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Abstract. Atmospheric composition sensors provide a huge amount of data.
A key component of trace gas retrieval algorithms are radiative transfer mod-
els (RTMs), which are used to simulate the spectral radiances in the absorption
bands. Accurate RTMs based on line-by-line techniques are time-consuming. In
this paper we analyze the efficiency of the cluster low-streams regression (CLSR)
technique to accelerate computations in the absorption bands. The idea of the
CLRS method is to use the fast two-stream RTM model in conjunction with the
line-by-line model and then to refine the results by constructing the regression
model between two- and multi-stream RTMs. The CLSR method is applied to
the Hartley-Huggins, O2 A-, water vapour and CO2 bands for the clear sky and
several aerosol types. The median error of the CLSR method is below 0.001 %,
the interquartile range (IQR) is below 0.1 %, while the performance enhancement
is two orders of magnitude.
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1 Introduction

The information about the atmospheric trace gases can be retrieved from the spectral
radiances measured at the top of the atmosphere. The key component of atmospheric
retrieval algorithms are the radiative transfer models (RTMs). Accurate simulations in
the absorption bands are based on the so called line-by-line (LBL) model [1], which
requires thousands of monochromatic RTM computations per absorption band due to
strong spectral variability of the absorption coefficient. Alternatives to computationally
expensive LBL models are the k-distribution method [2, 3] and the principal component
analysis (PCA)-based RTMs [4–9], in which the redundancies in hyper-spectral data are
eliminated and the spectrum can be computed by using a small number of RTM calls.
These methods are reviewed in [10].
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In our recent work [11], the Cluster Low-Streams Regression (CLSR) method was
developed to accelerate hyper-spectral computations. The idea of the CLSR method
is to perform LBL computations by using a fast two-stream RTM and then to refine
results by using the correlation model for the two-stream and reference multi-stream
RTMs. This approach was applied to the O2A-band and the weak CO2 band for different
atmospheric scenarios. The results were compared with the PCA-based RTMs showing
an improvement over the last in terms of accuracy. Note that the idea of improving
accuracy of two-stream models was exploited in numerous theoretical studies (see e.g.
[12, 13] and references therein).

In this study, the CLSR method is extended to ozone Hartley-Huggins band and
the water vapour band in the ultra-violet and near infrared spectral ranges, respectively.
Additionally, the CLSR method is applied to several atmospheric models containing
different aerosol types.

2 Methodology

2.1 Data overview

We consider the computations of the reflected spectral radiances at the top of the at-
mosphere (TOA) in the Hartley-Huggins, O2A-, water vapour and CO2 bands. Table 1
summarizes the spectral bands examined with their corresponding spectral range, spec-
tral resolution and number of spectral points to be simulated. As a reference RTM,
we use the discrete ordinates with matrix exponential (DOME) method [14, 15]. The
number of discrete ordinates (streams) in the polar hemisphere Ndo regulates the com-
putational performance and accuracy. In the following, the model is called multi-stream
(MS) when Ndo ≥ 2 and low-stream (LS) otherwise. Following previous analysis in
[16], the multi-stream RTM with Ndo = 32 discrete ordinates is used as a reference
RTM.

The gaseous absorption coefficients for the O2A-, water vapour and CO2 bands
are computed with the LBL model Py4CAtS [17], while the ozone absorption cross-
sections in the Hartley-Huggins band are taken from the HITRAN 2016 database [18].
Rayleigh scattering is modeled as proposed in [19].

Table 1. Spectral ranges, spectral resolution and number of spectral points for the absorption
bands used in this study.

Band Spectral range Spectral resolution Number of
(nm) (nm) spectral points

Hartley-Huggins 280 — 335 0.0188 2932
O2A 755 — 775 0.0010 20000

Water vapour 770 — 1000 0.0058 40000
CO2 1590 — 1620 0.0015 20000

The atmosphere is discretized into 35 layers with a step of 1 km between 0 and
25 km, and a step of 2.5 km between 25 km and 50 km. For all the simulations, we
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assume a Lambertian surface with an albedo of 0.3. The solar zenith angle, the viewing
zenith angle and the relative azimuth angle are 45◦, 35◦ and 90◦, respectively.

The atmosphere can contain one of the aerosols from the OPAC database [20], op-
tical properties of which are summarized in Table 2 and Table 3 .

Table 2. Aerosol optical thickness (AOD) in the middle of the spectral range for the spectral
bands and aerosol types considered.

Aerosol type Hartley-Huggins O2A Water vapour CO2

(315 nm) (760 nm) (885 nm) (1610 nm)
Tropospheric 0.133 0.018 0.015 0.010

Continental clean 0.42 0.20 0.17 0.08
Urban 4.28 0.46 0.35 0.16
Desert 0.71 0.20 0.20 0.19

Continental polluted 2.4 1.2 0.9 0.4

Table 3. Single scattering albedo (SSA) for each spectral band and aerosol type.

Aerosol type Hartley-Huggins O2A Water vapour CO2

Tropospheric 0.950 0.947 0.942 0.936
Continental clean 0.959 0.962 0.959 0.958

Urban 0.940 0.935 0.929 0.913
Desert 0.932 0.953 0.950 0.945

Continental polluted 0.951 0.960 0.957 0.950

Figure 1 shows the radiance spectra computed by using the multi-stream and the
low-stream (i.e. two-stream) RTMs for the different absorption bands. The computa-
tions are perfomed using the LBL-framework. Note that both spectra have a similar
spectral behavior. Hence, it is possible to establish a regression model between the low-
and multi-stream radiances, which is a subject to the CLSR method considered further.

2.2 Cluster Low-Streams Regression (CLSR) method

The Cluster Low-Streams Regression (CLSR) method is described in detail in [11] and
can be summarized as follows:

First, let us consider a LBL spectrum {ILS(λi)}Ni=1 computed at N spectral points
{λi}Ni=1 by means of a low-stream RTM. We sort the radiances in ascending order
and consider C clusters in the sorted radiance set (with NC = N/C radiance points).
Secondly, we select n equidistant radiance points in each cluster and we compute the
multi-stream radiances for the corresponding wavelengths {IcMS,q}nq=1. Assuming that
in each cluster c there is a linear relationship between low- and multi-stream radiances,
we get
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Fig. 1. Top of the atmosphere radiances computed for the absorption bands: Hartley-Huggins, O2

A-, water vapour and CO2 bands for one aerosol case. Black lines correspond to the multi-stream
RTM while purple lines correspond to the two-stream RTM.

ÎcMS,i = αcT̂ c
i + βcÎcLS,i + γc, i = 1, ..., NC , (1)

where αc, βc and γc are the regression coefficients of the c-th cluster and T̂ is the
corresponding direct transmittance. Equation (1) can be also written as follows:

Y = A ·X (2)

with Y =
[
ÎcMS,i

]
, A = [αc, βc, γc] and X =

[
T̂ c

i , Î
c
LS,i, 1

]
. Finally, we find the

regression coefficients as a solution to the following least square problem:

A = argmin
A

n∑
q=1

[
I
c

MS,q − Y
]2
. (3)

In this way, we can restore the spectra of the multi-stream radiances {ĨMS,i}Ni=1. Here,
the “hat” notation Î refers to the sorted radiances, the “bar” notation I refers to the
equidistant radiances entering the regression model and the “tilde” notation Ĩ refers to
the predicted radiances. The total number of regression points, and thus the number of
calls to the multi-stream RTM, is nC. Note that unlike the k-distribution method, the
CLSR method provides a spectrum at the same spectral resolution as the LBL approach.
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3 Simulations

3.1 Simulations of the absorption bands by using the CLSR method for the clear
sky atmosphere

In this section we apply the CLSR method to simulate absorption bands. In addition to
O2A- and CO2 bands analyzed in [11], we consider Hartley-Huggins and water vapour
bands.

To estimate the accuracy of the CLSR method, we compute the residuals, the median
and interquartile range (IQR). The residual for the radiance is computed at each spectral
point λi as follows:

∆Ires,i =
ĨMS,i − IMS,i

Icont
MS

· 100, (4)

where ĨMS,i is the radiance calculated with the CLSR method (cf. Eq. (1)), while Icont
MS

is the radiance without absorption (i.e. the continuum radiance, which is used to avoid
radiance values close to zero in the denominator of Eq. (4), when strong gas absorption
is present [11, 7]).

Figure 2 shows the residuals of the CLSR method for different number of regression
points per cluster for the four bands considered.
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Fig. 2. Box plots of the residuals for the CLSR method for the clear sky scenario in the following
absorption bands: Hartley-Huggins, O2 A-, water vapour and CO2 bands. The orange and black
values on top of each box indicate the median values and the IQR values, respectively.

The residuals gradually decrease with the number of spectral points. In fact, they
are significantly reduced when switching from 1––2 to 3 regression points. Therefore,
the median values remain almost constant from 3 regression points. This trend is iden-
tical to the one found in [11] for different atmospheric scenarios. Note that the scale
of residuals for the water vapour band is one order of magnitude higher than for the
Hartley-Huggins, O2A- and CO2 bands.
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3.2 Application of the CLSR method in the case of aerosols: accuracy results

In our previous work, we applied the CLSR method to the O2A- and CO2 bands for sev-
eral atmospheric scenarios like aerosols and clouds at different heights and thicknesses.
In this paper we examine the application of the CLSR method for several aerosol types
and we extend the analysis to the Hartley-Huggins and water vapour bands. The com-
putations are performed for the aerosol types outlined in Section 2.1.

Figure 3 shows the residuals for four bands and 5 aerosol models.
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Fig. 3. Residuals for the CLSR method for the following absorption bands: Hartley-Huggins, O2

A-, water vapour and CO2 bands. The color of the boxes represents the type of aerosol: (grey)
tropospheric; (blue) continental clean; (red): urban; (green): desert; (yellow): polluted. Note the
different scale for the water vapour band compared with the other absorption bands.

Note that the residuals for the Hartley-Huggins, O2A- and CO2 bands are substan-
tially smaller than those for the water vapour band. However, the median residuals are
below 0.001 % and the results of the CLSR model are not biased.

In general, we conclude that the efficiency of the CLSR method is comparable to
that of alternative methods like PCA-based RTMs (e.g. [7]) and our previous studies
([11]).

3.3 Assessment of the CLSR computational efficiency

In this section we analyse the computational performance of the CLSR method. Table
4 shows the number of calls to two- and multi-stream RTMs, the computational time
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and the corresponding speedup factor with respect to the multi-stream LBL simulations
for the O2A-band. The computational time for monochromatic computations for the
TS RTM is tTS =1.6e-4 s, while for the MS RTM with Ndo = 32 discrete ordinates
per hemisphere is tMS =0.12 s, i.e., around three order of magnitude larger. However,
most of the computational burden is still due to the MS RTM, and the computations of
the approximate spectrum with a high spectral resolution by using the TS RTM is not
a performance bottleneck in the whole CLSR processing chain. The results show that
using the matrix of coefficients X with 5 clusters and 4 regression points for the CLSR
method is 420 faster than using the LBL model. The speedup factor is of the same order
of magnitude as in [21].

Table 4. Summary of number of calls, computational time and speedup factors for the O2A-band
with LBL and CLSR methods.

LBL CLSR
Number of calls to MS RTM 20000 20
Number of calls to TS RTM 0 20000

Time for MS RTM (s) 2320 2.32
Time for TS RTM (s) 0 3.20

Total computational time (s) 2320 5.52
Speedup factor — 420

4 Conclusions

In this study, we have analysed the efficiency of the Cluster Low-Streams Regression
(CLSR) method to accelerate spectral computations in several absorption bands. The
CLSR method exploits the linear relationship between the low-stream and multi-stream
models, where the corresponding regression coefficients are found by using the least-
squares method. In our simulations several OPAC aerosol models have been considered.
We reproduced the spectra with a median error below 0.001 % as compared to the
reference multi-stream line-by-line model and IQR values below 0.1%. Thus, the errors
present low variation and stability.

The number of calls to the multi-stream model was reduced by 3 orders of magni-
tude (e.g. from 20000 to 20 calls in the case of O2A-band). The resulting performance
enhancement is about 400 times. Note, that since the CLSR method is two orders of
magnitude faster than the LBL model, it can be used for computations of the aerosol
spectra in near-real-time applications.

In our future work, we plan to extend the CLSR method by using the asymptotic
radiative transfer theory [22] and the diffuse approximation [23] instead of the two-
stream RTM. Also it is of high interest to apply the CLSR method for modelling of the
Stokes parameters.
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