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Abstract. This paper presents research results of mixed base number systems 

using a binomial representation of numbers and nonlinear coding techniques by 

constant weight codes, which are based on a binomial count. Also we propose a 

technique of non-binary constant weight coding based on a generalized binomi-

al-positional representation, which allows to generalize the known approach to 

the non-binary case and practically implement computational algorithms for 

generating non-binary sequences of constant weight. The proposed technique of 

non-binary constant weight coding can be useful for improving post-quantum 

code-based cryptographic algorithms. 
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1 Introduction 

The computational efficiency of arithmetic operations directly depends on the tech-

nique of representing numbers on which operations are performed, i.e. on the applied 

number system [1–4]. The most common is the positional number system in which 

the same numerical sign (digit) in the number record has different meanings, depend-

ing on the position where it is located [3, 4]. Among these systems is the modern 

decimal number system, the occurrence of which is associated with a finger count, the 

binary number system used in modern computers, etc.  

A mixed base number system is a generalization of the positional system, its base 

is an increasing number sequence and each represented number is expressed through a 

linear combination of base elements [3–6]. Mixed base number systems include the 

Fibonacci number system, factorial, binomial and other systems [6–8]. 

It should be noted that many applications are based on the binomial number sys-

tem, including the so-called binomial codes that belong to the class of nonlinear bina-

ry redundancy codes used to increase the noise immunity of binary asymmetric data 

transmission channels [3, 6–8]. The main property of binomial codes, an equal Ham-

ming weight (the number of nonzero elements) of all codewords, is used to effectively 

detect asymmetric distortions of transmitted sequences. In this case, a change of 
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Hamming weight of the sequence is an adequate criterion for detecting errors in 

asymmetric binary data channels. 

Another, equally demanded application of constant weight codes consists in con-

structing provably robust cryptosystems [9–12], the security of which is justified by 

the reducability of the private key calculation task to the solution of the theoretical 

complexity problem of syndrome decoding [13, 14]. So, for example, in [15–17], 

provable secure  encryption systems are considered. In works [18–20], code-based 

electronic signature schemes are considered, their parameters and basic properties are 

investigated. In articles [21, 22], pseudorandom number generators based on codes 

are studied, as well as promising stream encryption schemes [23–26]. Papers [27–29] 

are devoted to the study of zero-knowledge proof schemes. The design of fast and 

secure code-based hash functions is investigated in [25, 30–32]. 

Thus, code-based cryptography has many important applications. These crypto 

primitives are post-quantum security algorithms, i.e. they will be strong even under 

the conditions of possible quantum cryptanalysis [9–12]. 

Constant weight codes are used as one of the elements of code-based cryptosys-

tems. In particular, in encryption systems, sequences with constant weights are used 

as a session key [16, 33, 34]. To generate a digital signature using the decoding algo-

rithm, it is necessary to find a sequence with constant weight [18–20, 35]. When gen-

erating pseudo-random numbers, constant weight codes are used in the feedback cir-

cuit of the generator [21–23]. The input data for a code-based hash function is first 

converted to a constant weight sequence and then processed by a compression func-

tion [30, 32]. 

It should be noted that all listed applications only use binary constant weight codes. 

The discrete mathematics literature also describes only binary algorithms [1, 2, 4]. We 

offer non-binary constant weight coding technique. This will greatly expand the area 

of possible use of code-based cryptosystems. In particular, the practical implementa-

tion of non-binary (for example, over finite field (2 )mGF ) codes can work faster and 

more efficiently, while providing a high level of strength of code-based cryptosys-

tems. This determines the relevance of this article, a purpose of which is to develop a 

technique of non-binary constant weight coding based on a generalized binomial-

positional representation. 

2 Positional and Mixed Base Number Systems. Binary 

technique and Algorithm of Constant Weight Coding 

The positional number system is based on a positional numbering, i.e. on a local value 

of digits, and is determined by a certain number 1b   (a base of the number system) 

such that the b  units in each category are combined into one unit of the next highest 

rank. The number system is also called b -positional system [1, 2, 13]. 

A number x  in a b -ary positional number system is represented as a linear combi-

nation of powers of number b  
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where ia are integers called numbers and they satisfy an inequality: 

 0 ia b  , 

i  is a discharge sequence number, starting from zero, n  is a number of bits (length) 

of the position code. 

Each degree ib  in such record is called a rank, the certain rank and the correspond-

ing numbers is determined by the value of the indicator i . Usually, for a nonzero 

number x , the leading digit 1na  in the b -ary representation is also required to be 

nonzero.  

If there are no discrepancies (for example, when all the numbers are presented in 

the form of unique written characters), the number is recorded as a sequence of its b -

ary digits, listed in ascending order of rank from left to right: 

  0 1 1... nx a a a  . 

A mixed base number system is a generalization of the b -ary system and also often 

refers to positional number systems. The basis of the mixed base system is an increas-

ing numbers sequence 

 0 1 2, , ,...b b b  

and each number is represented as a linear combination: 
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where some code restrictions are imposed on the coefficients ia .  

Numeral x  in a mixed base number system is an enumeration of its numbers in de-

creasing order of the index i , starting with the first nonzero. If for some i

ib b , then 

the mixed base number system coincides with the b - ary positional number system.  

The binomial number system is based on the representation of numbers through an 

increasing sequence of binomial coefficients 
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where  w   is  number of non-zero elements of binomial code.  

A number x  in the binomial system is represented as a linear combination: 
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where coefficients  0,1ia  . 

In the case when there are no discrepancies in the calculation of binomial coeffi-

cients ,
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,  i.e. when a rule is established for the formation of a numbers set 

1 20 ... nu u u    , the number x  is written in increasing order of ranks ia  from left 

to right:  

  0 1 1... nx a a a  . 

The considered binomial number system is used to construct binary constant 

weight codes consisting of a set of binary sequences with a fixed number of nonzero 

elements in each sequence (a constant Hamming weight).  

We introduce the following notation:  

 n  is a length of the constant weight code, i.e. the number of elements (bits) of code 

sequences (code words);  

  0 1 1, ,..., MС С C C   is a set of code words for the constant weight code, where  

  
0 1 1

...
nj j j jC C C C C


  ,  0,1
ij

C  , 

 0,1,..., 1j M  , 0,1,..., 1i n  . 

For all vectors jC , 0,1,..., 1j M   we have equal weight Hamming:  

 : jj w C const w   , where 

     0 1 1 0 1 1 0
... # ...

n n ji
j j j j j j C

w C C C C C C
  

 , 

   0 1 1 0
# ...

n ji
j j j C

C C C
 

 is a number ,
ij

C  0,1,..., 1i n  , where 0
ij

C  .   

The power of the constant weight code (the number of elements in the set С ) is 

determined by the number of binary vectors of length n  and weight w : 
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The well-known binomial (binary constant weight) coding technique [6, 7, 13] is 

based on the presentation of information data in the form of a numerical equivalent 

(denoted by a number A ) with further decomposition into a linear combination of 

binomial coefficients. Such system of code restrictions on the length of sequences of 

constant  weight n  , codeword weights w  and code cardinality М  are satisfied: 
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The number A  is presented as binary sequence  
0 1 1

...
nA A A AC C C C


  of 

constant weight and 
1

1

0
n i

n

A i

i

A C b
 





 , where 
1

i

n i
b

w l

  
  

 
, l  is a nonzero element 

number in AC , 0,1,...,l w . 

Nonzero element is a
1n iAC

 
, for which 

1

1

0
n m

i

i A m

m

b C b
 





 . 

Obviously, the sum on the right side of the expression is equal to the sum of only 

mb those for which the corresponding elements of the vector AC are not equal to zero (

1
0

n mAC
 

 ).  

It should be noted that the considered technique does not imply the formation of 

non-binary sequences with constant weight (vectors AC with  0,1,..., 1
ij

C q  , 

2q  ) and thus does not allow the implementation of non-binary constant weight 

coding. 

The article proposes a new technique of non-binary constant weight coding based 

on a generalized binomial-positional representation, which allows us to generalize the 

above approach to the non-binary case and practically implement computational algo-

rithms for generating non-binary sequences of constant weight. 

3 Proposed Technique of Non-Binary Constant Weight Coding  

To generalize the considered approach of generating sequences of constant weight to 

the non-binary case, a new form of a generalized binomial-positional representation 

of numbers is proposed. The proposed number system belongs to the class of mixed 

base systems and is based on the representation of numbers through an increasing 

sequence of binomial coefficients, each of which is encoded by positional numbering, 

i.e. the representation of digits with binomial coefficients is based on the local value 

of the digits. 

Consider the number x  in the proposed generalized binomial-positional number 

system: 
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Let’s introduce the following notation and equalities: 
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where w is a number of nonzero elements of the generalized binomial-positional code. 

Then the number x  is represented through an increasing sequence of binomial co-

efficients 0 1 1, ,..., nb b b  , and corresponding sequence 0 1 1, ,..., na a a  . 

Let's consider nonzero elements 1ia  , 0,1,..., 1i n  , sequences 0 1 1, ,..., na a a 

and renumber them, i.e. we denote them as elements of the sequence 0 1 1, ,..., wa a a  , 

0,1,..., 1l w   and  : 1,..., 1ll a q   . 

A sequence 0 1 1, ,..., wa a a   and all its elements la  (nonzero elements of a sequence 

0 1 1, ,..., na a a  numbered according to the increasing digits order) are formed using a 

positional number system on the base 1q  , i.e. 1q  units in each rank are combined 

into one unit of the next highest rank. A set of nonzero elements sets la , 

0,1,..., 1l w   defines the number Px  that is represented in the positional system as 

follows:  
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where 1h q   is a base of used positional system, 1 la q  . 

The increasing sequence of binomial coefficients 0 1 1, ,..., nb b b  sets a number Bx , 

which is represented in the binomial number system as
1
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x a b
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 , where coeffi-

cients  0,1Bia  . 

The number x  in the proposed generalized binomial-positional number system sat-

isfies the following equality: 

  
w

B Px x q-1 x   , 

which sets a main code restriction on the elements of the generalized binomial-

positional code. 

Thus, the number x  in the proposed system of generalized binomial-positional 

counting is represented as a linear combination: 
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The proposed generalization of the binomial-positional way of representing num-

bers consists in the complex use of the positional number system and the binomial 

counting system: the first term on the right side of the equality, through the increasing 

sequence of binomial coefficients, determines the placement of nonzero elements of 

the generalized binomial-positional code, the second term defines the values of non-

zero elements of the sequence in positional code. 

The proposed technique of representing numbers is based on the technique of non-

binary constant weight coding. For the abstract definition of a non-binary constant 

weight code, we introduce the following formal notation:  

 n  is a code length;  

  0 1 1MС С ,C ,...,C   is a set of code words,  

 
0 1 1

... ,
nj j j jC C C C C


    0,1,..., 1 ,
ij

C q   

0,1,..., 1,j M   0,1,..., 1,i n    jj : w C const w   . 

The cardinality of a non-binary constant weight code defined in this way is deter-

mined by the number of length n  and weight w  vectors with elements from the set 

 0,1,..., 1q  : 
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The proposed technique is based on the presentation of information data in the 

form of a numerical equivalent A  with further decomposition into a linear combina-

tion of binomial coefficients, each of which is encoded by positional numbering so 

that a system of code restrictions on the length of n  sequences of constant weight, the 

weight w  of code words   and code cardinality М  is satisfied: 
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The number A  is presented as non-binary sequence of constant weight 
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The process of generating a non-binary sequence of constant weight is presented in 

four stages. 

1. Representation of number A  in the form of numbers BA  and PA : 

 
B w

A
A
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  
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PA A mod q-1 , 

where y    is the integer part of number y . 

The uniqueness of the representation of number A  in the form of numbers BA  and

PA  is justified by the Chinese remainder theorem [13]. 

The number BA  lies within 
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number system with code restrictions: 

 

 

: ;

!
0 ;

! !

0 .

j

B

j w c const w

n
A

w n w

w n

  



 


  

 

The number PA  lies within  0 1
w

PA q   and, accordingly, can be represented 

in the positional number system on the basis of 1h q  . 

1. Representation of numbers in a binomial number system:  
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2. Representation of a number PA in a positional number system: 
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Generating of sequence  
0 1 1

...
nA A A AC C C C C


  : 

iA l BiC a a , 0,1,..., 1i n  , 0,1,..., 1l w  , 



 

 

i.e.,  

 if  we have 0Bia   for some 0,1,..., 1i n  in the 
BA representation, then we 

get 0
iAC  ;  

 if 1Bia  , then we get 
iA lC a , i.e. the required element is equal to the corre-

sponding nonzero element in the view PA . 

Example. Let’s  3n  , 1w  , 4q  . The result of the proposed algorithm in the 

form of the obtained correspondence of all numbers A , their binary representations 

 
0 1 1

...
kA A A AI I I I


  in a positional binary code of length 

2 2log log 9 4k M         , numbers 
BA  and 

PA , corresponding vectors 

 
0 1 2B B Ba a a  and  0a  and generated non-binary vectors  

0 1 2A A A AC C C C  

of constant weight are shown in table 1. 

Table 1. An example of the formation of non-binary sequences of  constant weight 

A  
AI  

BA   
0 1 2B B Ba a a  PA   0a   

0 1 2A A AC C C  

0 (0000) 0 (100) 0 (1) (100) 

1 (1000) 0 (100) 1 (2) (200) 

2 (0100) 0 (100) 2 (3) (300) 

3 (1100) 1 (010) 0 (1) (010) 

4 (0010) 1 (010) 1 (2) (020) 

5 (1010) 1 (010) 2 (3) (030) 

6 (0110) 2 (001) 0 (1) (001) 

7 (1110) 2 (001) 1 (2) (002) 

8 (0001) 2 (001) 2 (3) (003) 

The formed set of 9 non-binary vectors  
0 1 2A A A AC C C C  of constant weight 

forms a non-binary constant weight code  0 1 8, ,...,C C C C .  

Thus, the proposed number system based on the generalized binomial-positional 

representation of numbers allows complex use of both the local value of the digits of 

the code sequence and the values of binomial coefficients specified by the placement 

of nonzero elements of the sequence. Application of the developed number system 

allows us to build effective techniques and algorithms of non-binary constant weight 

coding for their use in various practical applications. For example, the proposed tech-

nique can be useful for improving post-quantum code-based cryptographic algorithms 

(ciphers, electronic digital signatures, key encapsulation schemes, pseudorandom 

number generators, etc.) [19, 21, 23, 31, 32, 36]. The use of constant weight codes is 

also one of the basic transformations for the functioning of code-based cryptosystems. 

In particular, constant weight codes are used in the McEliece [33] and Niederreiter 

[17] public key encryption schemes, as well as in electronic signature schemes and 



code-based pseudorandom numbers generators. It is worth noting that at the moment, 

code-based cryptography is considered one of the most optimal ways of developing 

post-quantum cryptography. A good example of the use of constant weight codes in 

cryptosystems is a Niederreiter encryption process, which consists of several basic 

steps. First, user generates key and system parameters. Next, an information sequence 

e  that needs to be encrypted is converted using constant-weight codes into a se-

quence of fixed length n  and constant weight t . Then vector syndrome T

xs e H 

must be calculated. 

This vector is a ciphertext, i.e. an encrypted message that can be decrypted only by 

the user who has a secret key. Decryption consists in removing the action of masking 

matrices, after which the sequence is decoded using a fast algebraic technique. The 

found error vector is a sequence of constant weight e . To restore the information 

sequence, the conversion is used, the inverse of what was used. As you can see, each 

possible information sequence should be uniquely associated with the corresponding 

constant weight sequence, i.e. to build a code-based cryptosystem, it is necessary to 

implement an algebraic rule of this correspondence, implemented through an constant 

weight account system. 

Thus, it is necessary to realize a one-to-one correspondence between all possible 

information sequences and various constant weight vectors. In the other words, for an 

arbitrary countable set (in advance of a given power), it is required to implement a 

new recording technique (number system) in the form of a set of constant weight 

vectors. At the moment, resistance versions of the constructions of code-based cryp-

tosystems are based on the use of binary Goppa codes. In this simplest case, it is pos-

sible to use the well-known binomial count to convert information sequences into 

constant weight binary vectors. In the general case, code-based cryptosystems can be 

built for arbitrary base. And for this general case, we offer a generalized binomial-

positional number system and a new technique of non-binary constant weight coding 

(binomial-positional counting). This will not only increase the strength of code-based 

cryptosystems, but also provide additional useful properties, such as the control of 

non-binary errors during transmission. 

 In addition, this study can be useful in other practical applications, for example, to 

improve channel coding techniques, to prevent interference in telecommunication 

networks, etc.  

4 Conclusions 

As a result of the research, a new number system based on the generalized binomial-

positional representation of numbers is proposed. It is that the complex use of the 

binomial counting system (through the increasing binomial coefficients sequence 

defines a position of nonzero element) and the positional number system (the values 

of nonzero elements are specified through the local value of numbers). 

For the first time, a technique of non-binary constant weight coding based on a 

generalized binomial-positional representation of numbers is proposed, which allows 

us to generalize the well-known approach to the non-binary case and practically im-



 

 

plement computational algorithms for generating non-binary sequences of constant 

weight. 

The proposed non-binary constant weight coding technique is a generalization of 

the well-known binary case. In fact, a well-known binary code is used to represent a 

number in the binomial number system. Nonzero elements of the resulting binomial 

sequence are additionally encoded with a positional code. Thus, the complexity of the 

implementation of the proposed technique is defined as the total complexity of the 

known techniques of binomial and positional coding. 

The developed technique can be used in various practical applications, for exam-

ple, in code-based cryptosystems: ciphers, electronic digital signatures, key encapsu-

lation schemes, pseudorandom number generators, etc. These cryptosystems are ex-

pected to be safe even in the conditions of the possible application of quantum cryp-

tographic analysis techniques, i.e. focused on the post-quantum period. 
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