
The Two-Level Semi-Synchronous Parallelization

Method for the Caustic and Indirect Luminance

Calculation in Realistic Rendering*

Andrey Zhdanov [0000-0002-2569-1982], Dmitry Zhdanov [0000-0001-7346-8155]

ITMO University, 49 Kronverksky Pr., St. Petersburg, 197101, Russia

adzhdanov@itmo.ru, ddzhdanov@mail.ru

Abstract. The paper considers an original approach to the semi-synchronous cal-

culation of the luminance of caustic and indirect illumination for the group of

methods based on the bidirectional stochastic ray tracing with backward photon

maps. The designed parallelization method uses the two-level threads hierarchy.

The low level of this thread hierarchy is synchronous calculations of the part of

the whole image defined by a randomly generated pixel mask which is applied to

the whole image. The top level is semi-synchronous parallelization level that con-

sists groups of the low level threads which of them calculate own part of the

whole image in a way similar to asynchronous calculations. As the top level is

semi-synchronous it means that when calculating the luminance of the caustic

and indirect illumination, the threads of the low level have access to the data

accumulated in the backward photon maps of the other parallel threads of the

semi-synchronous level. A special algorithm for organizing an access to data of

the upper-level threads avoids delays associated with data synchronization. The

comparison of the developed solution with purely synchronous and asynchronous

parallelization methods is presented.

Keywords: Ray Tracing, Photon Maps, Backward Photon Maps, Parallel Com-

puting.

1 Introduction

Realistic rendering is a significant component that is commonly used in the modern

realistic visualization, virtual prototyping and virtual reality systems. In addition, it is

used to solve a wide range of applied problems, including the realistic images forming,

optical effects simulation, virtual prototyping of complex optical systems, etc. With

increasing computing power and computation architecture complexity of modern com-

puter systems, both the complexity of tasks for virtual prototyping and the required

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

* This work was funded by the Russian Science Foundation (project No. 18-79-10190).

mailto:ddzhdanov@mail.ru

2 A. Zhdanov, D. Zhdanov

accuracy of calculations raise. The tasks of virtual prototyping, solved by physically

correct realistic visualization methods, include modeling the illumination of optical sys-

tems, modeling the human perception of synthesized images formed by complex optical

systems, such as, for example, virtual or mixed reality systems, indicators on the wind-

shield, and others.

Traditionally realistic rendering algorithms are based on the Monte-Carlo ray tracing

methods which are used to calculate the luminance. These ray tracing methods can be

forward, backward or bidirectional. The most universal of these method for calculating

the physically correct luminance of indirect and caustic illumination are the methods

based on the use of photon maps [1, 2]. These rendering methods have a good parallel-

ization capability, however effective usage of the photon map in a multi-core environ-

ment is a challenging task. Despite there are existing solutions aimed at the effective

CPU or GPU ray tracing as, for example, Intel Embree [3], Nvidia RTX [4] or AMD

RadeonRays, they do not solve the problem of the effective processing of the traced

rays for the needs of the realistic rendering with photon mapping. So, the research and

development of effective rendering methods using all available computation resources

of modern multi-core CPUs with continuously raising number of cores is still an urgent

challenge.

There are existing solutions aimed on parallelizing the photon mapping rendering

algorithms using synchronous calculations on multi-core CPU [5], out-of-core photon

mapping [6, 7], massive parallel calculations with GPUs [8, 9], distributed simulations

[6, 10] and cloud rendering [11]. At the same time the rendering algorithm might be

aimed either at the speed to achieve the real-time rendering or at the physical correct-

ness of the simulated image. In the scope of the current article we concentrated on the

effective usage of the backward photon maps in a multi-thread environment when ren-

dering with the stochastic progressive backward photon mapping (SPBPM) method on

a single-CPU workstation with multiple cores with aim at the physical correctness of

simulation.

2 Rendering parallelization

2.1 Rendering method

In the scope of the current research we used the method based on bidirectional ray

tracing with backward photon mapping [12, 13]. Opposite to the traditional photon

mapping based methods the backward photon maps are formed by the backward rays

emitted from the camera and luminance transferred by forward rays is accumulated in

these maps to form the final image. The general workflow of the rendering method is

shown on the Fig. 1. The rendering method consist of four main steps:

1. Backward path tracing when the backward paths from the camera are generated and

traced in the scene with the direct light and BDF samplings to account the direct

luminance.

2. Backward photon maps forming along with creation of the acceleration structures.

The Two-Level Semi-Synchronous Parallelization Method 3

3. Forward ray tracing when forward rays from light sources are generated and traced

in the scene. By intersecting with previously formed backward photon maps, the

indirect and caustic luminance is accumulated.

4. Final image forming when the luminance accumulated in backward photon maps is

added to corresponding pixels of the image and weighted. The image accuracy is

estimated and if the required accuracy is not achieved then calculation continue from

the first step.

Fig. 1. General workflow of the used backward photon mapping rendering method.

2.2 Traditional parallelization methods

The traditional parallelization methods used for ray tracing-based rendering are

synchronous and asynchronous calculations. Both traditional methods were

implemented and tested on 12 cores of the Intel Xeon 6230 CPU and standard Cornell

box scene. Ray tracing and processing speedup test results are presented on Fig. 2 and

Tables 1 and 2.

Synchronous calculations method for parallelizing the rendering process on a multi-

core system is using all available cores in a synchronous way. In this case all threads

4 A. Zhdanov, D. Zhdanov

share the same memory pool and render the same scene in synchronous way. The main

problem of this approach is presence of the non-parallelizable parts of the algorithm

that according to the Amdahl’s law [14] cause the significant ray tracing and processing

slowdown when increasing the number of cores. As it can be seen from the presented

graph the rays tracing and processing speed growth almost stops at some point when

increasing the number of used computation cores.

In opposite to the synchronous calculations method the asynchronous calculations

use one main thread and a group of computation threads. Each of these computation

thread performs the independent rendering of the whole image, and the main thread is

used to control the computation threads and gather rendering results from the

computation threads. Due to asynchronous nature of calculation all computation threads

use their own private memory and as result it multiplies the memory usage of the whole

rendering process by number of computation threads. As result as it can be seen from

the presented graph the number of traced and processed rays growth linearly when

increasing the number of the used cores.

Fig. 2. Test results for traditional synchronous and asynchronous parallelization methods.

At the same time after 10 minutes of calculations using all computation cores the syn-

chronous method achieved the accuracy of 3.9%, while asynchronous method achieved

the accuracy of 5.1%. So even if asynchronous method traces and processes more rays

the accuracy attained after 10 minutes of calculations of the same scene is lower com-

paring to synchronous calculations. The main reason of this slowdown is that in case of

the asynchronous calculations the whole available memory is split between threads and

as result rays are processed in smaller groups resulting in less connections made be-

tween light sources and camera pixels.

The Two-Level Semi-Synchronous Parallelization Method 5

2.3 Semi-synchronous parallelization method

The research goal was to unite the scalability of the asynchronous calculations with

higher accuracy of the synchronous calculations in the most effective way. So, in the

scope of the current research the semi-synchronous parallelization method was devel-

oped. This method consists of two parallelization levels: synchronous and semi-syn-

chronous.

The first parallelization level is synchronous rendering of the part of the whole scene

image defined by the random mask, mainly of 32x32 pixels size. This mask defines

image pixels that are used at the backward ray tracing step for the backward photon

map forming. Each rendering step is parallelized independently in a synchronous way

with one main thread that controls the rendering method workflow. The synchronous

parallelization level is shown on the Fig. 3.

Fig. 3. Synchronous parallelization level.

The second parallelization level is semi-synchronous that unites several of synchronous

thread groups to render the whole scene in semi-synchronous way. Each group of

synchronous threads have their own random mask. These masks are generated by the

main thread so that they cover all image pixels and at the same time do not intersect

with each other. Once in a several number of rendering phases all threads are

synchronized, the whole rendered image is formed, and masks are re-randomized. This

re-randomization is required to guarantee that all synchronous thread groups have about

equal load and all image pixels are processed equally. Each of the synchronous thread

groups uses their own backward photon maps as result multiplying the memory usage

required to store maps by the number of synchronous thread groups, however the size

of each of these maps can be made smaller comparing to a map built for the whole

image. The semi-synchronous parallelization level is shown on the Fig. 4.

Fig. 4. Semi-synchronous parallelization level.

6 A. Zhdanov, D. Zhdanov

It is possible that at the forward ray tracing step of the rendering method the forward

ray traced by one synchronous group of threads do not find an intersection with the own

backward photon maps, however this ray might result in the luminance forming in

backward photon maps of the other synchronous groups of threads. To increase the ray

processing ratio of the traced forward rays it is required provide an access to all

backward photon maps that exist at the moment. This means that some flag should be

maintained by the backward photon maps owner indicating that maps are available and

open for other threads to be used. At the same time these maps should not be closed

and deleted while some other thread is using them. The workflow of the rendering

process in a synchronous group of threads with opening and closing an access to the

own backward photon maps is shown on the Fig. 5.

Fig. 5. General workflow of the single thread of the backward photon mapping rendering method

with shared photon maps.

The Two-Level Semi-Synchronous Parallelization Method 7

This opening and closing the access to the own backward photon maps should be per-

formed without interrupting the calculation process and without using the critical sec-

tions. So, in the scope of the current research the algorithm of asynchronous access to

the backward photon maps was developed. This algorithm uses only atomic operations

both to open and close the access to the own backward photon maps and to gain and

release access to the other thread’s backward photon maps.

For these needs the backward photon maps active thread counter is stored along with

along with each of the backward photon maps. This counter shows how many inde-

pendent threads are currently accessing corresponding map. If this counter is equal to

zero that means that maps either do not exist or are not open for access by not-owner

thread. If the counter is more than zero, then maps are available for other threads to be

used. Only the thread that created photon maps can increase the counter from zero state.

The owner thread can decrease the corresponding counter to zero only if it is equal to

1 that means that no other thread is currently using these maps. To open and close the

access to the own backward photon maps at the beginning and end of the forward ray

tracing step the following algorithm is used:

1. Increase the own backward photon maps active thread counter by 1 with an atomic

increment operation. This would mark the own backward photon maps as ready to

be used during forward ray tracing step for indirect and caustic luminance calcula-

tion by other threads.

2. Proceed to the forward ray tracing along with indirect and caustic illumination cal-

culation using both own backward photon maps and backward photon maps of the

other threads that are open for access at the moment.

3. When the desired number of forward rays are traced and processed try to perform

the atomic compare-and-swap operation to decrease the own backward photon maps

active thread counter from 1 to 0.

a. If the compare-and-swap operation succeeds, then it means that the current thread

was the last one accessing these backward photon maps and new access is suc-

cessfully closed for other threads.

b. If the compare-and-swap operation fails it means that some other thread is still

accessing current backward photon maps and they cannot be closed at the mo-

ment. In this case more forward rays are traced and processed until this compare-

and-swap operation can be successfully completed.

As result the thread that created the backward photon maps performs the forward ray

tracing and processing until two conditions are fulfilled: first the desired number of

forward rays are traced and second the access to the own backward photon map can be

successfully closed. To guarantee that thread do not get stuck in the forward ray tracing

step the forward ray tracing step the thread stops using other backward photon maps

after the required number of forward rays is reached. The workflow of the algorithm of

opening ang closing an access to the own backward photon maps at the forward ray

tracing step is shown on the Fig. 6.

8 A. Zhdanov, D. Zhdanov

Fig. 6. Opening and closing the access to the own backward photon maps at the forward ray

tracing step.

The forward ray tracing step is also modified to account the indirect and caustic

luminance that might be formed in backward photon maps of the other threads that are

available at the moment of the forward ray tracing. To gain the access to the backward

photon maps of the other threads it should temporary increase the other thread’s

backward photon maps active thread counter to let it know that it is currently being

used. The following operations are performed:

1. First of all, it should check the required backward photon maps active thread counter.

If it is equal to zero, then maps are not available and should not be processed when

calculating the indirect and caustic luminance formed by the current ray.

2. If the backward photon maps active thread counter is more than zero, then try to

increment it by 1 with an atomic compare-and-swap operation.

3. If the compare-and-swap operation failed, then access was not granted, and this map

is ignored when processing current forward ray.

4. If the compare-and-swap operation was successful, that means that access to the

other thread’s backward photon maps was successfully granted.

5. If an access was granted, then intersection of forward ray with other thread’s back-

ward photon maps is analyzed and in case of success the indirect and caustic lumi-

nance are accounted in corresponding backward photons. Also, the forward ray is

accounted in the total energy processed by this backward photon map.

The Two-Level Semi-Synchronous Parallelization Method 9

6. After backward photon map processing is finished the corresponding backward pho-

ton maps active thread counter is decreased by 1 with an atomic decrement operation

to release the access.

All operations related to increasing the luminance accumulated in the backward photon

map and corresponding ray counters are implemented using solely atomic operations

to ensure correct luminance accumulation from concurrent threads. The workflow of

the forward ray tracing with accounting luminance in all available backward photon

maps is shown on the Fig. 7.

Fig. 7. The forward ray tracing with accounting luminance both in own backward photon maps

and in backward photon maps of other threads.

As result at the step when the forward ray tracing is performed the thread’s own

backward photon maps are available for other threads to accumulate indirect and caustic

luminance and all backward photon maps that are available at the moment of tracing

the forward ray are used to account the ray’s luminance. As only atomic operations are

used in the backward photon maps access algorithms no special synchronization

between threads is required that gives linear scalability of the rendering process when

10 A. Zhdanov, D. Zhdanov

increasing the number of cores. Due to the uniform task distribution between different

synchronous thread groups this overlapping is quite high and results in more effective

forward ray tracing along with indirect and caustic luminance accumulation.

3 Results

The presented parallelization method was implemented and integrated in Lumicept

light simulation software [15] and tested along with traditional synchronous and

asynchronous methods on the same PC with the 12 cores of the Intel Xeon 6230 CPU

and standard Cornell box scene. Ray tracing and processing speedup test results are

presented in Tables 1-3 and on Fig. 9. Corresponding rendering results are shown on

Fig. 8.

Fig. 8. Rendering results attained with synchronous, asynchronous and semi-synchronous

methods (from left to right) after 10 minutes.

Table 1. Test results for synchronous parallelization method.

Cores used 1 core 2 cores 4 cores 8 cores 12 cores

Forward rays 20689305 34199691 53129762 64440303 71715295

Backward paths 26788848 44482520 68986597 83987647 93785374

Speedup 1 1.66 2.57 3.13 3.49

Table 2. Test results for asynchronous parallelization method.

Cores used 1 core 2 cores 4 cores 8 cores 12 cores

Forward rays 20717568 34101290 89476702 220730378 315318894

Backward paths 26790396 44481495 72347407 102960933 120367282

Speedup 1 1.65 3.41 7.81 9.17

Table 3. Test results for semi-synchronous parallelization method.

Cores used 1 core 2 cores 4 cores 8 cores 12 cores

Forward rays 20647944 53498805 120166069 220579897 338469540

Backward paths 26859521 43273242 55467718 72378193 93121907

Speedup 1 2.03 3.7 6.17 9.08

The Two-Level Semi-Synchronous Parallelization Method 11

Fig. 9. Comparison of test results for synchronous, asynchronous and semi-synchronous paral-

lelization methods.

As it can be seen the proposed approach have the same linear scalability of traced and

process rays with the asynchronous calculation. After 10 minutes of calculations with

the Cornell box test scene the synchronous calculations method achieved the accuracy

of 3.9%, asynchronous calculation achieved the accuracy of 5.1% and the proposed

semi-synchronous calculations achieved the accuracy of 2.6% as result of more effec-

tive usage of the backward photon maps formed by different computation threads.

The similar acceleration was achieved not only on Cornell box test scene, but also

on scenes with light guiding optical systems, scenes containing volume scattering and

others. Corresponding test scenes rendered images are shown on Fig. 10.

Fig. 10. Light guiding optical systems and volume scattering test scenes.

4 Conclusion

The developed two-level semi-synchronous parallelization method for the caustic and

indirect luminance calculation can significantly increase the efficiency of calculating

these luminance components on multicore systems. This approach allowed us to in-

crease the rendering efficiency in non-parallelizable or poorly parallelizable algorithm

sections and, when using small number of lower-level computation threads, to achieve

12 A. Zhdanov, D. Zhdanov

an almost linear dependence of the rendering performance on the number of cores used.

In addition, two-level semi-synchronous parallelization allows reducing the size of the

backward photon maps in the upper-level threads, which makes it possible to speed up

the process of maps voxelization and search of intersections with traced rays. The de-

veloped approach can be used as a part of a distributed rendering system, providing

high performance on a remote server service.

References

1. Jensen, H. W.: Global illumination using photon maps. In: Proceedings of the eurographics

workshop on Rendering techniques ’96, pp. 21–30. Springer-Verlag, London, UK (1996).

2. Kang, C. et al:. A survey of photon mapping state-of-the-art research and future challenges.

In: Frontiers Inf Technol Electronic Vol 17, pp. 185–199. (2016).

3. Wald, I.: Embree ray tracing kernels: overview and new features. In: SIGGRAPH’16, New

York, NY, USA, Art. 52. (2016).

4. Frolov, V.A.: Examination of the Nvidia RTX. In: Proceedings of Computer Graphics and

Vision 2019, pp. 7-12. Bryansk, Russia. (2019).

5. He, H., Wang, T., Xu, Q., Xing, Y.: Multi-core Parallel of Photon Mapping In: Visual Infor-

mation Communication, pp. 365-374, Springer, Boston, MA (2009).

6. Gunther, T., Grosch, T.: Distributed Out-of-Core Stochastic Progressive Photon Mapping. In:

Computer Graphics Forum, vol. 33, pp. 154-166. (2014).

7. Schregle, R., Grobe, L.O., Wittkopf, S.: An out-of-core photon mapping approach to daylight

coefficients. In: Journal of Building Performance Simulation 9:6, pp. 620-632. (2016).

8. Carlberg, K.: Stochastic Progressive Photon Mapping Using Parallel Hashing. Lund Univer-

sity, Sweden. (2011).

9. Fabianowski, B.: Interactive Manycore Photon Mapping. University of Dublin, Irleand.

(2011).

10. Günther, J., Waldy, I., Slusallek, P.: Realtime Caustics Using Distributed Photon Mapping.

In: Proceedings of the 15th Eurographics Workshop on Rendering Techniques, Norkoping,

Sweden. (2004).

11. Jacobsson, M.: Distributed Progressive Photon Mapping. Lund University, Sweden. (2014).

12. Hachisuka, T., Jensen, H. W.: Stochastic Progressive Photon Mapping. In: Proceedings of

SIGGRAPH Asia '09, Nr. 41, pp. 1-8, New York, NY, USA. (2009).

13. Havran, V., Herzog, G., Seidel, H.-P.: Fast Final Gathering via Reverse Photon Mapping. In:

Proceedings of the Eurographics 2005, Vol. 24, Nr. 5, pp. 323-333. Blackwell Publishing,

Oxford, UK (2005).

14. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing

capabilities. In: Proceedings of the April 18-20, 1967, spring joint computer conference

(AFIPS ’67 (Spring)), pp. 483–485. New York, NY, USA (1967).

15. Lumicept – Hybrid Light Simulation Software, http://www.integra.jp/en, last accessed

2020/07/01.

http://www.integra.jp/en

