
Pat-in-the-loop: Syntax-based Neural Networks
with Activation Visualization and Declarative

Control

Fabio Massimo Zanzotto1[0000−0002−7301−3596], Dario Onorati1, Pierfrancesco
Tommasino1, Andrea Santilli1, Leonardo Ranaldi2[0000−0001−8488−4146], and

Francesca Fallucchi2[0000−0001−5502−4358]

1 ART Group, University of Rome Tor Vergata, Rome, Italy
fabio.massimo.zanzotto@uniroma2.it

2 University Gugliemo Marconi, Rome, Italy

Abstract. The dazzling success of neural networks over natural lan-
guage processing systems is imposing a urgent need to control their
behavior with simpler, more direct declarative rules. In this paper, we
propose Pat-in-the-loop as a model to control a specific class of syntax-
oriented neural networks by adding declarative rules. In Pat-in-the-loop,
distributed tree encoders allow to exploit parse trees in neural networks,
heat parse trees visualize activation of parse trees, and parse subtrees
are used as declarative rules in the neural network. A pilot study on
question classification showed that declarative rules representing human
knowledge can be effectively used in these neural networks.3

1 Introduction

Neural networks are obtaining dazzling successes in natural language process-
ing (NLP). General neural networks learned on terabytes of data are replacing
decades of scientific investigations by showing unprecedented performances in a
variety of NLP tasks [6]. Hence, systems based on NLP and on neural networks
(NLP-NN) are everywhere. As a consequence of the success, public opinion is ex-
tremely fast in spotting possibly catastrophic, unwanted behavior on deployed
NLP-NN systems (see, for example, [16]). As many learned systems [4], also
NLP-NN systems are exposed to biased decisions or biased production of ut-
terances. This problem is becoming so important that extensive analyses are
performed, for example, for the tricky class of systems for sentiment analysis
[11]. To promptly recover from catastrophic failures, NLP-NN systems should
be endowed with the possibility of modifying their behavior by using declarative
languages to teach neural networks with a deductive teaching approach. Deduc-
tive teaching is an extremely difficult task even in the human learning process [1,
15]. Active learning techniques [5] can require too many examples and may focus
the attention of NLP-NN systems on irrelevant peculiarities of datasets [2].
3 Copyright (c) 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



Looking into NLP-NN systems beyond the dazzling light is becoming an ac-
tive area [9, 8] since traditional neural network visualization tools are obscure
when applied to NLP-NN systems. Heatmaps are powerful tools for visualizing
neural networks applied to image interpretation [20]. In fact, heatmaps can vi-
sualize how neural network layers treat specific subparts of images. Yet, when
applied to NLP-NN systems [13] are extremely difficult to interpret.

A heat parse tree Pat-in-the-loop: the overall system

Fig. 2: The overall idea

In this paper, we propose Pat-in-the-loop as a model to include human con-
trol in specific NLP-NN systems that exploit syntactic information. The key
contributions are: (1) distributed tree encoders that directly exploit parse trees
in neural networks; (2) heat parse trees that visualize which parts of parse trees
are responsible for the activation of specific neurons (see Figure 1a); and, (3) a
declarative language for controlling the behavior of neural networks. Distributed
tree encoders allow to produce heat parse trees and developers can explore ac-
tivation of parse trees for specific decisions to derive rules for correcting system
behavior. We performed a pilot study on question classification where Pat-in-
the-loop showed that human knowledge can be effectively used to control the
behavior of a syntactic NLP-NN system.

2 The Model

In Pat-in-the-loop (see Figure 1b), a generic developer, which we call Pat, may
inspect the reasons why her/his neural network takes some decisions. In fact,
Pat’s neural network model is based on distributed tree encoders Wdt to directly
exploit parse trees in neural networks (Sec. 2.2). Pat can visualize why some
decisions are taken from the network according to parse trees of examples x
by using “heat parse trees” (Sec. 2.1 and Sec. 2.3). Hence, Pat can control the
behavior of neural networks with declarative rules represented as subtrees by
encoding these rules in WH (Sec. 2.4).

2.1 Preliminary notation

Parse trees and heat parse trees are core representations in our model. This
section introduces the notation to describe these two representations.



Parse trees T and parse subtrees τ are recursively represented as trees t =
(r, [t1, ..., tk]) where r is the label representing the root of the tree and [t1, ..., tk]
is the list of child trees ti. Leaves t are represented as trees t = (r, []) with an
empty list of children or directly as t = r.

Heat parse trees, similarly to “heat trees” in biology [7], are heatmaps over
parse trees (see Figure 1a). The underlying representation is an active tree t,
that is, a tree where an activation value vr ∈ R is associated to each node:
t = (r, vr, [t1, ..., tk]). Heat parse trees are graphical visualization of active trees
t where colors and sizes of nodes r depend on their activation values vr.

2.2 Distributed Tree Encoders for Exploiting Parse Trees in Neural
Networks

Distributed tree encoders are the encoders used in Pat-in-the-loop to directly ex-
ploit parse trees in neural networks. These encoders, stemming from distributed
tree kernels [18], give the possibility to represent parse trees in vector spaces Rd
that embed huge spaces of subtrees Rn. These encoders may be seen as linear
transformations Wdt ∈ Rd×n (similarly to Johnson-Lindenstrauss Transforma-
tion [10]). These linear transformations embed vectors xT ∈ Rn in the space of
tree kernels in smaller vectors yT ∈ Rd:

yT =Wdtx
T

Columns wi of Wdt encode subtree τ (i) and are computed with an encoding
function wi = E(τ (i)) as follows:

E(τ (i)) =

{
r if τ (i) = (r, [])

r ⊗ E(τ
(i)
1 )⊗ ...⊗ E(τ

(i)
k ) if τ (i) = (r, [τ

(i)
1 , ..., τ

(i)
k ])

where: the operation u⊗v is the shuffled circular convolution, that is, a circular
convolution ? with a permutation matrix Φ: u⊗v = u∗Φv; and, r ∼ N (0, 1√

d
I)

is drawn from a multivariate gaussian distribution. As for tree kernels also for
distributed tree encoders, linear transformations Wdt and vectors xT ∈ Rn are
never explicitly produced and encoders are implemented as recursive functions
[18].

2.3 Visualizing Activation of Parse Trees

Distributed tree encoders give the possibility of using heat parse trees to visualize
the activation of parse trees in final decisions or intermediate neuron outputs.

To compute of active trees t useful to produce heat parse trees, a neural net-
work should be sliced at the desired layer. Let NN be the sliced neural network,
x = xT ,xr and o its output: o = NN(Wdtx

T ,xr) where, given an example x,
xT is the vector representing the tree T in the space of subtrees related to the
example x,Wdt is the distributed tree encoder, and xr is the rest of the features
associated to x.



Our heat parse trees show the overlap of activation of subtrees in S(T ) of
specific trees T related to a specific example x in a specific net. This shows
how subtrees in S(T ) contribute to the final activation oi, that is, a dimension
of o. We believe this is more convenient than representing an extremely large
heatmap for the list of subtrees in S(T ) and their related value oi.

The computation of active trees t for displaying heat parse trees is the fol-
lowing. The activation weight vr of each node r represents how much the node
is responsible for the activation of the overall syntactic tree for the output of the
given neuron oi. Then, the activation value vr is computed as follows:

vr =
∑

τ∈S(T ) and r∈τ

NN(Wdtλ
|τ|
2 τ ,xr)

where τ is the one-hot vector in the subtree space that indicates the subtree τ
and r ∈ τ detects in r is node in τ .

With the above computation of t, active subtrees τ for the output oi of a
specific neuron are overlapped in single heat parse trees.

f-measure
micro avg macro avg

BoW 0.84 0.84
PureNN 0.93 0.91
HumNN 0.93 0.92

Declarative Rules
class rule
ABBR (NP (NP (DT) (JJ full) (NN)) (PP (IN)))
ABBR (SQ (VBZ) (NP) (VP (VB stand) (PP (IN for))))
ABBR (NN abbrevation)
ABBR (VP (VB mean))
NUM (WHNP (WDT What) (NNS debts))
NUM (NP (NP (NNP)(NNP)(POS))(NN))

PureNN HumNN
ABBR ENTY DESC HUM LOC NUM

ABBR 6 0 3 0 0 0
ENTY 0 84 3 2 4 1
DESC 0 5 133 0 0 0
HUM 0 1 1 63 0 0
LOC 0 1 1 2 76 1
NUM 0 5 5 0 1 102

→

ABBR ENTY DESC HUM LOC NUM
ABBR 7 0 2 0 0 0
ENTY 0 83 5 3 2 1
DESC 0 3 135 0 0 0
HUM 0 3 0 62 0 0
LOC 0 4 1 1 74 1
NUM 0 3 4 1 2 103

Table 1: Pat-in-the-loop’s performances, discovered declarative rules and confusion ma-
trices on QC before and after human knowledge use

2.4 Human-in-the-loop Layer

Pat has now an important possibility of understanding why decisions are taken
by a specific network and, hence, s/he can define specific rules to control the



behavior of the neural network. For example, the heat parse tree in Figure 1a
suggests that the subtree (SQ,[VBD,NP,VP]) is the more active in generating
the decision if this is taken for the output of a neuron that represents a final
class. If Pat aims to correct the system’s behavior for a given output, s/he may
select the specific subtree τ and insert E(τ) as a row in matrix WH that embeds
declarative rules (see Figure 1b). This specific rule is then reused to retrain the
neural network and should change decisions for examples of the same kind.

3 Pilot Experiment

We experimented with Pat-in-the-loop by using the coarse grain classification
problem of the question classification dataset [14], which contains 5,242 training
questions and 500 testing questions. The dataset is well studied. Hence, it offers
a very intriguing possibility to run an experiment where a human in the loop
can make the difference in calibrating the overall system.

3.1 Experimental set-up

The Pat-in-the-loop (see Figure 1b) of the experiments has the following configu-
ration. Distributed treesW dtx

T are encoded in a space Rd with d = 4, 000. The
decaying factor of tree kernels is λ = 0.6. The module NN(W dtx

T ,xr) is a multi-
layer perceptron that combines two multi-layer perceptrons: Synt(W dtx

T ) and
Sem(xr). Synt exploit syntactic information and its output is 1,800. Sem ex-
ploits a Bag-of-Word model of the input with word embedding input of 300 from
fastText [3] and output of 180. Synt and Sem are concatenated and feed a multi-
layer perceptron with two layers: 100 and 6. We used a ReLU activation function
among layers. The last activation function is a softmax. All experiments were
run for 20 epochs in Keras. Finally, we used the CoreNLP constituent-based
parser [12] for parsing questions.

We compared three systems: BoW that contains only the word embedding
used as a bag-of-word; PureNN that is the system without human knowledge;
and HumNN that is the full system with Pat’s declarative knowledge. We per-
formed a 3-fold cross validation with the training set to accumulate misclassified
examples for the human learning loop. Pat inspected these examples with heat
parse trees and encoded some declarative rules in WH (see Tab. 1).

3.2 Results and discussion

Results in Table 1 shows the following important facts. First, distributed tree en-
coders positively introduce syntactic information in neural networks: 0.84 to 0.93
of improvement in f-measure from BoW to PureNN (Table 1). Second, global
results of the model with human knowledge (HumNN ) are similar and even
slightly higher than those of PureNN. Micro-average is 0.93 for both models and
macro average is 0.92 for HumNN with respect to 0.91 of PureNN. Third, Pat
could change the behavior of the system where he wanted. Since Pat aimed to
manipulate the behavior of the system in favor of the classes ABBR and NUM,



s/he focused the attention to examples where PlainNN fails. Pat’s rules coded
in WH . After learning the new model HumNN disturbed by human declara-
tive knowledge, results on the test set are encouraging. In fact, although the
overall performance is unchanged, target classes have had positive improvement.
Both ABBR and NUM have an additional positively classified example. This
tiny improvement suggests that the model can positively use declarative human
knowledge. Finally, heat parse trees are informative. In fact, Pat could under-
stand why some specific cases were misclassified and could select declarative
rules to change the behavior of the system.

Globally, results of the pilot experiment confirmed our hypothesis: human
can positively manipulate the system by inducing rules from the training set.

4 Conclusions and Future Work

In the line of understanding neural networks and trying to control their behav-
ior besides using training examples, we presented Pat-in-the-loop. Our model
exploits syntactic information in neural networks by using distributed tree en-
coders, visualizes activation of syntactic information with heat parse trees, and
encode declarative knowledge in a neural network. Encouraging results on a pilot
study are a first “declarative pat" on neural networks applied to natural language
processing, which may open a wide range of possible researches.

By leveraging on recent results obtained with KERMIT [19], we aim to assess
results of Pat-in-the-loop and envisage novel ways to include declarative control
in these specific neural networks. Endowing neural networks with declarative
control may help in clarifying who is giving knowledge to these systems. In this
way, we could devise machine learning models that can repay their “teachers”
[17].

References

1. Agrusti, G., Damiani, V., Pasquazi, D., Carta, P.: Reading mathematics at
school. inferential reasoning on the pythagorean theorem [leggere la matematica a
scuola. percorsi inferenziali sul teorema di pitagora]. Cadmo 23(1), 61–85 (2015).
https://doi.org/10.3280/cad2015-001007

2. Allen, G.: Machine learning: The view from statistics. In: Proceedings of the AAAS
Annual Meeting (2019)

3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. TACL 5, 135–146 (2017), http://aclweb.org/anthology/
Q17-1010

4. Courtland, R.: Bias detectives: the researchers striving to make algorithms fair.
Nature 558, 357–360 (Jun 2018). https://doi.org/10.1038/d41586-018-05469-3

5. Dasgupta, S.: Analysis of a greedy active learning strategy. In: Ad-
vances in NeurIPS. MIT Press (2005), http://papers.nips.cc/paper/
2636-analysis-of-a-greedy-active-learning-strategy.pdf

6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR abs/1810.04805 (2018),
http://arxiv.org/abs/1810.04805



7. Foster, Z.S.L., Sharpton, T.J., Grünwald, N.J.: Metacoder: An R package for vi-
sualization and manipulation of community taxonomic diversity data. PLoS Com-
putational Biology 13(2) (2017). https://doi.org/10.1371/journal.pcbi.1005404,
https://doi.org/10.1371/journal.pcbi.1005404

8. Jacovi, A., Shalom, O.S., Goldberg, Y.: Understanding Convolutional Neural Net-
works for Text Classification pp. 56–65 (2018). https://doi.org/doi:10.1046/j.1365-
3040.2003.01027.x, http://arxiv.org/abs/1809.08037

9. Jang, K.r., Kim, S.b., Corp, N.: Interpretable Word Embedding Contextualization
pp. 341–343 (2018)

10. Johnson, W., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert
space. Contemp. Math. 26, 189–206 (1984)

11. Kiritchenko, S., Mohammad, S.: Examining gender and race bias in two hun-
dred sentiment analysis systems. In: Proceedings of *SEM (2018), https://
aclanthology.info/papers/S18-2005/s18-2005

12. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of ACL.
pp. 423–430 (2003). https://doi.org/10.3115/1075096.1075150, http://dx.doi.
org/10.3115/1075096.1075150

13. Li, J., Chen, X., Hovy, E., Jurafsky, D.: Visualizing and understanding neural mod-
els in nlp. In: Proceedings of NAACL (2016). https://doi.org/10.18653/v1/N16-
1082, http://aclweb.org/anthology/N16-1082

14. Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the COLING.
ACL, Stroudsburg, PA, USA (2002). https://doi.org/10.3115/1072228.1072378,
http://dx.doi.org/10.3115/1072228.1072378

15. Pasquazi, D.: Capacità sensoriali e approccio intuitivo-geometrico nella
preadolescenza: Un’indagine nelle scuole. Cadmo 2020(1), 79–96 (2020).
https://doi.org/10.3280/CAD2020-001006

16. Thompson, A.: Google’s sentiment analyzer thinks being gay is bad. MOTHER-
BOARD (Oct 2017), https://motherboard.vice.com/en_us/article/j5jmj8/
google-artificial-intelligence-bias

17. Zanzotto, F.M.: Viewpoint: Human-in-the-loop artificial intelligence. J. Artif. In-
tell. Res. 64, 243–252 (2019). https://doi.org/10.1613/jair.1.11345, https://doi.
org/10.1613/jair.1.11345

18. Zanzotto, F.M., Dell’Arciprete, L.: Distributed tree kernels. In: Proceedings of
ICML (2012)

19. Zanzotto, F.M., Santilli, A., Ranaldi, L., Onorati, D., Tommasino, P., Fallucchi, F.:
Kermit: Complementing transformer architectures with encoders of explicit syntac-
tic interpretations. In: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics (2020)

20. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: ECCV. pp. 818–833. Cham (2014)


