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Abstract. Automatic fault type classification is an important ingredi-
ent of smart electrical grids. Similar to other machine-learning models,
methods developed for fault classification suffer from the issue of lack of
transparency. This work sheds light on preliminary insights of an ongo-
ing study, in which we show how feature importance measurement and
feature interaction visualization using partial dependence plots (PDPs)
can help interpretability of the classification outcomes. While the former,
measures the role of each feature on the final predictions in isolation, the
latter focuses on mutual interaction between pairs of features. We show
the merits of these two complementary feature analysis mechanisms in
facilitating interpretability of the fault type classification task.
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1 Introduction and Context

Smart grids (SGs) are recognized as power distribution systems (PDSs) that
need to possess traits including high reliability, efficiency, and penetration of
renewable energy sources [1]. PDSs, however, are susceptible to a variety of
electrical abnormalities and occasional failures, as the result of adverse weather
conditions, equipment aging and degradation, security attacks among others.
Over the last years, a set of machine-learned approaches have emerged that aim
to detect and diagnose fault in a data-driven manner. This capability, known
as self healing, is important to make electrical grids reliable and smart. In a
nutshell, the goal in self healing is to restore and recover the interruption of
electricity in the electrical grid automatically and reduce the interruption period
for costumers [7] by performing fault detection, fault type classification and fault
location identification. Fault type classification, the task we focus our attention
in this work, classifies an occurred electrical fault in the three-phase electrical
grid into one of the predefined classes according to (i) symmetrical faults, such
as LLL, LLLG, which are related to three-phase faults, and (ii) asymmetrical
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faults, such as LG, LL, LLG, which show line-to-ground, line-to-line and line-
to-line-to-ground faults respectively.

A common characteristic of the prior literature is that the nature of the
empirical experiments carried out orients toward the prediction aspect of the
fault event, aiming to find an answer to questions such as “is it possible to
detect a fault using ML techniques reliably”? or “which classification technique
can more accurately predict a class type?” and so forth. Regretfully, such trends
for full automation of PDS’s self-healing capability are not designed to inform
human operators who have relied on manual/visual awareness for a long time.
To keep humans involved in the control loop, it is crucial to design interpretable
ML models that can replace these black-box prediction models and to produce
rules that can be understood with little inspection.

Motivated by this observation, the work at hand puts its attention outside the
subject of proposing another classification method for fault prediction, instead
it tries to focus on the central question “Given popular classification techniques
already recognized by the community, is it possible to exploit the results of pre-
dictions in order to obtain more interpretable outcomes?”

The contributions of this work are two-fold:

1. Feature extraction and representation: we rely on features extracted
from the three-phase voltage signals, represented in both time and frequency
(transform) domains. For feature representation, we compute the n-th mo-
ment of the probability distribution functions (PDFs) [11] (n ∈ [1, 4]) to-
gether with the energy and max of the signals on both time- and frequency-
domain signals.

2. Interpretability: To better facilitate interpretability, we utilize feature im-
portance measurement by employing the model-dependent technique based
on decision tree [12], and further propose to utilize visual analytic techniques
using partial dependence plots (PDPs) [8]. These two complementary visual
analysis techniques measure/visualize the individual impact of features and
their pairwise relationship on the final classification outcome, thereby help-
ing user interpret the results of the classification model at hand.

The results of our empirical study show that in general, the computed fea-
tures in this work are not only descriminative for our classification scenario,
but are also easily interpretable, making the classification process transparent.
While previous works have exploited features coming from signal or transform
domains [4, 10, 5], our approach for computing n-the PDF moments of the both
time and frequency signals, extracts rich information from signals that tend to
be mutually complementary in some cases. In fact, by combining feature visual-
ization (what is the relationship between features?) with attribution (how does
it affect the output?), we can explore how the classifier decides between different
fault types. The current work presented in this paper is the preliminary result
of a larger ongoing study that makes advances to interpretability of ML models
in the context of SGs, providing new insights on how to interpret results of fault
prediction by proposing an inexpensive feature extraction, feature selection and
visualization technique.
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Fig. 1. The main processing stages in our proposed system

2 Proposed method

The goal of the proposed method is two-fold: (i) fault-type classification, and (ii)
interpretability achieved via feature importance measurement and data visualiza-
tion. The main processing stages involved in the proposed system are presented
in Figure 1. The input to the system is the IEEE-13 node test feeder, while the
output is one of the seven fault types, namely: line-to-ground (AG, BG,CG),
Line-to-Line (AB, AC, BC), and three-phase fault (ABC).

2.1 Fault simulation and Feature Extraction

We chose IEEE-13 node test feeder, which includes a voltage generator of 4.16
kvlt and 13 buses for the simulation of fault and measurement of three-phase
signals. One can divide this distribution system into four critical zones, zone
1: 632-671, zone 2: 632-633, zone 3: 692-675, and zone 4: 671-680. To collect
data, faults were injected to one arbitrarily chosen zone, in this case zone 4, and
then features were collected from three-phase voltage signals of this zone. We
injected all the 7 different faults (i.e., AG, BG, CG, AB, BC, AC, ABC). These
faults have been applied at a certain start time t = 0.01 and revoked at time
t = 0.02 for all of the fault simulations. Thus, tf = [0.01 − 0.02] represents the
faulty period while th = [0− 0.01] characterizes the non-faulty (healthy) period.
All the features that were extracted were taken from the faulty period tf were
normalized by the same feature extracted from the healthy period th to obtain
a relative score. The following two classes of features were extracted:



– Signal-level features: Six features were extracted from raw voltage data
of three phases. They include the 1st to 4-th moments: mean, standard de-
viation, skewness, kurtosis together with the energy and the maximum level
of the signal.

– Transform-domain features: In addition, we extracted features based
on discrete Fourier transform (DFT), to obtain richer information about
frequency of the signals. After applying DFT, from the computed spectrum
we extracted similar features as signal-level features.

In total, 12 (6+6) features were collected to represent the features in our labelled
training dataset. These two set of features constitute the backbone of many
ML systems [3, 2]. To augment the training dataset with further data, the fault
resistance value Rf in the fault detection module was varied by choosing 20
different values in the range of 0.001 to 2 as done in previous works [9, 6]. This
resulted in 20 simulations for each of the fault types and a training dataset of
140 samples taking into account all the 7 fault types.

2.2 Fault type classification and interpretability analysis

Fault type classification was done by using two main classifiers: decision tree and
k-nearest neighbors. We model the classification task as a multi-class signal label
classification — instead of multi-label — since there are more classifiers’ choices
available for the single-label classification task. For interpretability experiment
(see next section), we only use decision tree to keep the discussion simple.

Finding important variables (features) helps to discover the main drivers
in a supervised learning classification task. However, this approach does not
produce information about the relationship between input variables and how
this relationship impacts the ML model outcome (predictions). The approach
envisioned in this work contemplates using: (i) a classical feature importance
technique to show the contribution of each feature on predictions individually,
and (ii) a partial dependence plot (PDP) to understand the relationship between
pairs of input variables and predictions. PDP is calculated after the model is
fitted on the training data; thus, it is a model-specific feature importance analysis
technique (rather than model-agnostic). For example, in our context a PDP
can show whether the probability of certain fault increases with signal energy
and kurtosis of the frequency signal, a question whose answer does not seem
to be trivial. Furthermore, PDP can establish the type relationship between
two features: monotonic, linear, or not related. These are important cues that
can help the human operator to better inspect/interpret the black-box fault
classification predictions with little supervision.

3 Results and discussions

The discussion of results is organized into two sections. First, we describe the
results of classification and next, we describe the impact of two feature analysis



techniques on the interpretability of classification predictions.

Classification: Table 1 summarizes the classification results using two clas-
sifiers, namely decision tree and k-nearest neighbors, on the basis of a hold-out
setting (80%-20%) for training and test set. We can notice that in all the con-
sidered experimental cases the average classification accuracy is more than 92%,
indicating the discriminative power of the features chosen. The best classification
outcome is achieved for the decision tree with the accuracy of 96.42%. Thus, we
use decision tree for the next step.

Table 1. Classification accuracy (%) using 12 features and two classifiers. For the
k-nearest neighbors, k = 5 was used.

Classifier decision tree k-nearest neighbors

Accuracy 96.42 92.85

Feature analysis and interpretability: Results of feature importance
analysis are shown in Fig. 2. In particular, Fig 2-a shows the impact of indi-
vidual features on fault type classification predictions. According to the results,
the most informative features are (i) from signal-level features: energy, mean and
kurtosis, while (ii) from frequency-level features: energy and mean. Thus, the in-
formation that this analysis provides is that both signal-level and frequency-level
features can play a role in the classification predictions.

Fig 2-b and Fig 2-c however provide a more meticulous interpretation of the
results. These plots are results of utilizing the PDP approach (see Section 2.2)
and visualize the impact of mutual feature interactions on the classification out-
come. We can note that the two selected features (as an example) in Fig 2-b,
i.e., mean−dft and energy−sig are NOT mutually informative; in other words,
a change in the values of both of these features does not lead to the increase
or decrease in the classification outcome. This is equal to say that mean−dft
has all the necessary information encoded in the set {mean−dft, energy−sig}.
Thus, we can safely use mean−dft for the classification task and expect to ob-
tain good classification results. However, as shown in Fig 2-c, for what concerns
the interaction between features {mean−dft, kurtosis−sig} a different relation
is obtained. We can note that, in this case, both of the features monotonically
impact the classification predictions. The highest classification is achieved when
feature values are in the bottom-left portion of the figure.

We round off this discussion by highlighting that the results of our study
show that the information provided by the PDP analysis for the SG fault type
classification task offer new insights that could not be obtained from the clas-
sical feature importance analysis technique, as shown in Fig 2-a. For example,
while Fig 2-a reports on the impact of the 12 employed features as a group, it
does not provide specific insights if the same results could be obtained when a
smaller set of features are used. We can see that while some pairs of features are
mutually complementary such as mean−dft and energy−sig, there exist other
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Fig. 2. Results of feature analysis (a) feature importance scores for 12 features by the
decision tree (b-c) PDP interaction plots using two dominant features in part (a).

feature pairs that are correlated. This information could eventually be used by
the system designer to know (i) which feature(s) to focus on for the extraction
phase from the SG signals, (ii) how to represent the feature to obtain more in-
formative features (e.g., n-th PDF moment we used), and (iii) by the system
human operator to understand the root of specific faults in the system.

4 Conclusion and future work

This work presented preliminary results of a large study, in which we focused
on the central question of interpretability of ML models in the context of fault
prediction for smart grids. First, we classified fault types using two different
classifiers, k-nearest neighbors and decision tree, and identified decision tree as
the best choice; afterwards, for the interpretability task, we studied the role
of two complementary feature analysis techniques, namely feature importance
measurement and feature interaction visualization using partial dependence plots
(PDPs). We provided insights that can be obtained from the PDP technique
on the relationship between features, that could not be found in the classical
approach. Our study acknowledges merits of the two complementary feature
analysis mechanisms in facilitating offering explanations. For the future work,
we plan to extend our dataset by injecting fault to other critical zones, and using
a wider set of features. We plan to experiment with larger electrical grids, e.g.,
IEEE-34, 37 and 123 that are commonly used in the literature [3]. Finally, we
consider to study more interpretable models for the core prediction task.
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