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Abstract. Schlieren, shadowgraph and other types of refraction-based techniques 

have been often used to study gas flow structures. They can capture strong den-

sity gradients, such as shock waves. Shock wave detection is a very important 

task in analyzing unsteady gas flows. High-speed imaging systems, including 

high-speed cameras, are widely used to record large arrays of shadowgraph im-

ages. To process large datasets of the high-speed shadowgraph images and auto-

matically detect shock waves, convective plumes and other gas flow structures, 

two computer software systems based on the edge detection and machine learning 

with convolutional neural networks (CNN) were developed. The edge-detection 

software utilizes image filtering, noise removing, background image subtraction 

in the frequency domain and edge detection based on the Canny algorithm. The 

machine learning software is based on CNN. We developed two neural networks 

working together. The first one classifies the image dataset and finds images with 

shock waves. The other CNN solves the regression task and defines shock wave 

position (single number) based on image pixels tensor (3-D array of numbers) for 

each image. The supervised learning code based on example input-output pairs 

was developed to train models. It was shown, that the machine learning approach 

gives better results in shock wave detection accuracy, especially for low-quality 

images with a strong noise level. Software system for automated shadowgraph 

images processing and x-t curves of the shock wave and convective plume move-

ment plotting was developed. 

Keywords: Flow Visualization, Image Processing, Shock Wave Detection, Ma-

chine Learning, CNN, Transfer Learning, Image Edge Detection, Classification, 

Regression, Сonvective Plume. 

 
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License 

Attribution 4.0 International (CC BY 4.0). 

 

* This work has been supported by the Russian Science Foundation  

(Grant number 18-19-00672). 

mailto:znamen@phys.msu.ru


2  I. Znamenskaya, I. Doroshchenko, D. Tatarenkova 

1 Introduction 

A shock wave is a discontinuity surface that moves faster than the local speed of sound 

in the medium. The pressure, temperature and density change abruptly on that surface. 

Shock waves and other flow structures detection on the experimental and CFD data sets 

are very important tasks. High-speed digital cameras and CFD software generate large 

amounts of data, thus special software systems for detecting shock waves and other 

different flow structures are required. Modern CFD shock wave detection methods in-

clude gradient maxima-based methods, normal Mach number-based methods and also 

characteristics methods [1, 2]. The characteristics method is very precise, but its imple-

mentation is much more difficult than the other ones. The numerical oscillation and 

dissipation make it harder to detect shocks [1]. 

 Schlieren and shadowgraph techniques have been used since the 19th century to 

visualize density fields in the transparent media. Both methods are based on the refrac-

tion phenomenon [3]. The high-speed schlieren and shadowgraph techniques are widely 

used to investigate unsteady gas flows with shock waves and other flow structures. 

Modern digital high-speed cameras can record videos with the frame rate up to 

10 000 000 frames / s, thus it is important to develop software systems for automated 

flow structures recognition and measurement. Today, the most promising approaches 

to solve these problems are based on digital image processing with different edge de-

tection and object recognition algorithms [4, 5] and using machine learning [6, 7, 8] to 

identify complex flow structures. Different image edge detection algorithms are suita-

ble for shock wave detection [9], including Prewitt, Roberts, Sobel and Canny [10]. It 

was shown by different researchers that the Canny algorithm best suited for schlieren 

and shadowgraph image processing [9, 5]. Cui et al. [9] built a shock wave detection 

software to measure shock stand-off distance from the model inside a supersonic wind 

tunnel. The software utilizes different edge detection algorithms, but Laplacian of 

Gaussian (LoG) and Canny methods showed the most precise results, especially if the 

image sequence has a high noise level. Li et al. [5] made software for shock wave de-

tection and tracking. A modified version of the Canny algorithm was developed. To 

improve image quality, the software includes background image subtraction in the fre-

quency domain and additional filtering before edge detection. Estruch et al. [11] devel-

oped shock-detection software based on a modified Canny edge detection algorithm. 

Shock wave/turbulent boundary-layer interaction was recorded using a high-speed 

schlieren optical system. The dynamics of the shock wave was measured by means of 

the developed software. It was shown, that background image subtraction in the fre-

quency domain using Fast Fourier Transform (FFT) removes noise more efficiently 

than that in the space domain. Fujimoto et al. [12] successfully applied the Canny edge 

detection method to CFD solutions by replacing pixel brightness with the pressure val-

ues inside the CFD grid. 

 The machine learning-based approach for identifying flow structures on schlieren 

images is also rapidly developing. It was shown, that a deep learning approach is suit-

able for the identification of shock waves in large tensor field datasets and it can effec-

tively capture shock features [13]. Dehghan Manshadi et al. [14] proposed an image 

classification and processing system for schlieren images of an object in the wind 
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tunnel. The system was able to extract three features from the images: refraction angle 

of the bow shock, its line intensity difference and mean width of the line. Based on 

these features, the classification system calculates the flow speed near the model. Neu-

ral networks can extract not only shock waves, but also any other flow patterns. For 

example, Colvert et al. [15] successfully applied a neural network to classify vortex 

wakes behind an airfoil. 

 In the present study, we developed two software systems for the automatic pro-

cessing of large shadowgraph image data sets. The first one is based on MATLAB® and 

built-in Image Processing Toolbox. We developed a modified Canny edge detection 

algorithm in order to identify shock waves moving in a shock tube channel and convec-

tive plumes spreading from the surface pulsed gas discharges. The second program is a 

web application written in JavaScript and using the open-source TensorFlow.js and 

ml5.js machine learning libraries. We used CNN trained to detect shock waves and to 

give its locations. The software automatically processes images in a given folder and 

plots the x-t curves of the shock wave movement and allows users to export the results 

in the .csv format. 

2 Experiments 

2.1 Experimental setup 

The experimental setup [16, 17] is a shock tube with the discharge chamber built in its 

low-pressure section. The tube has a rectangular cross-section of 24 × 48 mm2. The 

discharge section has the same cross-section and a length of 100 mm. It has a complex 

discharge arrangement for pulse surface and volume discharge creation. The sidewalls 

of the discharge chamber are made of quartz glass for optical access. We performed 

high-speed shadowgraph imaging of the flat shock wave moving in a channel without 

the discharge in the first set of experiments (see Fig .1) and the blast waves spreading 

from the surface discharge channel in the second set of experiments (see Fig. 2). The 

optical system used for high-speed shadowgraph imaging is described in detail in [18]. 

The recording frame rate is up to 525 000 frames / s. The camera imaging exposure is 

1 μs. 

2.2 Flat shock wave moving in a channel 

 
Shock wave forms after the breakdown of the diaphragm, separating high-pressure 

and low-pressure sections of the shock tube, due to the pressure difference. We use air 

as a working gas. The shock Mach number was M = 2 – 3 depending on the pressure in 

front of the shock wave. Fig. 1 illustrates the schematic of a flat shock wave moving in 

the rectangular tube channel. The discharge system is not involved in this set of exper-

iments. 
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Fig. 1. Test section with a shock wave schematic. 1 – flat shock wave; 2 – electrodes; 3 – quartz 

glass windows. The red arrow indicates shock wave and the following gas flow direction. The 

top wall and the right window are drawn transparent for clarity  

2.3 Shock wave structure and the convective plume created by the pulsed 

surface discharge 

 
Blast waves and the following convective plumes are generated by the nanosecond slid-

ing surface discharge on the top and on the bottom walls of the discharge chamber. We 

study the process on the bottom wall of the discharge section. The full electrical energy 

of the discharge is E = 0.71 J. The short energy deposition time and rapid gas heating 

(t < 1 μs) lead to the flow with shock waves formation. The discharge operates in qui-

escent air at low air pressure up to 100 Torr. The surface discharge covers an area of 

100 × 30 mm2. The discharge energy is distributed uniformly across the discharges area 

with the rare local cylindrical high-energy channels. The uniformly distributed plasma 

sheet forms a flat horizontal shock wave moving up from the sliding discharge. Local 

high-energy cylindrical channels form semi-cylindrical shock waves and the following 

convective plumes. It was previously shown that the plume dynamics is explained by 

the forced convection, caused by the discharge-induced shock wave [19]. Fig. 2 illus-

trates the discharge arrangement and the generated shock waves. 

 

Fig. 2. Test section with a surface discharge (plasma sheet) and the generated shock waves. 1 – 

generated shock waves; 2 – electrodes; 3 – quartz glass windows; The red arrow indicates shock 

wave and the following gas flow direction. The top wall and the right window are drawn trans-

parent for clarity 
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3 Shock wave detection based on Canny Edge Detection 

algorithm 

3.1 Canny image edge detection algorithm review 

 
Canny edge detection is one of the most advanced and popular edge detection algo-

rithms. It was introduced by John F. Canny in 1986 [10]. The algorithm includes four 

image processing steps. The first one is the noise reduction with a low-pass Gaussian 

filter (see Eq. 1): 

 𝐺(𝑥) =
1

√2𝜋𝜎2
𝑒

− 
𝑥2+𝑦2

2𝜎2 . (1) 

 

where x is the distance from the given pixel in the horizontal axis, y – in the vertical, σ 

is the standard deviation of the Gaussian distribution. We use MATLAB® implementa-

tion of the Canny edge detection algorithm, which utilizes 16 × 16 Gaussian filter by 

default.  

The next step is to find an image intensity gradient. There are a few approaches to 

do this. The simplest one is to directly calculate the pixel intensity derivatives in the x 

and y directions and to build a gradient vector: 

 ∇𝐼 = [
𝜕𝐼

𝜕𝑥
,

𝜕𝐼

𝜕𝑦
]. (2) 

  

 
𝜕𝐼

𝜕𝑥
= lim

ℎ→0

𝐼(𝑥+ℎ,𝑦)−𝐼(𝑥,𝑦)

ℎ
≈ 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥, 𝑦), (3) 

  

 
𝜕𝐼

𝜕𝑦
= lim

ℎ→0

𝐼(𝑥,𝑦+ℎ)−𝐼(𝑥,𝑦)

ℎ
≈ 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦), (4) 

 

where x and y are pixels column and row numbers. The more advanced approaches 

utilize custom image gradient operators to compute an approximation of the gradient 

of the image intensity. For example, the Sobel operator [20] uses two 3×3 matrices 

which are convolved with the image intensity matrix: 

  

 𝐼𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐼,           𝐼𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] ∗ 𝐼. (5) 

Thus, the partial derivatives and the gradient's direction can be found as (6). 
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𝜕𝐼

𝜕𝑥
≈ −𝐼(𝑥 − 1, 𝑦 − 1) − 2𝐼(𝑥 − 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦 + 1) + 𝐼(𝑥 + 1, 𝑦 − 1) + 2𝐼(𝑥 +

1, 𝑦) + 𝐼(𝑥 + 1, 𝑦 + 1),   (6) 

  
𝜕𝐼

𝜕𝑦
≈ −𝐼(𝑥 − 1, 𝑦 − 1) − 2𝐼(𝑥, 𝑦 − 1) − 𝐼(𝑥 + 1, 𝑦 − 1) + 𝐼(𝑥 − 1, 𝑦 + 1) +

2𝐼(𝑥, 𝑦 + 1) + 𝐼(𝑥 + 1, 𝑦 + 1),   (7) 

  

 𝜃 = atan (
𝐼𝑦

𝐼𝑥
). (8) 

 

The edge direction is always normal to the gradient direction. 

Canny edge detection method uses another approach by finding a derivative of the 

Gaussian filter (see Eq. 9): 

 𝐼𝑥 = 𝐼 ∗
𝜕𝐺

𝜕𝑥
, 𝐼𝑦 = 𝐼 ∗

𝜕𝐺

𝜕𝑦
 (9) 

The third step is non-maximum suppression. The pixels which are not lying on the 

edges are removed. The fourth step is the hysteresis thresholding. On this step, we set 

two threshold values: minimum threshold and a maximum threshold. The edges with 

intensity gradient higher than the maximum threshold are sure to be edges and the edges 

below the minimum threshold value are treated as non-edges. If the edge intensity gra-

dient is between these two threshold values, such edges are classified based on their 

connectivity. If such an “intermediate” edge is connected to the edge with intensity 

gradient higher than the maximum threshold value, the algorithm treats such edge as 

real. Otherwise, the edge gets discarded (its intensity value sets to 0). At the end, we 

get a binary black and white image with the black background and white edges (with 

possible pixel intensity values equal to 0 or 1).  

In our code, we used MATLAB® implementation of the Canny algorithm. We se-

lected various threshold and σ values manually depending on our tasks and shadow-

graph images under study. We manually specified the maximum threshold value and 

the lower value was calculated automatically as the maximum threshold multiplied by 

0.4. 

3.2 Shock wave edge-detection 

 
Fig. 3 shows the shadowgraph image of a shock wave moving in a channel and the 

corresponding light intensity distribution. The gas pressure ahead of the shock wave is 

15 Torr. The shock Mach number is M = 2.3. The imaging frame rate is 525 000 

frames/s. 
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Fig. 3. Shadowgraph image of a shock wave and its light intensity profile. Green dashed lines 

indicate the intensity averaging band. The red arrow indicates shock wave and the following gas 

flow velocity direction 

 

 Thus, the shadowgraph image of a shock wave contains a light strip following the 

dark one. Such intensity pattern is a perfect target for edge detection algorithms due to 

significant intensity gradients. Fig. 4 illustrates shock wave shadowgraph image pro-

cessing using Canny edge detection. Varying threshold and σ we selected the appropri-

ate settings for different image sets. After processing all of the given images our soft-

ware is able to automatically track shock positions and record their motion dynamics. 

Before applying edge detection, the software system can perform a background image 

subtraction in the frequency domain if the background image is provided. 

 

Fig. 4. Shadowgraph images with shock waves and the corresponding Canny edge detection pro-

cessing. Shock wave moves from left to right 
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3.3 Convective plume edge-detection 

 
The edge detection approach is also suitable for more complex tasks solutions. Fig. 

5 illustrates the flow structure evolution created by the pulsed surface discharge con-

figuration (see Fig. 2). Shock waves, compression waves, convective plumes with vor-

tex structures were detected. Flat shock wave spreads from the plasma sheet surface 

and the cylindrical one is created by the local high-energy surface discharge channel. 

The physics of the convective plume is based on the forced convection, caused by the 

shock wave [19]. The air pressure of quiescent air was p = 93 Torr. The height of each 

image is 24 mm. The threshold values were from 0.1 to 2.2, σ = 3.2. 

 

Fig. 5. A sequence of shadowgraph images of the gas flow, spreading from the pulsed surface 

discharges, and the corresponding Canny edge detection binary images. 1 – shock waves; 2 – 

compression waves; 3 – plumes with vortex structures 

The MATLAB®-based software system for automatic plume size detection was de-

veloped. It allows us to process a large amount of data very quickly and to compare the 

results with theory or CFD. The algorithm applies edge detection to every frame in the 

selected folder and finds the top-most point of the plume. The y-position of this point 

is treated as plume’s size at a given time. The software records measured data, plots the 

distance (plume’s size) vs time dependency and makes an animation of the results. 

A small part of one of the obtained sequences of shadowgraph images (200–400 

images are in a full sequence) and their processing are illustrated in Fig. 6. The record-

ing frame rate was 150 000 frames / s. Threshold value was set to 0.12; σ = 1.3. Air 

pressure was p = 93 Torr. 

Fig. 7 shows the plume size vs time dependency and the polynomial approximation 

with the powers of 2 and 7. Each frame sequence has about 5%-8% wrong plume size 

detections due to the shock wave presence. Such points were automatically eliminated 

from the result by means of comparison of the difference between each point and the 

next one with the maximum physically possible step value. This value was set manually 

in the range between 5 and 10 pixels depending on the experimental conditions. The 

plume moves unevenly with variable speed and is well approximated by a seventh order 

polynomial. The second-order polynomial gives the mean plume size values. 
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Fig. 6. A sequence of shadowgraph images of the convective plume evolution. The red horizontal 

line indicates the automatically-detected plume top-position 

 

Fig. 7. Automatically detected plume size vs time plot and its polynomial approximations 

4 Neural networks 

4.1 Proposed software system 

 
Edge detection algorithms are very useful in schlieren and shadowgraph image pro-

cessing, but they have their flaws. Each image sequence requires different threshold 
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settings to get the desired result. If the image contains different objects with the same 

intensity gradients, for example, shock waves and plume borders, it is not possible to 

detect only one of the object types in the image. We tried to solve these problems by 

using neural networks and to create a more powerful flow structures detection system.  

Our solution is based on the open-source machine learning libraries such as Tensor-

Flow.js and ml5.js and it is written in JavaScript and PHP programming languages. It 

has a user-friendly GUI system with two main screens. The application has a learning 

screen and a processing screen. The learning screen is designed to create classification 

and regression models and save them on the user’s computer. The processing screen is 

designed for shadowgraph image classification and flow structures detection using the 

pre-trained models. The schematic of the test process of the shock wave detection is 

illustrated in Fig. 8. 

Thus, the developed software allows us to automatically process hundreds of shad-

owgraph images within a minute. Previously, it took several hours to process one se-

quence of such frames manually [19]. 

  

 

Fig. 8. Schematic of the shock wave detection process using neural networks 

 To detect the shock wave position, two CNNs are working together. The first one 

finds good-quality images with shock waves using a pre-trained classification model. 

The second one gets the images containing shocks as an input and returns the position 

of the shock based on the pre-trained regression model. It was shown, that the neural 

network approach gives better results, then the edge detection algorithm, when the im-

age has poor quality and high noise level with intensity gradients comparable with that 

on the shock wave image. 

4.2 Classification 

We trained classification CNN to recognize 3 different image classes: empty image, an 

image with a shock wave and an image containing plume. We used up to 150 images 

of each class for training. The training process includes 50 epochs, the batch size was 

16 and the learning rate was set to 0.001. Fig. 9 shows the accuracy and the loss plots. 

The accuracy is the percentage of classifications that a model gets during training. Loss 
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describes how well a model has learned to predict the right classifications for a given 

set of samples. They show a very good learning rate and the classification accuracy 

reaches 100% for the given samples. 

 

 

Fig. 9. Accuracy and loss vs epoch of the classification model 

 

4.3 Regression 

We used another CNN for shock wave position detection. The neural network was 

trained on input-output pairs of data. The images were passed to the input as 3-D tensors 

(the tensor’s width and height equal to image width and height and its depth contains 

image color information). Output was a single number equal to the shock wave position 

in pixels. We used the pre-trained MobileNet [21] model to extract image features. Mo-

bileNet is a CNN model for image classification which does not require a lot of com-

putational power to operate or to apply transfer learning. We used the Transfer Learning 

(TL) process to retrain the model with our shadowgraph images data. We trained the 

model to solve the regression task and to predict the shock wave position on the new, 

previously unseen images. Fig. 10 illustrates the learning efficiency for the 42 training 

samples (shadowgraph images containing shock wave). The learning rate is quite good 

for the given number of samples. 

Fig. 11 shows the automatically detected shock wave locations and the correspond-

ing distance vs time plot. The dotted line represents the linear trend line, which shows 

a good measurement accuracy. 

The described regression-based learning approach has its flaws. It is based on the 

pre-trained model and the feature extraction for some of the complex flow structures 

may fail and the prediction gives up to 50% error results. It happens, for example, with 

the convective plume images on the later stages of plume evolution, when it splits into 

a few distinct plumes due to convection. Plume top-position detection for such images 

may give the undesired results. Thus, to solve these kinds of problems, we are going to 

build our model based on the shadowgraph image data from scratch in the future. 
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Fig. 10. Loss vs epoch of the regression model 

  

 

Fig. 11. Automatic shock wave detection based on the CNN 

  

5 Conclusion and future works 

 Two image processing software systems for fluid structures detection were built, 

tested and used for real scientific problem solutions. The software can process large 

amount of schlieren and shadowgraph images obtained by the high-speed cameras in 

the experiments. First system is based on the Canny edge detection algorithm and al-

lows to detect and track different gas flow structures visualized by the schlieren or 

shadowgraph techniques. Additionally, the edge-detection code implements noise re-

moving, background image subtraction in frequency domain and image filtering before 

the edge detection. We successfully tested the software on images containing shock 
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waves and convective plumes. Shock wave dynamics and plume’s size versus time 

were measured automatically for different experimental conditions. 

 The second software system was designed to solve the same tasks as the previous 

one using CNN. It includes user-friendly GUI and uses two neural networks to classify 

images, detect different types of gas flow structures and to track their movement. The 

classification CNN was built from scratch on the large shadowgraph image data set and 

gives perfect results in image classification with the accuracy of 100% for the given 

samples. It can distinguish 3 different flow structures at the moment: shock waves, 

background empty images with quiescent air and the convective streams. The second 

CNN is designed for flow structures tracking by solving the regression task. It works 

well for simple flow structures, such as shock waves. It was shown, that the CNN ap-

proach gives better results in shock wave detection than the edge detection when the 

background noise level is high. But our implementation of the flow-tracking CNN often 

mistakes while processing the complex flow structures. 

 In the future work we will train our classification model to be able to detect more 

gas flow structures, such as vortices, laminar-turbulent transition areas, supersonic jets, 

bow-shocks etc. The second CNN, used for shock tracking, will be rebuilt from scratch 

and trained on large amount of shadowgraph image data set instead of using pre-trained 

model and feature extraction approach. We will continue to improve our edge-detection 

software and make the user-friendly user interface. 
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