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Abstract—Nowadays competitiveness goes through several as-
pects: digitalization, productivity and environmental impact.
Technology is advancing fast and helping industries to obtain
more and more detailed data about their processes and equip-
ment. In fact, the possibility to monitor and control each part
of the process is a strong base on which a more intelligent
and focused control can be built. Technology advance brings
innovation and the possibility to manage the production in
terms of near future” through AI prediction and decision-
making support. Forecasting demands and planning production,
optimizing process by reducing costs and improving efficiency
without corrupting the quality of the product is a big challenge
at the plant level. In this paper, a flexible, scalable architecture
for intelligent digital twin realization called REPLICA has been
proposed to cope with such problem and help industries to
advance and discover possible optimizations. This architecture
sits on top of two European projects, namely CPSwarm and
RECLAIM, where their contribution focus on distributed sim-
ulation and optimization, and Adaptive Sensorial Networks,
correspondingly. As a validation process, a hypothetical use case
is presented, detailing the key differentiating points and benefits
of the proposed architecture.

Index Terms—IoT, Digital Twin, Al, Fault Diagnosis, Predictive
Maintenance

I. INTRODUCTION

In the era of Industrial Internet of Things (IIoT) and Industry
4.0, complex electromechanical systems can be equipped with
a variety of sensors providing new opportunities for the
development of Health Monitoring and Management Systems.
These new opportunities target an optimum exploitation of
available information in order to maximize the performance
of the machinery and optimize the process. Focusing on the
increase of production reliability and safety, as well as on the
reduction of costs, there is an ever increasing industrial need
not only for accurate and on time online diagnostics, but also
for a robust and early estimation of the Remaining Useful Life
(RUL) of the defected components, within a high confidence
interval, independent of the operating conditions.

For this reason, and many others, a new concept of ’inter-
action’ with the process arose; a concept of controlling and
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monitoring a replica instead of the real object, a perfect virtual
replica that interacts with both humans and machines: a Digital
Twin. The concept of “twin” is originally derived from Na-
tional Aeronautics and Space Administration (NASA)’s Apollo
Project when the aircraft’s twin body was a real physical
system [1]. Twin models help astronauts and staffs make
decisions under emergency situations. Digital twin integrates
the life cycle of a machine [2], and achieves a closed loop
and optimisation of the machine design, production, operation,
and maintenance, etc. In Magargle et al. [3], a multi-physical
twin model is built to monitor the status of the brake system
through multiple angles. NASA hopes to realise the health
management and residual life prediction of the aircraft by
building a multi-physical, multi-scale Digital Twin model [4],
furthermore serveral roles are envisioned for Digital Twin in
the industry 4.0 scenario [5].

The present paper focuses on the proposition of an intel-
ligent digital twin architecture called REclaim oPtimization
and simuLatlon Cooperation in digitAl twin (REPLICA), that
focuses on two important aspects: 1) plug’n’play of models
on demand and 2) Workflow design to orchestrate the models
used in the Digital Twin itself. Aspect (1) aims to ease
the integration and removal of models into digital twins,
whenever a new version of the software is available or it
performs any necessary correction in the used models. The
goal of the latter aspect is dedicated to the creation of a
pipeline that can manage the flow of data among all the
available models. These models might be from pure data
processing and decision making, from sensor and actuator
integration, to third party synchronization with information
systems such as Manufacturing Execution Systems (MES)
or Enterprise Resource Planning (ERP). Most digital twins,
and in particular intelligent digital twin architectures focus
on providing the best set of models that one should have
to accomplish, e.g. predictive maintenance, from the type of
simulation required to machine learning models that should be
refined based on newly acquired data. Furthermore, REPLICA
can allow a flexible and distributed deployment in such a
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way that both completely cloud or mixed edge/cloud solutions
deployment are accepted, with respect to the need of the
specific application.

However, these architectures are normally rigid and do not
support changing software models or even easily set up the
orchestration of those resources. Fixed data flows are generally
hardcoded, meaning that if an implementation needs to be
modified, changes in code are required. This is often not
recommended since these changes might negatively influence
the stability of the system. To this intent, an architecture that
addresses these challenges is presented.

The paper is organized as follows: in Section II, the authors
introduce a literature review about predictive maintenance and
fault diagnosis based on digital twin. Complementary, Section
IIT presents the core technologies of the solution presented
in this paper. Section IV describes the architecture of the
solution proposed and Section V presents a first prototype
implementation followed by Section VI in which a possible
application is described. Finally, Section VII concludes the
paper by summarizing and discussing the work.

II. LITERATURE REVIEW

With the rapid advancement of Cyber-Physical Production
Systems, Artificial Intelligence (AI) and IIoT, Digital Twin
(DT) has gained increasing attention due to its capability to
adapt and replicate the industry processes. Accordingly to
these changes, many different DT architectures have been pro-
posed to realize several use cases in an intelligent and complex
production system. Industrial Al [6] brings to the processes
self-aware, self-adapt, and self-configure functionalities and
facilitates the integration of the DT.

In [7], the authors propose to insert an intelligent DT in
the Cyber Layer architecture. The concept has been partially
realized with two industrial use cases, namely a modular pro-
duction system as well as a metal forming industrial process
to show its potential and gains over the challenges in Cyber-
Physical System (CPS), i.e., synchronization throughout the
lifecycle of a cyber-physical production system; development
of the DT, which can contain different models; the interac-
tion between DT, both for the purpose of co-simulation and
operation data exchange; and the active data acquisition.

In [8], the authors present a methodology for enabling
DT using advanced physics-based modelling in predictive
maintenance. This methodology for advanced physics-based
modeling aims to enable the DT concept in predictive main-
tenance application and consists of two main points: digital
model creation and DT enabling. Then, the user is able to
define, create and utilize the digital model of a resource, as
well as its DT. The integration of DT and deep learning in CPS
environment has been also proposed in [9] for the development
and realization of smart manufacturing.

In [10], the authors present solutions for fault diagnosis
based on DT. The paper includes an experiment and interesting
results obtained with the software proposed. Compared to
the solution presented in this paper, this work has a limited
flexibility since it is only suitable for fault diagnosis.
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In [11], [12] and [13], the authors show how it is possible
to build a DT of machines and systems of systems to allow
autonomous smart manufacturing, but these works, while
interesting, are not specifically presenting a solution for fault
diagnosis and predictive maintenance.

The authors of [14] introduce a solution for predictive main-
tenance of computer numerical controlled machines, based
on DT. They demonstrate how the exploitation of a DT for
predictive maintenance can provide better results compared to
more traditional approaches. Even if this work provides a good
example of application of DT for predictive maintenance, it
doesn’t aim to present a solution that can be leveraged in other
scenarios.

In this paper, the authors intend to propose a novel ar-
chitecture that supports several features missing in the other
solutions presented above. Specifically, the proposed solution
is not based on a set of fixed components but it can integrate
heterogeneous modules, in terms of Internet of Things (IoT)
sensors, Al algorithms and simulation tools, easing its cus-
tomization in different use-cases. Furthermore, thanks to the
flexibility guaranteed by the distributed nature of the system,
the setting-up of the platform can easily be adapted to the each
specific industrial infrastructure, selecting the most suitable
mix of edge/cloud deployed components.

Moreover, the proposed architecture can support the creation
at runtime of workflows both among the Al modules as well
as between the IoT sensors and the models. This drastically
reduces the time needed to run and collect results from the
Al algorithms. In these terms, a possible process optimization
can be quickly evaluated and eventually discarded if not
appropriate. Finally, all the entities (sensors, AI modules and
simulators) can be substituted following a plug&play approach
that ease the adaption of the system to the changes in the
physical world.

III. CORE TECHNOLOGIES
A. RECLAIM platform

Following the industry 4.0 paradigm, the business models
of manufacturing companies need to be transformed, resetting
their strategies to improve productivity and quality. The current
maintenance strategies often require the user to manually
analyse data collected to extract useful information from them
and, furthermore, periodic human inspection is required to
assess the real condition of the assets monitored.

Currently, the lack of continuous operation and health status
monitoring tools and predictive maintenance solutions lead
to unpredictable situations in industry like sudden machine
operation failures. In this case, the current common procedure
is to ask the intervention of technicians, which then try to
repair and solve the problem. This causes several problems:
it is time-consuming; it leads to production delays since the
machine is stopped until it is not repaired; it doesn’t support
resources distribution. The industry 4.0 paradigm goes in the
direction to address such problems through different actions: 1)
re-manufacturing systems for material and resource efficiency,
2) increased flexibility in changing machine operation purpose,



3) application of big data analytics techniques, and 4) pre-
dictive analytics and model-based forecasts and optimization
procedures, based on completely data-driven processes.

These four suggestions have been the funding principles
of the RE-manufaCturing and Refurbishment LArge Industrial
equipMent (RECLAIM) concept definition. The main objec-
tive of the project is to increase productivity, extending the
lifetime of the machines and reducing the time and cost of
machinery refurbishment and/or re-manufacturing. This objec-
tive will be achieved designing and developing a set of tools
supporting several activities: from the monitor of machines’
health status, to the implementation of adequate recovery
strategy (e.g., refurbishment, re-manufacturing, upgrade, main-
tenance, repair, recycle, etc.). To achieve this, the RECLAIM
outcomes will include two main components: an Adaptive
Sensorial Network used to collect data and a Decision Support
Framework (DSF) for optimization based on different criteria.
Specifically one of the technologies supporting the DSF is the
proposed REPLICA where simulation and optimization is used
for fault diagnosis. The Adaptive Sensorial Network is one of
the key elements to be used in the proposed architecture and
is seen as an entry point for the essential data to be used.

B. CPSwarm Simulation and Optimization Environment

As indicated in [15], the CPSwarm Workbench - the set
of tools released by the project for the development of CPS
swarms applications - includes also a Simulation and Opti-
mization Environment, used to evaluate the performance of
a swarm solution. Such solution is composed mainly by: the
Simulation and Optimization Orchestrator (SOO), which over-
sees the simulation and optimization tasks; a set of Simulation
Managers (SMs), which provide common Application Pro-
gramming Interface (API) to control heterogeneous Simulation
Tools (STs); and an Optimization Tool (OT) used to perform
the optimization processes. The network-based architecture is
depicted in Fig. 1.
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Fig. 1. Network-based Architecture from CPSwarm for Distributed Optimiza-
tion and Simulation.

Evaluation

Such environment is useful both to simulate the behaviour
of a designed swarm solution in a ST, leveraging the ST’s
Graphical User Interface (GUI) to evaluate its behaviour; and,
on the other side, to optimize the controller parameters of
algorithm/module, and possible aspects of the problem, i.e., the
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number of CPSs used, leveraging evolutionary design method-
ologies. In the latter case, candidate parameter sets are ranked
based on a fitness score computed after the controller was
executed with those parameters in a predefined environment.
Successful parameter sets are then adapted to produce a new
generation of candidates to be tested. This is a high time- and
resource-consuming process, which requires a high number of
simulation runs. To address this, the CPSwarm solution allows
to parallelize the execution of these simulations, reducing the
times required to complete an optimization. For this objective,
the Simulation and Optimization Environment has a network-
based architecture, allowing to parallely use a set of STs
distributed on different machines [16]. This architecture has
been implemented leveraging the eXtensible Messaging and
Presence Protocol (XMPP) protocol, already tested executing
multiple simulations on Robot Operating System (ROS)-based
STs, i.e., Stage, Gazebo and Virtual Robot Experimentation
Platform (V-REP). In the last release of the software (available
as open-source on github'), a set of technologies have been
integrated to improve its scalability and easy-to-use, i.e.,
docker and Kubernetes. Such final release has been tested,
showing that it is able to scale till 128 SMs and that the time
required to complete one optimization is inversely proportional
to the number of STs used. Finally, a proof of concept has
demonstrated the ability to deploy the controller with the
optimized parameters onto CPSs.

The concept of distributed simulation and optimization
is brought to the proposed REPLICA architecture by the
CPSwarm results and the whole orchestration process and
main building blocks are inspired by this project.

IV. ARCHITECTURE

This section introduces the REclaim oPtimization and sim-
uLatlon Cooperation in digitAl twin (REPLICA) architecture
that has been designed to provide an infrastructure and be
used for Digital Twin-based fault diagnostics and predictive
maintenance solutions, which can be easily deployed and
customize in different Industrial IoT environments.

REPLICA is composed by several modules (shown in
Figure 2), mainly subdivided in two blocks: Backend and
Frontend. The first one contains three main components:
Artificial Intelligence (AI) Environment that hosts the Al
modules, Digital Twin Orchestrator (DTO) that is used to
orchestrate the operations done by the REPLICA and the Sim-
ulation Environment that is a distributed environment includ-
ing several heterogeneous simulators deployed into different
machines. The latter one instead contains two applications:
one devoted to show the results obtained and another one for
the configuration of the component. These modules will be
described in the remainder of this section.

As explained in Section I, the DT concept concerns the
integration of three main components: the data collected by
IoT sensors; the realistic models of the real devices and the

Uhttps://github.com/cpswarm/SimulationOrchestrator/wiki/Simulation-and-
Optimization-Environment
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Fig. 2. REPLICA Architecture.

synchronization with those using the data collected; and a set
of AI modules connected to these models. REPLICA fully
supports this concept, providing the infrastructure to integrate
these technologies.

In REPLICA, the Digital Twin Orchestrator (DTO) is the
module in charge to manage all the [oT data flow coming from
the field: machinery data, historical data and other data from
legacy systems already present in the shop-floor. As described
in Section III, these data are flowing through a component
of the RECLAIM platform, the Adaptive Sensorial Network.
Furthermore, the DTO is in charge to create the correct flow
among the AI modules running in the Al environment and
the machine models running in the Simulation Environment.
Finally, the DTO oversees the storing and organization of
the processed and simulated data, which are saved in a local
database.

In REPLICA every machinery of interest has a corre-
sponding realistic model running in one of the simulators
integrated in the Simulation Environment. Specifically, the
Simulation Environment is a distributed environment based on
the one presented in Section III-B. Similar to what has been
presented for the original solution about swarm intelligence,
the environment supports a set of heterogeneous simulators
distributed in different machines. Each of these simulators
is wrapped by a Simulation Manager, and the role of this
component is to abstract the functionalities provided by the
simulators using the standard API exported by the DTO. In
this way, the DTO can: 1) control the simulators to run the
required simulations; 2) inject the data needed to keep the
models synchronized with the real machines; 3) inject in the
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simulators data produced by the Al algorithms (for example to
simulate failures); 4) receive from the simulators the produced
results. Finally, the Simulation Environment supports for each
integrated simulator one advanced Simulator GUI that allows
to monitor the simulated device. This GUI is the one integrated
in the simulator, which provides a graphical representation
(also 3D) of the simulated device.

Finally, in REPLICA the AI algorithms are hosted and
executed in the AI Environment. This environment allows to
host and run heterogeneous algorithms for fault diagnosis and
predictive maintenance. Besides the algorithms, the environ-
ment also hosts a module called Al engine. This module has
the objective to orchestrate the algorithms creating the needed
workflows among them. Furthermore, the Al Engine uses the
API provided by the DTO to interconnect the Al modules with
the machine models and the data coming from the shop-floor.

The architecture is completed by the two interfaces in the
Frontend: the OutputMonitor GUI is used to monitor in real
time the results produced by the running solutions in a user
friendly interface. Instead, the Configuration GUI is leveraged
by the users of the system to configure the Al engine for the
needed tasks.

The proposed architecture aims to provide the following key
features: 1) Allowing the integration of heterogeneous compo-
nents in terms of sensors data collected from the field, Al algo-
rithms and simulators running accurate machine models in the
shop-floor; 2) Supporting the creation at runtime of workflows
not only among both AI modules and the IoT sensors, but also
among themselves; 3) Supporting the plug&play at runtime
of the IoT sensors, the AI modules and machine models,
without the need to restart the system; 4) Easing the adaptation
of the digital twin to the changes in the physical world; 5)
Enabling a flexible and distributed deployment: supporting
both completely cloud or mixed edge/cloud solutions, based
on the need of the specific application.

A first partial implementation of the proposed architecture
and a set of possible future works for the part not yet
implemented is presented in the next section.

V. PRELIMINARY IMPLEMENTATION AND FUTURE
PROSPECTS

This section presents the first prototype of the proposed
architecture. The solution is a combination of newly developed
components and the evolved version of components already
developed in previous European Union (EU) projects. For
the new components, this section will introduce only some
possible technologies that the authors are evaluating and
testing so far to leverage and implement the architecture, while
for the existing components a more concrete implementation is
presented. More specifically, the software already implemented
is one algorithm for predictive maintenance, one for fault
diagnosis and a distributed simulation environment already
developed in CPSwarm, while the components yet to be
implemented are the Al environment, the Al engine, the DTO,
the Configuration GUI and the OutputMonitor GUIL



The authors have chosen to base the Al environment on a
docker container based solution. Each predictive maintenance
and fault diagnosis algorithm will be wrapped in one container.
In this way the AI environment will support the integration of
Al modules based on different technologies.

Two examples of solutions currently supported in the Al
environment are the fault diagnosis and predictive maintenance
modules presented in Fig. 3 and 4. The fault diagnosis module
is composed by techniques to find abnormal behaviors that
deviate from normal process conditions to raise warnings
and find root causes for the problem. This algorithm will be
fed directly with sensor data (when possible and pertinent)
or transformed data from the field in order to be more
interpretable. Based on the analysis of data streaming, the
algorithm should indicate if a warning should be sent to the
key personnel to check the system. This algorithm is the first
front-line of analysis from shop-floor components in order to
understand machine’s health.

Additionally, the predictive maintenance module is com-
posed of 1) a component failure prediction in the future
(e.g. 48h and which maintenance action should take place);
2) Optimization module for scheduling future maintenance
actions based on the existing scheduling; 3) Simulation module
that aims at assessing the impact of changes in the machine
and shop-floor [17]. The main idea of this method is to predict
what kind of maintenance and when it will be required based
on the failing component in the machine. With this, it will be
possible to understand what changes need to be done in order
to compensate the downtime of the failing machine.

As can be seen from Figure 3, the implementation already
follows a block based approach which allows a better flexibil-
ity once building the required data workflows among models.
For this particular case, the Dynamic INtelligent Architecture
for Software MOdular REconfiguration (DINASORE) [18]
platform was used, which is a run-time environment devel-
oped in python language for the International Electrotech-
nical Commission (IEC) 61499 standard [19] and integrated
with the Eclipse based Framework for Distrubeted Industrial
Automation and Control (4DIAC) Integrated Development
Environment (IDE) [20]. Moreover, this implementation does
not only allow for the orchestration of models, but also the
plug&play of such models in a distributed system, where
software can be reconfigured on-demand. This supports both
completely cloud or mixed edge/cloud systems, depending on
the required application and the number of machines available
for execution. Finally, since DINASORE is implemented in
python, the state of the art implementations of Al can be
promptly used.

For the implementation of the Al Engine that interconnects
the AI modules, the authors have already evaluated several
solutions. One is the possibility to run the modules in a
docker environment, making them read and write from text
files located in specific folders and then interconnect them
through a software that allows to handle the workflow, e.g.,
Node-red or NiFi. Another evaluated solution is the possibility
to use Acumos Al to implement the Al environment; in this
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case, the deployment of the containers, the interconnection of
the components and the workflow will be handled by tools
included in the framework. At the moment of writing, the
final solution to be used is still under evaluation and the
authors are investigating if Acumos Al satisfies all the needed
requirements of the Al environment, particularly focusing on
the possibility to add and remove Al modules at run-time and
the dynamic change of their interconnections to create new
workflows.

For the implementation of the DTO and the Simulation En-
vironment, the Simulation and Optimization Environment so-
lutions provided by CPSwarm will be leveraged and extended.
Specifically, REPLICA will incorporate the communication
API based on XMPP and the deployment system, based on
docker and Kubernetes [21]. The use of these technologies will
allow to integrate heterogeneous simulators, to simply deploy
and run the simulations needed on distributed machines, add
and remove at run-time the simulators running different mod-
els. More specifically, in the Simulation Environment, consid-
ering that the solutions proposed in CPSwarm was integrating
only ROS based simulators, new types of simulators, e.g.,
java based simulators, will be included during the RECLAIM
project. For this scope, a specific SM will be developed for the
required simulators and the API will be refactored to support
also these new simulators. Beside the SM, also docker contain-
ers to easily deploy such simulators will be created. Instead,
for the implementation of the DTO, the authors have defined
that the SOO implemented in CPSwarm will be completely
refactored and extended to support the functionalities required
by REPLICA. Additionally, only some of the functionalities
of the SOO will be leveraged, extending them to support
data storage and data analysis features. Finally the DTO will
provide a set of API based on some standard technologies,
e.g., Message Queue Telemetry Transport (MQTT), which will
allow to collect data to be used by the algorithms and to keep
the models updated and synchronized with the physical world.
Thanks to these API, the DTO will be able to collect data
from heterogeneous devices that, in the RECLAIM platform,
are integrated through the IoT Gateway (see Section II). Also
in this case, it will be possible to add and remove devices
at run-time, without the need to restart the system. The new
devices can be immediately used by the solution developed,
just after they have registered themselves.

Finally, for the implementation of the GUI included in the
architecture, the presented modules are in different phases
of development. Specifically, for the Configuration GUI, the
authors have not yet chosen how to implement it and different
solutions will be evaluated, keeping in consideration a thor-
ough integration with the rest of the platform. Instead, for the
Output/Monitor GUI, for the monitoring and assessment of the
results of the algorithms, a simple implementation based on
the work done in CPSwarm is already available. Specifically,
this solution is based on Thingsboard, which has been used
to develop two different GUI: one for process monitoring and
another one for the assessment of results. The first one shows
live data in a chart and allows the monitoring of the process;
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Fig. 3. Fault Diagnosis algorithm.

Moniter Machine's
Sensor

Simulate Machine's
Performance/Degradation
with Throughput

Optimize Machine’s
Throughput Rate

Alter Maintenance
o Schedul
Optimization Module chedule

Fig. 4. Predictive Maintenance algorithm [17].

the latter one, instead, shows the data in a table, where it can be
sorted by column (one column for each data). These GUIs have
been used in this first implementation, but the possibility to
enhance or completely replace them with something different,
based on the requirements of the solution proposed, will be
evaluated in the future.

VI. RECLAIM USE CASE

The aim of this section is to present a possible application
of the solution presented in this paper, focusing on the predic-
tive maintenance and refurbishment of a large Woodworking
Production Line. The main objective of such use case will be
to show the benefits of the adoption of advanced maintenance
strategies in a large scale industrial scenario.

The selected scenario presents different challenges: firstly,
the need to integrate in a single environment both heteroge-
neous data collected by installed sensors at the shop-floor
and AI modules; together with the realistic models of the
machines, enabling and easing the construction of a shop-
floor’s digital twin. Moreover, the proposed solution will have
to optimize the use of a large industrial equipment providing
novel machine learning solutions able to monitor the current
system status and predict possible failures. In particular, the
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exploitation of fault diagnosis and predictive maintenance
techniques based on the use of digital twin will increase
the efficiency of the maintenance activity with respect to the
performance obtained with the traditional methods based on a
fixed schedule and a simple telemetry analysis.

The flexibility and adaptability of REPLICA can be well
demonstrated both during the system setup in the industrial
site and in case of replacement of one machine in the Wood-
working Production Line.

In the first case, when the platform is going to be deployed,
the data collected by the Adaptive Sensorial Network and a
set of Al algorithms for fault diagnosis and predictive main-
tenance developed by different analysts have to be integrated.
Furthermore, to allow the simulation of different operative
scenarios, the realistic models of different machines have to
be imported and executed in one simulator.

Using REPLICA, the effort to make all these components
provided by heterogeneous vendors working together is signif-
icantly reduced, allowing their integration by simply exposing
their inputs/outputs through the REPLICA defined interfaces.
In particular, for the machine simulation, if the simulator used
to execute it is already supported by REPLICA, no further
developments are needed; otherwise only the SM for that
simulator needs to be developed to allow its integration with
the rest of the solution. The same advantage can be considered
also for the AI algorithms: if the ones already integrated
in the Al environment are suitable for the specific case, no
developments are necessary and the platform should be just
configured to enable the correct flow of data among different
components. Otherwise, to integrate a new algorithms, the only
requirement is to implement the inputs/outputs API defined in
REPLICA.

Once all the components are connected, the Al modules can
be trained using the data coming from the Adaptive Sensorial
Network (as it is usually done), but also with data produced
by the simulated machines. The integration of this secondary
source of data not only allows to speed up the training process
(more data available means less time to learn) but also to add
the possibility of using data that are generally more difficult to
collect, such as the one associated with specific failures that,



for obvious reasons, are not so common in a real industrial
plant.

The advantages of the REPLICA solution can be further
demonstrated taking into consideration the scenario of a
machines part replacement in the production line which is
already monitored by the system. In this case, the administrator
of the platform needs to update the components used for
the fault diagnosis and predictive maintenance to reflect the
new situation on the field. In a traditional system, this is a
process that requires a complete shutdown of the system in
order to setup and reconfigure it; instead, by using REPLICA
the process is fast and mainly automatic. Indeed, for the
replacement of the simulation models, this can be done just
removing the old simulator and instantiating a new one with
the updated model, taking advantage of the integration of
the solution with Kubernetes. Once the updated simulator
is instantiated, the same process can be applied to the Al
algorithms, which can replace the previous ones. All these
updates can be done without the need to interrupt the execution
of the system. Obviously, if this change requires the integration
of some new Al modules or the development of a new SM,
these have to be implemented in advance. Also the workflow
of the components need to be updated to interconnect the new
ones, and can be done simply by using the tools provided
by Al engine and DTO. These will automatically update the
workflow to reflect the status of the components available in
the system and that allow the administrator to easily create the
new workflows. Finally as for the previous use-case, REPLICA
can also be used to speed up the training time needed to have
the new algorithms ready to be used, supporting the use of
simulated data, instead of using the actual devices.

VII. CONCLUSION

The paper has presented REPLICA, a solution that enables
the application of innovative fault diagnosis and predictive
maintenance techniques based on DT. The software proposed
is part of a more complex platform developed by the RE-
CLAIM project that provides a complete software solution
for both extending machinery lifetime while also improving
productivity and performance.

The paper shows the main key innovations introduced by
REPLICA in terms of fault diagnosis and predictive mainte-
nance techniques based on DT. Specifically, one of the basic
concepts of REPLICA is to build the solution not as unique
suite of technologies, but as a run-time environment with APIs
that allow the integration of heterogeneous Al modules and
simulators. In this way, the solution can be easily customized
to be used in different industrial sites, integrating components
provided by different vendors, without requiring the devel-
opment of new components, but just adapting the existing
ones. Furthermore, using REPLICA the user can integrate
and replace Al modules and simulation models at run-time,
without the necessity to stop the system and reconfigure it.
REPLICA provides tools to interconnect among each other
the different modules with the data collected from the field.
This allows the creation and the modification at run-time

61

of the workflows needed for fault diagnosis and predictive
maintenance, adding/removing/replacing entities to reflect the
situation of the components available in the system.

In this work, the authors introduced the details of the
first implementation of the proposed architecture; since the
development currently is only in a preliminary phase, Section
V presents the implementations of the modules that were
evolved from previous EU projects’ outcomes. Instead, for
the new components only some initial design choices are
presented. In particular, the Al environment and the DTO have
been just designed and will be developed in next phases of the
project, while the Simulation Environment is already available
and only some SMs for new simulators will be developed.
In the same way, a dashboard for monitoring and results
assessment is ready, while the GUI for configuration has still
to be implemented.

Finally, the authors have provided in Section VI two use
cases based on one realistic industrial scenario, which show
the advantages of using the proposed solution to apply fault
diagnosis and predictive maintenance techniques based on
digital twin.
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