowledge that the feature state
points are only as good as the tests you run on the code).

5.6 Future Work
Our initial results provide a foundation for further analy-
sis into influence of one actor (e.g. teacher) on another (e.g.
student) during programming. For example, as more schools
begin to adopt pair programming models of instruction, it
would be worth investigating these collaborative interaction
effects. This current work has practical applications for
our context in teacher training. As these graphs, charts,
and other figures can be generated rather quickly, teacher-
friendly versions can serve as additional means of explaining
to teachers how the experience went and how the classroom
acted. This data can help teachers inform their practice
and provide immediate or post-hoc help. Further, addi-
tional processing can translate many of these graphs into
animations that can give a ’live feel’ of how the instruction
played out in real time. Setting times for feature comple-
tion targets for an instructor can keep them on pace in tight



classroom periods, and windows for instructor-student fea-
ture completion can be used to determine if the class is fol-
lowing along intently. Often, the instructor participants in
this study looked to researchers for a simple ’Thumbs Up
or Thumbs Down’ measure to see if they were doing things
correctly and kids were following along. If a simple notifi-
cation such as the one described were implemented into a
dashboard system, we can imagine it benefiting instructors
of K-12 programming.

6. ADDITIONAL AUTHORS
Mehak Maniktala (mmanikt@ncsu.edu), Danielle Boulden
(dboulde@ncsu.edu), Eric Wiebe (wiebe@ncsu.edu) and Tiffany
Barnes (tmbarnes@ncsu.edu). This material was supported
by the National Science Foundation under grant 1837439.
Anything expressed in this material does not necessarily re-
flect the views of the NSF.

7. REFERENCES
[1] B. M. Aidan Lane and J. Mullins. Simulation with

Cellular A Project Based Introduction to
Programming. BlockBooks Series. Monash University,
Melbourne, Australia, first edition, 2012. Online:
https://github.com/MonashAlexandria/snapapps.

[2] J. Bennedsen and M. E. Caspersen. Revealing the
programming process. In ACM SIGCSE Bulletin,
volume 37, pages 186–190. ACM, 2005.

[3] V. Cateté, N. Lytle, Y. Dong, D. Boulden, B. Akram,
J. Houchins, T. Barnes, E. Wiebe, J. Lester, B. Mott,
et al. Infusing computational thinking into middle
grade science classrooms: lessons learned. In
Proceedings of the 13th Workshop in Primary and
Secondary Computing Education, page 21. ACM, 2018.

[4] C. Chen and P. J. Guo. Improv: Teaching
programming at scale via live coding. In Proceedings
of the Sixth Annual ACM Conference on Learning at
Scale, L@S ’19, New York, NY, USA, 2019. ACM.

[5] N. Diana, M. Eagle, J. Stamper, S. Grover,
M. Bienkowski, and S. Basu. An instructor dashboard
for real-time analytics in interactive programming
assignments. In Proceedings of the Seventh
International Learning Analytics & Knowledge
Conference, pages 272–279. ACM, 2017.

[6] B. J. Fishman, W. R. Penuel, A.-R. Allen, B. H.
Cheng, and N. Sabelli. Design-based implementation
research: An emerging model for transforming the
relationship of research and practice. National society
for the study of education, 112(2):136–156, 2013.

[7] J. Frykholm. Teachers’ tolerance for discomfort:
Implications for curricular reform in mathematics.
Journal of Curriculum and Supervision, 2004.

[8] S. Grover, R. Pea, and S. Cooper. Factors influencing
computer science learning in middle school. In
Proceedings of the 47th ACM technical symposium on
computing science education. ACM, 2016.

[9] B. Harvey, D. Garcia, J. Paley, and L. Segars.
Snap!:(build your own blocks). In Proceedings of the
43rd ACM technical symposium on Computer Science
Education, pages 662–662. ACM, 2012.

[10] F. T. Husic, M. C. Linn, and K. D. Sloane. Adapting
instruction to the cognitive demands of learning to
program. Journal of Educational Psychology, 1989.

[11] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler,
J. Börstler, S. H. Edwards, E. Isohanni, A. Korhonen,
A. Petersen, K. Rivers, et al. Educational data mining
and learning analytics in programming: Literature
review and case studies. In Proceedings of the 2015
ITiCSE on Working Group Reports. ACM, 2015.

[12] R. Jocius, D. Joshi, Y. Dong, R. Robinson, V. Cateté,
T. Barnes, J. Albert, A. Andrews, and N. Lytle. Code,
connect, create: The 3c professional development
model to support computational thinking infusion. In
Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, SIGCSE 20. ACM, 2020.

[13] P. A. Kirschner, J. Sweller, and R. E. Clark. Why
minimal guidance during instruction does not work:
An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based
teaching. Educational psychologist, 41(2):75–86, 2006.

[14] M. C. Linn and J. Dalbey. Cognitive consequences of
programming instruction: Instruction, access, and
ability. Educational Psychologist, 20(4):191, 1985.

[15] N. Lytle, V. Cateté, D. Boulden, Y. Dong,
J. Houchins, A. Milliken, A. Isvik, D. Bounajim,
E. Wiebe, and T. Barnes. Use, modify, create:
Comparing computational thinking lesson progressions
for stem classes. In Proceedings of the 2019 ACM
Conference on Innovation and Technology in
Computer Science Education, pages 395–401. ACM,
2019.

[16] N. Lytle, V. Cateté, Y. Dong, D. Boulden, B. Akram,
J. Houchins, T. Barnes, and E. Wiebe. Ceo: A
triangulated evaluation of a modeling-based ct-infused
cs activity for non-cs middle grade students. In
Proceedings of the ACM Conference on Global
Computing Education, CompEd ’19. ACM, 2019.

[17] J. Margolis. Stuck in the shallow end: Education, race,
and computing. MIT Press, Cambridge, MA, 2010.

[18] P. D. Pearson and M. C. Gallagher. The instruction of
reading comprehension. Contemporary educational
psychology, 8(3):317–344, 1983.

[19] T. W. Price, Y. Dong, and D. Lipovac. isnap: towards
intelligent tutoring in novice programming
environments. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science
Education. ACM, 2017.

[20] A. Ruthmann, J. M. Heines, G. R. Greher, P. Laidler,
and C. Saulters II. Teaching computational thinking
through musical live coding in scratch. In Proceedings
of the 41st ACM technical symposium on Computer
science education, pages 351–355. ACM, 2010.

[21] J. Sweller. Cognitive load during problem solving:
Effects on learning. Cognitive science, 12(2), 1988.

[22] D. Weintrop and U. Wilensky. Comparing block-based
and text-based programming in high school computer
science classrooms. ACM Transactions on Computing
Education (TOCE), 18(1):3, 2017.

[23] R. Zhi, T. Price, S. Marwan, Y. Dong, N. Lytle, and
T. Barnes. Toward data-driven example feedback for
novice programming. International Educational Data
Mining Society, 2019.

[24] R. Zhi, T. W. Price, N. Lytle, Y. Dong, and
T. Barnes. Reducing the state space of programming
problems through data-driven feature detection.


