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Existence of mild solution for stochastic differential
equations with fractional derivative driven by
multiplicative noise
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Abstract

This paper focuses on the study of the existence of a mild solution to time and space-fractional stochas-
tic equation perturbed by multiplicative white noise. The required results are obtained by means of
Krasnoselskii’s fixed point theorem.
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1. Introduction

In this paper, we are interested in the existence of solutions for nonlinear fractional difference
equations
‘Di[u-h(u)]=Au()+u-Vu+g(u)W(t), xe€D,t>0, (1)

subject to the initial condition
u(x,0)=uy(x), x€D, t=0, (2)
and the Dirichlet boundary conditions
u(x,t) =0, x € 9D, (3)

where D ¢ RY, u (x, t) represents the velocity field of the fluid, the state u (-) takes values in a
separable real Hilbert space H with inner product<-, - ), the term g (u) W (t) = % W (t) describes
a state dependent random noise, where W (t);c[o 77 is @ F;—adapted Wiener process defined
in completed probability space (Q, F, P) with expectaction E and associate with the normal
filtration F; = o {W (s) : 0 = s < t}. The operator A is the Laplacian. Here, °D{ denotes the
Caputo type derivative of order (0 < a < 1) for the function u (x, t)with respect time t which
is defined by

_ 1 t Ju(x,s) d
CD?u(X’ t) T T(1-a) /0 ds (t—::)“’ O<a<1, (4)
du(x,t) a=1
at bl b
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where T'(-) stands for the Gamma function.

The existence and non-existence of solutions for the Navier-Stokes equations (NSEs) have
been discussed in [13]. Chemin et al. [5] studied the global regularity for the large solutions
to the NSEs. Miura [19] focused on the uniqueness of mild solutions to the NSEs. Germain
[9] presented the uniqueness criteria for the solutions of the Cauchy problem associated to the
NSEs. However, The existence and uniqueness of solutions for the stochastic Navier-Stokes
equations (SNSEs) with multiplicative Gaussian noise were proved in [8], [20]. The large de-
viation principle for SNSEs with multiplicative noise had been established in [23], [27], [31],
[32]. Just mention a few, the study of time-fractional Navier-Stokes equations has become a
hot topic of research due to its significant role in simulating the anomalous diffusion in fractal
media [12], [16], [33].

There has been a widespread interest during the last decade in constructing a stochastic
integration theory with respect to fractional Brownian motion (FBM) and solving stochastic
differential equations driven by FBM. On the other hand, time-fractional differential equations
are found to be quite effective in modelling anomalous diffusion processes as its can charac-
terize the long memory processes [22], [25], [28], [29], [30]. Hence, Burgers equation with
time-fractional can be adapted to describe the memory effect of the wall friction through the
boundary layer [35]. Furthermore, the analytical solutions of the time- and space-fractional
Burgers equations have been investigated by variational iteration method [11] and Adomian
decomposition method [21].

The existence of solution for partial neutral integro-differential equation with infinite delay
in infinite dimensional spaces has been extensively studied by many authors. Ezzinbi and al.
[7] investigated the existence and regularity of solutions for some partial functional integro-
differential equations in Banach spaces. Cui and Yan [4] investigated the existence of mild
solutions for a class of fractional neutral stochastic integro-differential equations with infinite
delay in Hilbert spaces by means of Sadovskii’s fixed point theorem and in another paper [1],
Balasubramaniam et al. discussed the existence of mild and strong solutions of semilinear neu-
tral functional differential evolution equations with nonlocal conditions by using fractional
power of operators and Krasnoselskii fixed point theorem, Djourdem and Bouteraa [6] studied
the existence of a mild solution to time and space-fractional stochastic equation perturbed by
multiplicative with noise via Sadovskii’s fixed point theorem. In particular, the stability theory
of stochastic differential equations has been popularly applied in variety fields of science and
technology. Several authors have established the stability results of mild solutions for these
equations by using various techniques, we refer the reader to [2], [10], [17], [26].

The main contribution of this paper is to establish the existence of mild solution for the prob-
lem (1)-(3). Using mainly the Krasnoselskii’s fixed point theorem. The rest f paper organised as
follows, In Section 2, we will introduce some notations and preliminaries, which play a crucial
role in our theorem analysis. In Section 3, the existence results on a mild solutions are derived.



2. Preliminaries

In this section, we give some notions and certain important preliminaries, which will be used
in the subsequent discussions. Let (Q, F, P, {F},.,) be a filtered probability space with a normal
filtration, where P is a probability measure on (Q, F) and F is the Borel o-algebra . Let {F},.,
satisfying that Fy contains all P-null sets. Theoperator A is the infinitesimal generator of a
strongly continuous semigroup on a separable real Hilbert space H.
Denote the basic functional space L (D), 1 < p < oo and H* (D) by the usual Lebesgue and
Sobolev space, respectively. We assume that A is the negative Laplacian —A in a bounded
domain with zero Dirichlet boundary conditions in Hilbert space H = L? (D), which are given
by

A =-2, D(A) = Hy (D) n H*(D),
since the operator A is self-adjoint, i.e., there exist the eigenvectors ey corresponding to eigen-
values Ay such that

Aep = Areg, e = \/Esin (kﬂ'), A = 7T2k2, ke N*.

For any ¢ > 0, let H? be the domain of the fractional power Az = (—A)%, which can be
defined by

c>0, Ale = Yiew k=1,2,..

and

H° =D (A?) = [veL2 (D), s.t. |vfe = Zyk%v,% < oo},
k=1

where vy = (v, ey with the inner product ¢, - in L2 (D), the norm |H° v| = ”A% v ‘ the bilinear

operator B(u, v) = u- Vv and D (B) = Hj (D) with the slight abuse of notation B(u) = B(u, u).
Then we can rewrite the equation (1)-(3) as follows in the abstract form

‘Df [u(t) - h(u(t)] = Au(t) + B(u(t) + g (u(t) %, t>0, 5)
u(0) = o,

where { W (t), t = 0} is a Q-Wiener process with linear bounded covarience operator Q such

that a trace class operator Q denote Tr(Q) = Y, Ax < oo, which satisfies that Qe = Axex, k =
k=1
1,2,..., then the Wiener process is given by

W (1) = Y A (1) ex,
k=1
where {fi}7.; is a sequence of real-valued standard Brownian motions.

Let L2 = L? <Q% (H),H ) be a Hilbert-Schmidt space of operators from Q% (H) to H with the

norm .
00 2
1
we = | 29Q e )
n=1

I3 = |$Q*



ie.,

(o8]

L§={¢EL(H) Y

n=1

2¢Ot e,

2
<o,

where L (H) is the space of bounded linear operators from H to H.
For an arbitrary Banach space B, we denote

1
19l o, = (E ||v||§)f’ , Yo € LP(Q,F,P,B), for any p = 2.

We shall also need the following result with respect to the operator A (see [28]).
For any v > 0, an analytic semigroup T (t) = e*4, t > 0 is generated by the operator A on
L?, there exists a constant C, dependent on v such that

AT (D)l ey < Cot™", £ >0,

in which L (B) denotes the Banach space of all bounded operators from B to itself.

Next we will introduce the following lemma to estimate the stochastic integrals, which con-
tains the Burkhoder-Davis-Gundy’s inequality.

[15] Forany 0 < #; < t = T and p = 2 and for any predictable stochastic process v
[0, T] x Q — L2 which satisfies

P
T 2
|[ [ 1o ds| | <.
0

then, we have
t P t g
B[ [ v0aw )| | < coE|| [0k ds
151

151

Ispired by the definition of the mild solution to the time-fractional differential equations (see
[24], [34]), we give the following definition of mild solution for our time-fractional stochastic
equation.

An F;-adapted stochastic process (u(t), t € [0, T]) is called a mild solution to (5) if the fol-
lowing integral equation is satisfied

t

u(t) = Eq (t) ug + h (u(1)) + / (t=9)"" Eqq(t - 5)B(u(s)) ds

0

; / (t = % B (£~ 9) g (u(9) AW (5), ©)
0



where the generalized Mittag-Leffler operators E, (t) and E, , (t) are defined, respectively, by

E,(t) = /gaw) T (t°0) dO,
0

and

Epo(t) = /a@{a (0) T (t*6) do,
0

where T (t) = ¢4, t = 0 is an analytic semi group generated by the operator -A and the
Mainardi’s Wright-type function with « € (0, 1) is given by

& (ke
o () = ;)k!r(l -a(l1+k)

[3] For any « € (0,1) and -1 < v < oo, it is not difficult to verity that

r'(1+v)

. (0) = 0 and /0 0", (0)d = Fir o)

for all 6 = 0.

The operators and {E, (t)},., and {Ey 4 (t)},., in (7) have the following properties.

For any E, (¢) and E, , (t) are linear and bounded operators. Moreover, for 0 < ¢ < 1 and
0 = v < 2, there exists a constant C > 0 such that E, (¢) and E, , (t) are defined, respectively, by

1Ee ) Xl = CE2 Ixls  |Eae ) xlge = CEF 11l ®)

For T > 0 and 0 < v < 2, by means of Lemma 2 and Lemma 2, we have

|Ea (6) i = / L (0)|A, T (1%6) y] d6

0

- / Cot %672, (6) Il 6
0

Cvr(l—V) _av 2
=——’¢ L* (D),
F(l _ 0{1/) 2 ”X”’ X E ( )

and

o]

wos [ @0l @IAT (1 0)x] 0

0

|Eae (£) x

- / Coat™% 072, (6) 1] d6
0



Cool'(2-V) _av 5
=———1 2 , € L* (D),
Fan Tl xerto)

so, E, (t) and E, , (#) are linear and bounded operators. The proof is completed.

For any t > 0, the operators E, (¢) and E, 4 (t) are strongly continuous. Moreover, for 0 <
a<land0<v<2and0=<t <1 < T, there exists a constant C > 0 such that

I(Ea (t2) = Eo (1) v = C (2= 1) % |1, (9)

and

(B (82) = e (00) gy = C (22 = 1) % ] (10)
Forany 0 < Ty = #; < t; = T, it iseasy to deduce that

/ dT (t*0
/ ;t )dt=T(tge)-T(t{’)

5]

Iy

= /at“leAT(t“G) dt,
31

and by (7) and Lemma 2, we have

| (22) = o (1)) Xl v = [Av (Ba (12) = Eo (1)) X|

/ Lo (0) A, (T(16)~ T (1)) xdo

Iy

< / a0, (0) / 1% | Agey T (£90) x| 2 dtd6

0 151
00 tZ
. / Coal3 2, (0) / 1 dt ] d6
0 h
_26I0-g) (* 57 ) I
v l—ﬂ
zcr( —;)
—t 5 €L2 D).
< Ty e xe P @)

Also

HY = “Av (Ea,a (tZ) - Ea,a (tl)))(”

(o8]

= /a@{a(G)AV(T(tge)—T(tf)))(d@

0

||(Ea,0( (tZ) - Ea,(x (tl)




oo 2]

< / a2, (0) / 1% | Agey T (£96) x| 2 dd0
0 151

ty

aﬂw*%a®_[f?*mumd0

151

=

=~

- -7 g7
Ty s )

(- t)? |xl, x € L*(D).

It is obviously to see that the term

||(Ea (tZ) - Ea (tl))X"HV - 0,

and

||(E(x,a (tZ) - Ea,a (tl))X

as t; — t; which mean that the operators E, (t) and E, , (t) are strongly continuous.

Hv_)oa

3. Existence results

In this section, we present our main results on the existence of mild solutions of problem (5)
and we define the following space

K=ju: u€C(0,T],H"), sup |u|<oo.
t€[0,T]

To do this, we make the following hypotheses:

(Hp) A is the infinitesimal generator of a strongly continuous semigroup {7 (t), ¢t = 0} on H.
We will also suppose that the operator E, (t), t > 0 is compact.

(H;) The functiong : QxH — L3 satisfies the following global Lipshitz and growth conditions:

lg (V)zz = Clul, lg (W) - g(@)lz = Clu-1],
foranyu€ H, ve H.
(Hs) The initial value uy : Q — H" is a Fy— measurable random variable, it hold that

luolliepvy < 00, forany 0<v<a<2.
(Hy) The function h : L3 — L2 is continuous and there exists L, > 0 such that

Efh (un (1) = h (o (9)[8y = L (8) = wo ()5, £ €00, ], w, o € I3,



and
E||h(u(t))||f(z) < LiEJu (), , t€[0,T], ue L

12
(Hs) Let C > 0 be a real number, then the bounded bilinear operator B : L?(D) — H™! (D)
satisfies the following properties

IB (@)l = Clul?,

and
|B(u) - B(v)|g-+ < C(Jul + [v]) |u- 2],

for any u, v € L? (D).
Our main results is based on the following Krasnoselskii fixed points theorem [14]. [14] Let
X be a Banach space, C a closed, bounded, convex and nonemty subset of X. Consider the
operators F; and F, such that
(i) Fiu + F,v € C whenever u, v € C,
(iii) Fy is a contraction mapping.
(ii) F, is compact and continuous.
Then there exists z € C such that z = Fiz + Fz.

In the proof of main result, we need the following Lemmas. Assume that conditions (H;) and
(Hz) hold. Let ®; and ®; be two operators defined respectively for each u € K by

&y (u) = / (t = 9% Eag (¢ - 5) B(u(s) ds,
0
(11)

t

D, (u) = /Sa(t— $)f(u(s))dW(s).

0

Then ®; and @, are continuous and map K into itself.
It is obvious that &4 is continuous. Next we show that &; (K) < K. By (H;) and (H,), from the
equation (11) and by applying Holder inequality, we have

P

E|(@1u) (1)l = E

[ (=97 Aibua (- 9 AvsB(u(s) ds
0 HY

t p-1

a-1

() t
ool [ as| [ EllaB@or] ds

0
t

2(p- 1)) e
< CPC, [p_z} (T) O/E[Ilu(t)llp ]

=1 [ E[lul] ds , (12)
/



where y; = CPC, [Z(p 1)] (T) > . This complete the proof.

By using also the Holder inequality and Lemma 2, we obtain

P
E|(@:u) (1)l = E

/Yr»f*amu-»gwu»mvw
0

HV

p

2

< C(p)E erww*mﬂa—wﬁm@umgw
0

p2
2 t

maj/tﬂ>w /EM@Wst

0 0

p—2
SC@“$<p@a—n—2>

pz ot
2

/EM@Wst

0

=y [ E[lu()lf] ds, (13)
/

p=2
2

where y, = C(p) CECP [ % 2]
That is @, (K) c K.
Assume that conditions (H;) and (Hy) hold. Let @5 be the operator defined by for each u € K

(Dsu) () = Eq (t) up + h (u(t)).

Then &5 is continuous and maps K into K. The continuity of ®; follows from (Hy).
Next, we show that ®; (Y) ¢ Y . By (H;), (Hs) and from (13), we have

E[(@3u) (DI}, < E[h (u (@I}, = LiE Ju (D]},

So, we conclude @53 (K) c K.
Assume that conditions (H;) and (H,) hold. Then

E[IEa (t) uol ] = E [Juol ]

By Lemma 2, we have

wawM<E/@qunme§



<E

/ $a (0) <i <Ave_ta9Au0s en>2> do
0

n=1

* 00 v 2 %
<E /ga(e)(z Avuo,e-f““rf,en> > do
0 n=1

(o8]

/ Lo (0) [olrs 40

0

<E = E [Juo|p+]-

First, we defineamap F : K — C([0,T],H") in the following manner: for any u € K,

(Fu)(t) = / (t =) Egq(t—s)B(u(s))ds + / (t =) Egq (t—s)f(u(s)) dW (s)
0 0
+Eqo (B) uo (s) + h (u(t)).

Now, we set F = F; + 5, where

(Fru) (1) = Eq (8) ug (s) + h (u(2)),

and

t

(Fpu) (1) = /(t = 8)" " Ega (t =) B(u(s) ds + / (t= )" Eqe (t = 5) f (u(s) dW (),
0

0

for t € [0, T].
Assume (H,), (Hy), (Hs) holdand 0 < v < a < 2, p = 2, Then

E|Ey (t2) - Eo ()5 = C2, (8~ 1) ® Euo]? .

We set
Iy = Fi () - F1 (t1) = Eq (2) uo — Eo (t2) to

For any p = 2, by vertue of Lemma 2, it follows that
E [In]f.] = E [AEa (t2) to - Ea (12) wl’]

< Ch, (- 1) % Eful’.

It is obviously to see that the term ||(F; (t2) - F; (1))]y — 0 as t; — t; which mean that the
operators Fj is strongly continuous.

Assume (H,), (Hy), (Hs) hold and 0 < v < @ = 2, p = 2, then the operator F, is uniformly
bounded.



From Lemma 11, using the estimate (12) and by means of extension of Gronwall’s lemma,
we have

sup E[|B(u)|f.] = o,
te[0,T]

that is the operator F, is uniformly bounded.

Assume (H;), (Hy), (Hs) hold and 0 < v < a < 2, p = 2. Then the operator F; is equicontinu-
ous.

Forany 0 < t; < t; = T, from

(Fyu) (1)  (Fyw) (1) = / (ty = " Bt (s - 9) B(u(s)) ds
0

4

- / (t = ) Euq (1 - 5) B(u(s)) ds + / (ty = 9 Eua (1 - 5) g (w) W (5).
0

0
- / (t - s)”‘_1 Eva(ti—-5)g(uw)dW (s)=L + 5, (14)
0
where
L= [ (-5)""Egaltz-s)B(u(s))ds— [ (ti =) " Enq(t1 - 5)B(u)d(s)
/ [
- / (t1 = 9 [Ea (12 — 8) ~ Eua (11 — )] B(u(s)) ds
0
. / [t - 9 (1~ 9] Euat (1 — ) B(u(s)) ds
0
. / (s~ ) Eqa (1 - 5) B(u(s)) ds
= 121 + 122 + 123, (15)
and

ty 51

L= /(tz - )%t Egpo(ty—s)f(u(s)dWs- / (t — 5)*! Ego(ti = s)f(u)dW (s)

0 0

4

- / (t = " [Ene (t2 = 8) = Eaa (s - 9] f (u(s)) AW (5)

0



o = 9~ (1 9] Bua (1 - 9) f (u(s) W ()
0
+/arwv*@ﬂm—9fw@»mvw

31

= 131 + 132 + 133. (16)
For the first term I; in (15), applying the assumptions (Hs) and Lemma 2 and Holder inequality,
we have

1

P
E[|Ealfn] = E /(tl = 8)* " [Ena (82 - 5) = Eng (t = $)] B(u(s)) ds
: t p-1 t
d%m—ﬁw% M-MWW% E[lAB@)]ds (17
/ /

— 1 P’l a(v+1)
screp, 1 (L= ) (Csup E[luf] ) -0
pa-1 t€[0,T]

Using the assumptions (Hs) and Lemma 2 and Holder inequality, we have

5}

/{@—9*h«n—¢“]mexa—MBwu»w

0

P
E[|Balfy] = E

151

p-1

0
t (19)
< [ EllaB@oN ] ds
0
p-1
sorapr| Lo (Csup E[lw o] ) -
P (a _ @) te[0,T]

and



ty P

/ (ty = ) Ay (1 — 9) B(u(s)) ds

31

E [ILslf.] = E

iy p-1 Iy

_q1_a(v+l)

e / (ty - - ds / E[JAsBu()I,] ds (19)
151 31
p-1

-1 pa(1-v)

< creh|——F sup E [l 5] ) (6 - )5
p(a— M) “1| \eeon

Next, by following similar arguments as in the proof of (17)-(19) and using Lemma 2 there
holds,

P

E[|Bit.] =

/(tl—s 1 Eoo(ts—8)—Ego(t1 = 8)]f (u(s))dWs

P
2

C(p)E

/ |t~ 9% A [ (12~ 9) = Eae (- 9| If (w DI ds]

0

p-2
2 h

151
c<p>c§v<rz—t1>"?"[/ (tl_s)wds] / ENf (u(s)), ds
0

0
2pa—p-1 p-1 >P_1 pav
) ) I sup E{|Ju(s)|P| )(t2-1) 2, (20)
(2pa “p-2 tE[O,pT] [|| O] ] 2~ 1)

P

and

E[|B|f] = E / (= 9" = (t1 = 9| [AvEa (t2 - 8)] f (u(s)) dWs

Lo

S1as

51

e [ /

0

[(12 = 9" (0~ 9] [AvEaa (12~ )] If (w (oD ds]

:

P2
2
2p

2

/ (t, _ )@l 8 1] (t2_3)7}p
0

< C(p)CP




< [ £l @t @
0

p-2
2(p-2) z
< PCPT
G <2pa<z—v>—z<p+z>>
2pa(2-v)-2(p+2)
x ( sup E [Ilu(t)llf’]> (b-t) &, (21)
te[0,T]
and
2] P

E[|Bs)f ] = E / (ty = )" AyEqq (1 - ) B(u(s)) ds

151

P
2

= C(pE

/10(1‘2 = 8) "V AVEyq (t - S)HZ |V(u(s))||zz) ds]
0

/tz(tz - S)alazv]

31

p=2
2

= C(p)CE

. / E [If (w (I | ds

2(p-2) 7 pa-)-2p
= C(p)CPch <2pa Z-v-20+ 2)> <££,%E [Ilu(t)ll”]> (t - 11) . (22

Taking expectation on the both side of (14) and in view of estimates (15) and (17) - (22), we
conclude that

|(Fau) (t2) = (Fow) (W)l ppomry < C (2 = 1),

where Yy = min { %’ aP(lzfpV)*Z, 2P0t(2*2;2(]7+2)} when 0 < -t <1
Otherwise, if t, - t; = 1, then we set y = max { a(V;l), a(2—2v—1), Zp“(z)v)_z” }

Assume the conditions (H;) and (H) hold. Then F maps K into itself.
Let the nonlinear operator F defined by, for ¢ = 0,

i

(Fu) (t) = Eq (t) up + h (u (1)) + / (t=9)"" Eqq (t - 5)B(u(s)) ds

0

i

+ / (t=5)*" " Epq(t—s)g(u)dW(s).

0



We prove that the operator F has a fixed point, which is a mild solution of the problem (1)-(2).
We shall employ Theorem 3. For better readability, we divide the proof into two steps.

Stepl. F : Y — C([0,T],H?) is continuous. Let {u,(t)},., with u, — u (n — ) in
Y. Then there is a number r > 0 such that E|u, (t)|5, < r for all n and a.e. t € [0, T], so

U, € B,(0,Y)=qu€Y : sup |u|go r and u € B, (0, Y). By the assumptions (H;) and similar
t€[0,T]

argument to obtain (12) and (13), we have
E |(Fun) (t) - (Fu) (4)|
< 377 | (un (1)) = B (u (D)l + 3P E @ (un (1) = u (D)

+ 3PLE |y (un (1) = u ()3

= 37 (ua (D) = h (w (D)l + 377 (Gy1 + K ) /E”un - ulfy ds|.
0

Then, we have for all ¢ € [0, T],
|Fu, - Ful, — 0, as n — oo.

Therefore F is continuous.
Step 2. We decompose F as F = F; + F, where F; and F, defined above.

(1) F, is a contraction on Y. Let u, v € Y. It follows from Lemma 3 that
E|Fiu~Fiof < LiE|u(s) - v ()l

< Ly, sup E|u(s) - v(s)ds|,
s€[0,T]
< L Ju(s) - v(s) dslfy
Taking supremum over ¢

|Fru — Fioff = Lo Ju(s) - v (s)]y

where Ly = Ly, < 1.
Hence F] is a contraction on Y.

(2) F; is compact operator. Let u, v € Y. It follows from (H,), (Hs) and Lemma 3 that

t 2

/ (£ ) B (1 5) Ay [g (u(5)) - g (0 ()] W (5)

0

E|Fu - Foul%, < 2°7'E

HY

t P

/(t = )" Eqe (t = 5) Ay [B(u(s) - B(v(s))] ds

0

+2P71E

HY



t
=(n+pE /nu—vuzv s,
0

which implies
sup E|Fu-Folf = (11 + v2) sup Elu-off..
t€[0,T] t€[0,T]

Since 0 < L = y; + y2 < 1, then F is contraction maping on Y.

From Lemma 3 and Lemma 3, the operator F, is relatively compact. together with Ascoli’s
theorem, we conclude that the operator F; is compact.
In view of Theorem 3, we conclude that F has at least one fixed point, which is a mild solution

of the problem (1)-(2).
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