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Abstract. In this article the new hybrid algorithm for palm vein image segmen-

tation using convolutional neural network and principal curvatures is proposed. 

After palm vein image preprocessing vein structure is detected using unsuper-

vised learning approach based on W-Net architecture, that ties together into a 

single autoencoder two fully convolutional neural network architectures, each 

similar to the U-Net. Then segmentation results are improved using principal cur-

vatures technique. Some vein points with highest maximum principal curvature 

values are selected, and the other vein points are found by moving from starting 

points along the direction of minimum principal curvature. To obtain the final 

vein image segmentation the result of intersection of the principal curvatures-

based and neural network-based segmentations is taken. The evaluation of the 

proposed unsupervised image segmentation method based on palm vein recogni-

tion results using multilobe differential filters is given. Test results using CASIA 

multi-spectral palmprint image database show the effectiveness of the proposed 

segmentation approach. 

Keywords: Biometrics · Image Segmentation · Palm Vein Recognition · Un-

supervised Learning · Principal Curvatures. 

1 Introduction 

Nowadays information security plays crucial role in human life and, as it turned out, 

accustomed keys and passwords are not reliable enough. Instead, the biometric charac-

teristics that uniquely identify a person from an entire population based on intrinsic 

physical or behavioral traits [1], provide stable and safe data protection. Biometrics 

recognizes individuals based on these characteristics. 

One of the most advanced and progressive personal identification technologies is 

palm vein recognition. Veins are usually not visible to others that provides low risk of 

fake or theft. As for other important advantages, vein patterns are quite unique to the 

owners, image acquisition does not require physical contact and the system can be made 

compact. Deoxygenated hemoglobin in the vein blood absorbs near infrared light so 

infrared camera captures images containing veins. 
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Palm vein recognition algorithm consists of several steps. Firstly, the region of in-

terest (ROI) is extracted and segmentation of ROI image into two classes is performed. 

Vein points are marked in white while the other points are marked in black. The second 

step, feature vector extraction, represents the main difference between existing ap-

proaches. Since vein recognition is relatively young study, some feature extraction 

methods could be derived from other biometric recognition algorithms based on statis-

tical information [2], image key points [3, 4, 5], subspace-based methods [6], phase 

based methods [7, 8], etc. Some approaches were developed specifically for vein recog-

nition [9]. The last algorithm step, image matching, is based on feature vector type. At 

this step the distance between palm vein images is calculated. Much recent work has 

been focused on employing deep convolutional neural networks (CNN) in biometrics. 

Deep learning methods can be applied to any step of palm vein recognition algorithm 

[10, 11, 12, 13]. 

In this paper we propose a hybrid approach based on unsupervised machine learning 

and mathematical methods to obtain good vein segmentation. The problem of unsuper-

vised image segmentation is one of the major challenge in computer vision which has 

been deeply researched. The range of well-known techniques for solving this issue con-

tains normalized-cuts [14], Markov random field-based methods [15], CNN-based ap-

proaches [16], etc. However, the results of applying of these methods may include in-

accuracy due to specific features of a technique and lack of correct ground truth. So the 

mathematical methods shall control the results of CNN. In this paper we propose a 

hybrid segmentation method consisting of two approaches: based on CNN and principal 

curvatures (Fig.1). 

 

Fig. 1. The scheme of the proposed palm vein segmentation algorithm. 

The rest of this paper is organized as follows. In Section 2 the palm vein image prepro-

cessing and ROI extraction algorithms are described. The vein structure extraction is 

described in Section 3 where Subsections 3.1 and 3.2 present principal curvatures and 

CNN-based segmentation algorithms, the hybrid approach is described in Subsection 

3.3. The evaluation of the proposed unsupervised image segmentation method based on 
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multilobe differential filters for palm vein feature extraction is described in Section 4. 

The experimental results for images from CASIA multi-spectral palmprint image data-

base [17] are given in Section 5. Finally, Section 6 concludes this paper. 

2 Palm vein image preprocessing 

The proposed palm vein region of interest (ROI) detection and enhancement scheme is 

illustrated in Fig. 2.  

       
(a)                                 (b)                             (c) 

  
(d)              (e)         (f) 

     
(g)       (h)            (i) 

Fig. 2. Illustration of palm vein ROI extraction and preprocessing: (a) original palm image, (b) 

binary hand image, (c) points 𝑃1 and 𝑃2, (d) function that represents the distance between the 

center of palm and all points on the hand contour, (e) ROI - the square region of interest on the 

rotated image. (f) ROI image with uniform illumination. (g) ROI after CLAHE, (h) ROI after 

NLM, (i) final ROI image. 

First, hand boundary is detected by OTSU binarization algorithm [18] and points be-

tween the fingers are found as points where local minimum of Euclidean distances be-

tween the center of palm and all points on the hand contour is reached. The points 
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between index and middle fingers, 𝑃1, and forth and little fingers, 𝑃2, can be taken as 

landmarks for extraction of square ROI (Fig. 2 d) [19]. To eliminate the influence of 

palm rotation, the image is rotated to the angle θ which is the angle between the line 

𝑃1𝑃2 and the horizontal line. To reduce the non-uniform illumination appearing in palm 

vein images the background is subtracted and the histogram is stretched (Fig. 2 f). To 

emphasize vein structure contrast-limited adaptive histogram equalization (CLAHE) 

technique [20] is used (Fig. 2 g). After contrast enhancement all image details including 

noise and glares are sharper. In order to smooth the undesirable details, non-local means 

(NLM) algorithm [21] is used to reduce noise (Fig. 2 h). NLM smoothies also veins a 

little so CLAHE is applied again to obtain distinguishable veins (Fig. 2 i). Fig. 2 shows 

the ROI of palm vein image and the results of preprocessing algorithm. After prepro-

cessing veins become sharper and more distinguishable [22]. 

3 Vein structure extraction 

3.1 Principal curvatures 

The next step is the vein structure extraction. Consider an image as a surface in a three-

dimensional space, where the brightness value of the pixels is the z-coordinate. We are 

going to extract vein structure using principal curvatures method [22]. 

 Let 𝐿(𝑥, 𝑦) denote the image intensity at the pixel position, 𝐺(𝑥, 𝑦) be the image 

gradient vector. Then the normalized gradient after a hard thresholding is defined as: 

 𝐺𝛾(𝑥, 𝑦) = {

𝐺(𝑥,𝑦)

‖𝐺(𝑥,𝑦)‖
,    ‖𝐺(𝑥, 𝑦)‖ ≥ 𝛾

0,    ‖𝐺(𝑥, 𝑦‖ < 𝛾
, (1) 

where γ is a threshold level. In the experiments we use γ = 4. The normalized gradient 

field contains noisy components so we smooth it with Gaussian function 𝐻(𝑥, 𝑦): 

 𝐻𝛾(𝑥, 𝑦) = 𝐺𝛾(𝑥, 𝑦) ∗ 𝐻(𝑥, 𝑦). (2) 

Let 𝐻𝛾(𝑥, 𝑦) = (ℎ𝑥(𝑥, 𝑦), ℎ𝑦(𝑥, 𝑦)). The local shape characteristics of an image at a 

point (𝑥, 𝑦) can be described by the Hessian matrix 𝐻𝑆(𝑥, 𝑦). 

 𝐻𝑆(𝑥, 𝑦) = (

𝜕ℎ𝑥(𝑥,𝑦)

𝜕𝑥

𝜕ℎ𝑥(𝑥,𝑦)

𝜕𝑦

𝜕ℎ𝑦(𝑥,𝑦)

𝜕𝑥

𝜕ℎ𝑦(𝑥,𝑦)

𝜕𝑦

). (3) 

Let   𝜆1,  𝜆2 be the eigenvalues and   𝑣1  ,  𝑣2 be the corresponding eigenvectors of 

𝐻𝑆(𝑥, 𝑦), |𝜆1| > |𝜆2|. Then two principal directions, the directions of the maximum and 

minimum curvatures, are determined by two eigenvectors   𝑣1  and   𝑣2. Consequently, 

two eigenvalues 𝜆1  ,  𝜆2 represent the principal curvatures (the curvatures along the 

principal directions) [9]. The tubular-shaped regions have maximum principal curva-

ture 𝜆1 higher than other regions and vector   𝑣1 is directed across tubular direction, 

vector   𝑣2 – along tubular direction [23]. 
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 In order to catch veins of different widths, consider the set of parameters σ for the 

Gauss function: 𝜎0, … , 𝜎𝑛−1, where 𝑛 = 10, 𝜎𝑖 = 𝜎0 ∙ √2𝑖4
, 𝜎0 = 2, 𝑖 =  0, 1, … , 9. For 

each value of 𝜎 the Hessian matrix is constructed, at each point the maximum positive 

eigenvalue 𝜆1 and an  eigenvector   𝑣2 corresponding to   𝜆2 are calculated. Then, at each 

point of the image, the largest value of 𝜆1 over all 𝜎 and the corresponding vector   𝑣2 

are taken.  

 We select points with highest maximum principal curvature values as points that 

certainly belong to veins. The other vein points can be found [22] from starting points 

by moving along direction of vector  𝑣2 by |𝜆1|. The results of this approach is shown 

in Fig.3. 

   

   

Fig. 3. Vein structures extraction. First row shows ROI for different palm vein images of one 

person, second row shows found vein structure. 

3.2 Unsupervised convolutional neural network 

As we do not have the ground truth for the task of ROIs segmentation, the unsupervised 

method is required, so the approach based on W-Net architecture [16] is proposed. The 

authors of W-Net method present a new architecture which ties two fully convolutional 

network (FCN) architectures, each similar to the U-Net [24], together into a single au-

toencoder (Fig. 4). The first FCN encodes an input image into a k-way soft segmenta-

tion: 𝑈𝐸𝑛𝑐 : ℝ𝐻×𝑊×3 → ℝ𝐻×𝑊×𝐾, where 𝐻 × 𝑊 denotes a size of input image, 

𝑈𝐸𝑛𝑐(𝑥)𝑖𝑗𝑘 = 𝑝(𝑥𝑖𝑗 = 𝐴𝑘) ∈ [0, 1] measures the probability of pixel 𝑥𝑖𝑗 belonging to 

class k (𝐴𝑘 is set of pixels in segment k). The second FCN, decoder, reverses this pro-

cess, going from the segmentation layer back to a reconstructed image: 

𝑈𝐷𝑒𝑐: ℝ𝐻×𝑊×𝐾 → ℝ𝐻×𝑊×3 (Fig.4). 

The both reconstruction errors of the autoencoder and soft normalized cut loss func-

tion on the encoding layer are used during training. The reconstruction loss is standard 
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for training encoder-decoder architecture and can be defined as: 𝐽𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟 =
‖𝑥, 𝑈𝐷𝑒𝑐(𝑈𝐸𝑛𝑐(𝑥))‖2

2. 

 

Fig. 4. W-Net architecture. 

The output of the 𝑈𝐸𝑛𝑐 is a normalized dense prediction. By taking the argmax, we can 

obtain a K-class prediction for each pixel and compute the normalized cut loss as fol-

lowing [14]: 

 𝑁𝑐𝑢𝑡𝐾(𝑉) = ∑
𝑐𝑢𝑡(𝐴𝑘,𝑉−𝐴𝑘)

𝑎𝑠𝑠𝑜𝑐(𝐴𝑘,𝑉)

𝐾
𝑘=1 = ∑

∑ 𝑤(𝑢,𝑣)𝑢∈𝐴𝑘,𝑣∈𝑉−𝐴𝑘

∑ 𝑤(𝑢,𝑡)𝑢∈𝐴𝑘,𝑡∈𝑉

𝐾
𝑘=1  , (4) 

where 𝐴𝑘 is set of pixels in segment k, V is the set of all pixels, and w measures the 

weight between two pixels. 

However, since the argmax function is non-differentiable, it is impossible to calcu-

late the corresponding gradient during backpropagation. Instead, it is proposed to use a 

soft version of the Ncut loss which is differentiable [16]: 

 𝐽𝑠𝑜𝑓𝑡−𝑁𝑐𝑢𝑡(𝑉, 𝐾) = ∑
𝑐𝑢𝑡(𝐴𝑘,𝑉−𝐴𝑘)

𝑎𝑠𝑠𝑜𝑐(𝐴𝑘,𝑉)

𝐾
𝑘=1 = 𝐾 − ∑

𝑎𝑠𝑠𝑜𝑐(𝐴𝑘,𝐴𝑘)

𝑎𝑠𝑠𝑜𝑐(𝐴𝑘,𝑉)
𝐾
𝑘=1 = 𝐾 −

∑
∑ 𝑤(𝑢,𝑣)𝑝(𝑢=𝐴𝑘)𝑝(𝑣=𝐴𝑘)𝑢∈𝑉,𝑣∈𝑉

∑ 𝑤(𝑢,𝑡)𝑢∈𝐴𝑘,𝑡∈𝑉 𝑝(𝑢=𝐴𝑘)
𝐾
𝑘=1 = 𝑲 − ∑

∑ 𝒑(𝒖=𝑨𝒌) ∑ 𝒘(𝒖,𝒗)𝒗∈𝑽 𝒑(𝒗=𝑨𝒌)𝒖∈𝑽

∑ 𝒑(𝒖=𝒖∈𝑽 𝑨𝒌) ∑ 𝒘(𝒖,𝒕)𝒕∈𝑽

𝑲
𝒌=𝟏 , (5) 

where 𝑝(𝑢 = 𝐴𝑘) measures the probability of node u belonging to class k that is directly 

computed by the encoder. The weight matrix W for 𝐽𝑠𝑜𝑓𝑡−𝑁𝑐𝑢𝑡 is defined as: 

 𝑤𝑖,𝑗 = 𝑒

−‖𝐹(𝑖)−𝐹(𝑗)‖2
2

𝜎𝐼
2

∗ {𝑒

−‖𝑋(𝑖)−𝑋(𝑗)‖2
2

𝜎𝑋
2

             if ‖𝑋(𝑖) − 𝑋(𝑗)‖2 < 𝑟
0                                           otherwise,

   , (6) 

where 𝑋(𝑖) and 𝐹(𝑖) are the spatial location and pixel value of node i, respectively. 

Since the size of our ROI images is 128×128 which is smaller than in the original work 

[16], the depth of W-Net was decreased in our experiments, as it is shown in Fig. 5. We 

use 𝑈𝐸𝑛𝑐 : ℝ128×128×1 → ℝ128×128×𝐾 and 𝑈𝐷𝑒𝑐: ℝ128×128×𝐾 → ℝ128×128×1. 
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Fig. 5. The modified FCN for W-Net architecture. 

As vein images have several semantic classes, such as veins with different intensity, 

background, skin wrinkles, the neural network was applied for the overclustering, 𝐾 =
16. The training dataset contains 120 images. In Fig.6 one can see the results of this 

approach: the first column in the figure shows input images (Fig. 6 a) while the second 

one illustrates their reconstruction (Fig. 6 b); the third column presents the result of 

overclustering (Fig. 6 c). After unification of classes corresponding to veins the ob-

tained vein image binarization is shown in the fourth column (Fig. 6 d). 

 
     (a)             (b)         (c)              (d) 

Fig. 6. (a) Input ROI images; (b) The result of CNN reconstruction; (c) The result of overclus-

tering: each color corresponds to its own class; (d) The result of vein image segmentation using 

W-Net. 
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3.3 Hybrid segmentation method 

Both principal curvatures-based and CNN-based approaches provide oversegmenta-

tion. To find the final vein mask the result of intersection of the principal curvatures-

based and CNN-based vein segmentations is taken (Fig. 7). 

 
(a)                      (b)             (c)              (d) 

Fig. 7. (a) Input ROI images; (b) Segmentation results using CNN; (c) Segmentation results using 

principal curvatures approach; (d) The hybrid palm vein image segmentation. 

4 Evaluation of the image segmentation method 

There are no ground truth masks for CASIA palmprint image database [17]. To evaluate 

the proposed unsupervised segmentation method, we use multilobe differential filters 

(MLDF) [25] that highlight vein branch points (Fig. 8) for palm vein feature extraction 

and normalized root-mean-square error for feature maps matching [22]. Mathematically 

the MLDFs are given as follows: 

 𝑀𝐿𝐷𝐹 = 𝐶𝑝 ∑
1

√2𝜋𝜎𝑝𝑖

𝑁𝑝

𝑖=1
𝑒

−(𝑋−𝜇𝑝𝑖)2

2𝜎𝑝𝑖
2

 − 𝐶𝑛 ∑
1

√2𝜋𝜎𝑛𝑖

𝑁𝑛
𝑖=1 𝑒

−(𝑋−𝜇𝑛𝑖)2

2𝜎𝑛𝑖
2

 , (7) 

where the variables µ and σ denote the central positions and the scales of a 2D Gaussian 

filters respectively, 𝑁𝑝 denote the number of positive lobes, and 𝑁𝑛 denote the number 
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of negative lobes. Constant coefficients 𝐶𝑝 and 𝐶𝑛 are used to ensure zero sum of the 

MLDF. We take the convolution results of the ROI images in vein points obtained after 

vein image segmentation with the proposed MLDF kernels to obtain the feature maps 

of vein images. In order to provide slight translation and rotation invariance matching, 

the normalized root-mean-square error (NRMSE) [26] is proposed for feature maps 

matching [22]. 

  

Fig. 8. Multilobe differential filters for vein image analysis. 

Given the intra- and interclass vein matching results, the recognition performance is 

measured by the following indicators: the distribution of genuine and impostor scores, 

False Acceptance Rate (FAR), False Reject Rate (FRR) and Equal Error Rate (EER) − 

the cross-over error rate when FAR is equal to FRR. Lower EER means higher accuracy 

of a biometric matcher. 

5 Experimental results 

Experimental results using CASIA Multi-Spectral Palmprint Image Database [17] are 

presented. The database contains 7200 palm images captured from 100 different people 

using a self-designed multiple spectral imaging device. Each sample contains six palm 

images which are captured at the same time with six different electromagnetic spec-

trums. Each hand of any person in the database is represented by six images at one 

wavelength. In our study the images from CASIA database obtained at 850 nm are 

taken. 

The CNN model was implemented in PyTorch [27] framework and trained for 100 

epochs with Google Colaboratory with a batch size of 16 using Adam optimizer [28] 

with the learning rate of 0.001. In order to train W-Net we randomly selected 20 hands 

from the dataset and took all 6 corresponding images, so we got 120 images in training 

set. 

To test the proposed hybrid segmentation method, the recognition results using a 

part of CASIA database are presented in Fig. 9. Recognition results after image seg-

mentation with principal curvatures and without W-Net based CNN (Fig. 3) is shown 

in Fig.9 a. Recognition results after image segmentation with W-Net based CNN and 

without principal curvatures (Fig. 6) is shown in Fig.9 b. Recognition results after pro-

posed hybrid segmentation (Fig. 7) is shown in Fig.9 c. 
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(a)  

(b)  

(c)  

Fig. 9.   Illustrations of FAR and FRR curves with EER (the left column) and the distribution of 

genuine and impostor scores (the right column) on validation set using different segmentation 

methods: (a) the principal curvature approach; (b) the CNN-based approach; (c) the hybrid 

method. 

6 Conclusion 

In this article the new palm vein image segmentation method based on principal curva-

tures and unsupervised convolutional neural network is proposed. It is shown that the 

method based on principal curvatures improve segmentation results obtained by CNN. 

Experimental results using CASIA multi-spectral palmprint image database are pre-

sented. 
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