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Abstract
We present a pragmatic approach to extending a Boolean-free higher-order superposition calculus to

support Boolean reasoning. Our approach extends inference rules that have been used only in a first-

order setting, uses some well-known rules previously implemented in higher-order provers, as well as

new rules. We have implemented the approach in the Zipperposition theorem prover. The evaluation

shows highly competitive performance of our approach and clear improvement over previous techniques.
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1. Introduction

In the last decades, automatic theorem provers have been used successfully as backends to

“hammers” in proof assistants [1, 2] and to software verifiers [3]. Most advanced provers, such as

CVC4 [4], E [5], and Vampire [6], are based on first-order logic, whereas most frontends that use

them are based on versions of higher-order logic. Thus, there is a large gap in expressiveness

between front- and backends. This gap is bridged using well-known translations from higher-

order to first-order logic [7, 8]. However, translations are usually less efficient than native

support [9, 10, 11]. The distinguishing features of higher-order logic used by proof assistants

that the translation must eliminate include 𝜆-binders, function extensionality – the property that

functions are equal if they agree on every argument, described by the axiom @p𝑥, 𝑦 : 𝜏 Ñ 𝜈q.
p@p𝑧 : 𝜏q. 𝑥 𝑧 « 𝑦 𝑧q ñ 𝑥 « 𝑦, and formulas occurring as arguments of function symbols [8].

A group of authors including Vukmirović [10] recently designed a complete calculus for

extensional Boolean-free higher-order logic. This calculus is an extension of superposition,

the calculus used in most successful provers such as E or Vampire. The extension removes the

need to translate the first two above mentioned features of higher-order logic. Kotelnikov et al.

[12, 13] extended the language of first-order logic to support the third feature of higher-order

logic that requires translation. They described two approaches: one based on calculus-level

treatment of Booleans and the other, which requires no changes to the calculus, based on

preprocessing.
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To fully bridge the gap between higher-order and first-order tools, we combine the two

approaches: we use the efficient higher-order superposition calculus and extend it with inference

rules that reason with Boolean terms. In early work, Kotelnikov et al. [12] have described a

FOOL paramodulation rule that, under some order requirements, removes the need for the axiom

describing the Boolean domain – @p𝑝 : 𝑜q. 𝑝 « J _ 𝑝 « K. In this approach, it is assumed that

a problem with formulas occurring as arguments of symbols is translated to first-order logic.

The backbone of our approach is based on an extension of this rule to higher-order logic.

Namely, we do not translate away any Boolean structure that is nested inside non-Boolean

terms and allow our rule to hoist the nested Booleans to the literal level. Then, we clausify the

resulting formula (i.e., a clause that contains formulas in literals) using a new rule.

An important feature that we inherit by building on top of Bentkamp et al. [10] is support

for (function) extensionality. Moving to higher-order logic with Booleans also means that we

need to consider Boolean extensionality: @p𝑝 : 𝑜qp𝑞 : 𝑜q. p𝑝ô 𝑞q ñ 𝑝 « 𝑞. We extend the rules

of Bentkamp et al. that treat function extensionality to support Boolean extensionality as well.

Rules that extend the two orthogonal approaches form the basis of our support for Boolean

reasoning (Section 3). In addition, we have implemented rules that are inspired by the ones

used in the higher-order provers Leo-III [14] and Satallax [15], such as elimination of Leibniz

equality, primitive instantiation and treatment of choice operator [16]. We have also designed

new rules that use higher-order unification to resolve Boolean formulas that are hoisted to literal

level, delay clausification of non-atomic literals, reason about formulas under 𝜆-binders, and

many others. Even though the rules we use are inspired by the ones of refutationally complete

higher-order provers, we do not guarantee completeness of our extension of 𝜆-superposition.

We compare our native approach with two alternatives based on preprocessing (Section 4).

First, we compare it to an axiomatization of the theory of Booleans. Second, inspired by work

of Kotelnikov et al. [13], we implemented the preprocessing approach that does not require

introduction of Boolean axioms. We also discuss some examples, coming from TPTP [17], that

illustrate advantages and disadvantages of our approach (Section 5).

Our approach is implemented in the Zipperposition theorem prover [18, 19]. Zipperposition

is an easily extensible open source prover that Bentkamp et al. used to implement their higher-

order superposition calculus. We further extend their implementation.

We performed an extensive evaluation of our approach (Section 6). In addition to evaluating

different configurations of our new rules, we have compared them to full higher-order provers

CVC4, Leo-III, Satallax and Vampire. The results suggest that it is beneficial to natively support

Boolean reasoning – the approach outperforms preprocessing-based approaches. Furthermore,

it is very competitive with state-of-the-art higher order provers. We discuss the differences

between our approach and the approaches we base on, as well as related approaches (Section 7).

2. Background

We base our work on Bentkamp et al.’s [10] extensional polymorphic clausal higher-order logic.

We extend the syntax of this logic by adding logical connectives to the language of terms. The

semantic of the logic is extended by interpreting Boolean type 𝑜 as a two-element domain. This

amounts to extending Bentkamp et al’s fragment of higher-order logic to full-higher order logic
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(HOL). Our notation, definitions and the following text are largely based on Bentkamp et al.’s.

A signature is a quadruple pΣty,Vty,Σ,Vq where Σty is a set of type constructors, Vty is a

set of type variables and Σ and V are sets of constants and term variables, respectively. We

require nullary type constructors 𝜄 and 𝑜, as well as binary constructor Ñ to be in Σty. A

type 𝜏, 𝜐 is either a type variable 𝛼 P Vty or of the form 𝜅p𝜏1, . . . 𝜏𝑛q where 𝜅 is an 𝑛-ary type

constructor. We write 𝜅 for 𝜅pq, 𝜏 Ñ 𝜐 forÑ p𝜏, 𝜐q, and we abbreviate tuples p𝑎1, . . . , 𝑎𝑛q as

𝑎𝑛 for 𝑛 ě 0. Similarly, we drop parentheses to shorten 𝜏1 Ñ p¨ ¨ ¨ Ñ p𝜏𝑛´1 Ñ 𝜏𝑛q ¨ ¨ ¨ q into

𝜏1 Ñ ¨ ¨ ¨ Ñ 𝜏𝑛. Each symbol in Σ is assigned a type declaration of the form Π𝛼𝑛. 𝜏 where all

variables occurring in 𝜏 are among 𝛼𝑛.

Function symbols a, b, f, g, . . . are elements of Σ; their type declarations are written as

f : Π𝛼𝑛. 𝜏 . Term variables from the set V are written 𝑥, 𝑦, 𝑧 . . . and we denote their types as

𝑥 : 𝜏 . When the type is not important, we omit type declarations. We assume that symbols

J,K,␣,^,_,ñ,ô with their standard meanings and type declarations are elements of Σ.

Furthermore, we assume that polymorphic symbols @ and D with type declarations Π𝛼. p𝛼Ñ
𝑜q Ñ 𝑜 and « : Π𝛼. 𝛼Ñ 𝛼Ñ 𝑜 are in Σ, with their standard meanings. All these symbols are

called logical symbols. We write binary logical symbols in infix notation.

Terms are defined inductively as follows. Variables 𝑥 : 𝜏 are terms of type 𝜏 . If f : Π𝛼𝑛. 𝜏
is in Σ and 𝜐𝑛 is a tuple of types, called type arguments, then fx𝜐𝑛y (written as f if 𝑛 “ 0, or if

type arguments can be inferred from the context) is a term of type 𝜏t𝛼𝑛 ÞÑ 𝜐𝑛u, called constant.

If 𝑥 is a variable of type 𝜏 and 𝑠 is a term of type 𝜐 then 𝜆𝑥. 𝑠 is a term of type 𝜏 Ñ 𝜐. If 𝑠 and 𝑡
are of type 𝜏 Ñ 𝜐 and 𝜏 , respectively, then 𝑠 𝑡 is a term of type 𝜐. We call terms of Boolean type

(𝑜) formulas and denote them by 𝑓, 𝑔, ℎ, . . .; we use 𝑝, 𝑞, 𝑟, . . . for variables whose result type

is 𝑜 and p, q, r for constants with the same result type. We shorten iterated lambda abstraction

𝜆𝑥1. . . . 𝜆𝑥𝑛. 𝑠 to 𝜆𝑥𝑛. 𝑠, and iterated application p𝑠 𝑡1q ¨ ¨ ¨ 𝑡𝑛 to 𝑠 𝑡𝑛. We assume the standard

notion of free and bound variables, capture-avoiding substitutions 𝜎, 𝜌, 𝜃, . . ., and 𝛼-, 𝛽-, 𝜂-

conversion. Unless stated otherwise, we view terms as 𝛼𝛽𝜂-equivalence classes, with 𝜂-long

𝛽-reduced form as the representative. Each term 𝑠 can be uniquely written as 𝜆𝑥𝑚. 𝑎 𝑡𝑛 where

𝑎 is either variable or constant and 𝑚,𝑛 ě 0; we call 𝑎 the head of 𝑠. We say that a term 𝑎 𝑡𝑛 is

written in spine notation [20]. Following our previous work [21], we define nonstandard notion

of subterms and positions inductively as a graceful extension of the first-order counterparts: a

term 𝑠 is a subterm of itself at position 𝜀. If 𝑠 is a subterm of 𝑡𝑖 at position 𝑝 then 𝑠 is a subterm

of 𝑎 𝑡𝑛 at position 𝑖.𝑝, where 𝑎 is a head. If 𝑠 is a subterm of 𝑡 at position 𝑝 then 𝑠 is a subterm

of 𝜆𝑥. 𝑡 at position 1.𝑝. We use 𝑠|𝑝 to denote subterm of 𝑠 at position 𝑝.

Given a formula 𝑓 we call its Boolean subterm 𝑓 |𝑝 a top-level Boolean if for all proper prefixes

𝑞 of 𝑝, the head of 𝑓 |𝑞 is a logical constant. Otherwise, we call it a nested Boolean. For example,

in the formula 𝑓 “ h a « g ppñ qq _ ␣p, 𝑓 |1 and 𝑓 |2 are top-level Booleans, whereas 𝑓 |1.2.1
is a nested Boolean (as well as its subterms). Only top-level Booleans are allowed in first-order

logic, whereas nested Booleans are characteristic for higher-order logic. A formula is called an

atom if it is of the form 𝑎 𝑡𝑛, where 𝑎 is a non-logical head, or of the form 𝑠 « 𝑡, where if 𝑠 or 𝑡
are of type 𝑜, and one of them has a logical head, the other one must be J or K. A literal 𝐿 is

an atom or its negation. A clause 𝐶 is a multiset of literals, interpreted and written (abusing

_) disjunctively as 𝐿1 _ ¨ ¨ ¨ _ 𝐿𝑛. We write 𝑠 ff 𝑡 for ␣p𝑠 « 𝑡q. We say a variable is free in a

clause 𝐶 if it is not bound inside any subterm of a literal in 𝐶 .
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3. The Native Approach

Some support for Booleans was already present in Zipperposition before we started extending the

calculus of Bentkamp et al. In this section, we start by describing the internals of Zipperposition

responsible for reasoning with Booleans. We continue by describing 15 rules that we have

implemented. For ease of presentation we divide them in three categories. We assume some

familiarity with the superposition calculus [22] and adopt the notation used by Schulz [23].

3.1. Support for Booleans in Zipperposition

Zipperposition is an open source
1

prover written in OCaml. From its inception, it was designed

as a prover that supports easy extension of its base superposition calculus to various theories,

including arithmetic, induction and limited support for higher-order logic [18].

Zipperposition internally stores applications in flattened, spine notation. It also exploits

associativity of ^ and _ to flatten nested applications of these symbols. Thus, the terms

p^ pq^ rq and pp^ qq ^ r are represented as ^ p q r. The prover’s support for 𝜆-terms is used

to represent quantified nested Booleans: formulas @𝑥. 𝑓 and D𝑥. 𝑓 are represented as @ p𝜆𝑥. 𝑓q
and D p𝜆𝑥. 𝑓q. After clausification of the input problem, no nested Booleans will be modified or

renamed using fresh predicate symbols.

The version of Zipperposition preceding our modifications distinguished between equational

and non-equational literals. Following E [5], we modified Zipperposition to represent all literals

equationally: a non-equational literal 𝑓 is stored as 𝑓 « J, whereas ␣𝑓 is stored as 𝑓 ff J.

Equations of the form 𝑓 « K and 𝑓 ff K are transformed into 𝑓 ff J and 𝑓 « J, respectively.

3.2. Core Rules

Kotelnikov et al. [12], to the best of our knowledge, pioneered the approach of extending a

first-order superposition prover to support nested Booleans. They call effects of including the

axiom @p𝑝 : 𝑜q. 𝑝 « J _ 𝑝 « K a “recipe for disaster”. To combat the explosive behavior of

the axiom, they imposed the following two requirements to the simplification order ą (which

is a parameter to the superposition calculus): J ą K and J and K are two smallest ground

terms with respect to ą. If these two requirements are met, there is no self-paramodulation

of the clause and only paramodulation possible is from literal 𝑝 « J of the mentioned axiom

into a Boolean subterm of another clause. Finally, Kotelnikov et al. replace the axiom with the

inference rule FOOL Paramodulation (FP):

𝐶r𝑓 s
FP

𝐶rJs _ 𝑓 « K

where 𝑓 is a nested non-variable Boolean subterm of clause 𝐶 , different from J and K. In

addition, they translate the initial problem containing nested Booleans to first-order logic

without interpreted Booleans; this translation introduces proxy symbols for J and K, and proxy

type for 𝑜.

1
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We created two rules that are syntactically similar to FP but are adapted for higher-order

logic with one key distinction – we do not perform any translation:

𝐶r𝑓 s
Cases

𝐶rKs _ 𝑓 « J

𝐶r𝑓 s
CasesSimp

𝐶rKs _ 𝑓 « J 𝐶rJs _ 𝑓 ff J

The double line in the definition of CasesSimp denotes that the premise is replaced by conclusions;

obviously, the prover that uses the rules should not include them both at the same time. In

addition, since literals 𝑓 « K are represented as negative equations 𝑓 ff J, which cannot be

used to paramodulate from, we change the first requirement on the order to K ą J.

These two rules hoist Boolean subterms 𝑓 to the literal level; therefore, some results of Cases

and CasesSimp will have literals of the form 𝑓 « J (or 𝑓 ff J) where 𝑓 is not an atom. This

introduces the need for the rule called eager clausification (EC):

𝐶
EC

𝐷1 ¨ ¨ ¨ 𝐷𝑚

We say that a clause is standard if all of its literals are of the form 𝑠
.
« 𝑡, where 𝑠 and 𝑡 are not

Booleans or of the form 𝑓
.
« J, where the head of 𝑓 is not a logical symbol and

.
« denotes «

or ff. The rule EC is applicable if clause 𝐶 “ 𝐿1 _ ¨ ¨ ¨ _ 𝐿𝑛 is not standard. The resulting

clauses 𝐷𝑚 represent the result of clausification of the formula @𝑥. 𝐿1 _ ¨ ¨ ¨ _ 𝐿𝑛 where 𝑥
are all free variables of 𝐶 .

An advantage of leaving nested Booleans unmodified is that the prover will be able to prove

some problems containing them without using the prolific rules described above. For example,

given two clauses f pp𝑥 ñ p 𝑦q « a and f pp a ñ p bq ff a, the empty clause can easily be

derived without the above rules. A disadvantage of this approach is that the proving process

will periodically be interrupted by expensive calls to the clausification algorithm.

Naive application of Cases and CasesSimp rules can result in many redundant clauses.

Consider a clause 𝐶 “ p pp pp pp aqqq « J where p : 𝑜 Ñ 𝑜, a : 𝑜. Then, the clause

𝐷 “ a « J _ pK « J can be derived from 𝐶 in eight ways using the rules, depending

on which nested Boolean subterm was chosen for the inference. In general, if a clause has

a subterm occurrence of the form p𝑛 a, where both p and a have result type 𝑜, the clause

a « J _ pK « J can be derived in 2𝑛´1 ways. To combat these issues we implemented

pragmatic restrictions of the rule: only the leftmost outermost (or innermost) eligible subterm

will be considered. With this modification 𝐷 can be derived in only one way. Furthermore,

some intermediate conclusions of the rules will not be derived, pruning the search space.

The clausification algorithm by Nonnengart and Weidenbach [24] aggressively simplifies the

input problem using well-known Boolean equivalences before clausifying it. For example, the

formula p^J will be replaced by p. To simplify nested Booleans we implemented the rule

𝐶r𝑓𝜎s
BoolSimp

𝐶r𝑔𝜎s

where 𝑓 ÝÑ 𝑔 P 𝐸 runs over fixed set of rewrite rules 𝐸, and 𝜎 is any substitution. In the

current implementation of Zipperposition, 𝐸 consists of the rules described by Nonnengart
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and Weidenbach [24, Section 3]. This set contains the rules describing how each logical symbol

behaves when either of its argument is J or K: for example, it includes J ñ 𝑝 ÝÑ 𝑝 and

𝑝ñ J ÝÑ J. Leo-III implements a similar rule, called simp [25, Section 4.2.1.].

Our decision to represent negative atoms as negative equations was motivated by the need

to alter Zipperposition’s earlier behavior as little as possible. Namely, negative atoms were not

used as literals that can be used to paramodulate from, and as such added to the laziness of the

superposition calculus. However, it might be useful to consider unit clauses of the form 𝑓 ff J
as 𝑓 « K to strengthen demodulation. To that end, we have introduced the following rule:

𝑓 ff J 𝐶r𝑓𝜎s
BoolDemod

𝑓 ff J 𝐶rKs

3.3. Higher-Order Considerations

To achieve refutational completeness of higher-order resolution and similar calculi it is necessary

to instantiate variables with result type 𝑜, predicate variables, with arbitrary formulas [25, 16].

Fortunately, we can approximate the formulas using a complete set of logical symbols (e.g., ␣,

@, and ^). Since such an approximation is not only necessary for completeness of some calculi,

but very useful in practice, we implemented the primitive instantiation (PI) rule:

𝐶 _ 𝜆𝑥𝑚. 𝑝 𝑠𝑛
.
« 𝑡

PI

p𝐶 _ 𝜆𝑥𝑚. 𝑝 𝑠𝑛
.
« 𝑡qt𝑝 ÞÑ 𝑓u

where 𝑝 is a free variable of the type 𝜏1 Ñ ¨ ¨ ¨ Ñ 𝜏𝑛 Ñ 𝑜. Choosing a different 𝑓 that

instantiates 𝑝, we can balance between explosiveness of approximating a complete set of logical

symbols and incompleteness of pragmatic approaches. We borrow the notion of imitation

from higher-order unification jargon [21]: we say that the term 𝜆𝑥𝑚. f p𝑦1 𝑥𝑚q ¨ ¨ ¨ p𝑦𝑛 𝑥𝑚q is an

imitation of constant f : 𝜏1 Ñ ¨ ¨ ¨ Ñ 𝜏𝑛 Ñ 𝜏 for some variable 𝑧 of type 𝜈1 Ñ ¨ ¨ ¨ Ñ 𝜈𝑚 Ñ 𝜏 .

Variables 𝑦𝑛 are fresh free variables, where each 𝑦𝑖 has the type 𝜈1 Ñ ¨ ¨ ¨ Ñ 𝜈𝑚 Ñ 𝜏𝑖; variable

𝑥𝑖 is of type 𝜈𝑖.
Rule PI was already implemented by Simon Cruanes in Zipperposition, before we started our

modifications. The rule has different modes that generate sets of possible terms 𝑓 for 𝑝 : 𝜏1 Ñ
¨ ¨ ¨ Ñ 𝜏𝑛 Ñ 𝑜: Full, Pragmatic, and Imit‹ where ‹ is an element of a set of logical constants

𝑃 “ t^,_,«x𝛼y,␣,@, Du. Mode Full contains imitations (for 𝑝) of all elements of 𝑃 . Mode

Pragmatic contains imitations of␣,J andK; if there exist indices 𝑖, 𝑗 such that 𝑖 ‰ 𝑗 and 𝜏𝑖 “ 𝜏𝑗 ,

it contains 𝜆𝑥𝑛. 𝑥𝑖 « 𝑥𝑗 ; if there exist indices 𝑖, 𝑗 such that 𝑖 ‰ 𝑗, and 𝜏𝑖 “ 𝜏𝑗 “ 𝑜, then it

contains 𝜆𝑥𝑛. 𝑥𝑖^𝑥𝑗 and 𝜆𝑥𝑛. 𝑥𝑖_𝑥𝑗 ; if for some 𝑖, 𝜏𝑖 “ 𝑜, then it contains 𝜆𝑥𝑛. 𝑥𝑖. Mode Imit‹
contains imitations of J, K and ‹ (except for Imit@D which contains imitations of both @ and D).

While experimenting with our implementation we have noticed some proof patterns that

led us to come up with the following modifications. First, it often suffices to perform PI only on

initial clauses – which is why we allow the rule to be applied only to the clauses created using

at most 𝑘 generating inferences. Second, if the rule was used in the proof, its premise is usually

only used as part of that inference – which is why we implemented a version of PI that removes
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the clause after all possible PI inferences have been performed. We observed that the mode Imit‹
is useful in practice since often only a single approximation of a logical symbol is necessary.

Efficiently treating axiom of choice is notoriously difficult for higher-order provers. Andrews

formulates this axiom as @p𝑝 : 𝛼Ñ 𝑜q. pDp𝑥 : 𝛼q. 𝑝 𝑥q ñ 𝑝 p𝜀 𝑝q, where 𝜀 : Π𝛼. p𝛼Ñ 𝑜q Ñ 𝛼
denotes the choice operator [16]. After clausification, this axiom becomes 𝑝 𝑥 ff J _ 𝑝 p𝜀 𝑝q « J.

Since term 𝑝 𝑥 matches any Boolean term in the proof state, this axiom is very explosive.

Therefore, Leo-III [14] deals with the choice operator on the calculus level. Namely, whenever a

clause 𝐶 “ 𝑝 𝑥 ff J _ 𝑝 pf 𝑝q « J is chosen for processing, 𝐶 is removed from the proof state

and f is added to set of choice functions CF (which initially contains just 𝜀). Later, elements

of CF will be used to heuristically instantiate the axiom of choice. We reused the method of

recognizing choice functions, but generalized the rule for creating the instance of the axiom

(assuming 𝜉 P CF ):

𝐶r𝜉 𝑡s
Choice

𝑥 p𝑡 𝑦q ff J _ 𝑥 p𝑡 p𝜉 p𝜆𝑧. 𝑥 p𝑡 𝑧qqqq « J

Let 𝐷 be the conclusion of Choice. The fresh variable 𝑥 in 𝐷 acts as arbitrary context around

𝑡, the chosen instantiation for 𝑝 from axiom of choice; the variable 𝑥 can later be replaced by

imitation of logical symbols to create more complex instantiations of the choice axiom. To

generate useful instances early, we create 𝐷t𝑥 ÞÑ 𝜆𝑧. 𝑧u and 𝐷t𝑥 ÞÑ 𝜆𝑧.␣𝑧u. Then, based on

Zipperposition parameters, 𝐷 will either be deleted or kept. Note that 𝐷 will not subsume its

instances, since the matching algorithm of Zipperposition is too weak for this.

Most provers natively support extensionality reasoning: Bhayat et al. [26] modify first-order

unification to return unification constraints consisting of pairs of terms of functional type,

whereas Steen relies on the unification rules of Leo-III’s calculus [25, Section 4.3.3.] to deal with

extensionality. Bentkamp et al [10] altered core generating inference rules of the superposition

calculus to support extensionality. Instead of requiring that terms involved in the inference

are unifiable, it is required that they can be decomposed into disagreement pairs such that at

least one of the disagreement pairs is of functional type. Disagreement pairs of terms 𝑠 and

𝑡 of the same type are defined inductively using function dp: dpp𝑠, 𝑡q “ H if 𝑠 and 𝑡 are equal;

dpp𝑎 𝑠𝑛, 𝑏 𝑡𝑚q “ tp𝑎 𝑠𝑛, 𝑏 𝑡𝑚qu if 𝑎 and 𝑏 are different heads; dpp𝜆𝑥. 𝑠, 𝜆𝑦. 𝑡q “ tp𝜆𝑥. 𝑠, 𝜆𝑦. 𝑡qu;
dpp𝑎 𝑠𝑛, 𝑎 𝑡𝑛q “

Ť𝑛
𝑖“1 dpp𝑠𝑖, 𝑡𝑖q. Then the extensionality rules are stated as follows:

𝑠 « 𝑡 _ 𝐶 𝑢r𝑠1s
.
« 𝑣 _ 𝐷

ExtSup

p𝑠1 ff 𝑠11 _ ¨ ¨ ¨ _ 𝑠𝑛 ff 𝑠1𝑛 _ 𝑢r𝑡s
.
« 𝑣 _ 𝐶 _ 𝐷q𝜎

𝑠 ff 𝑠1 _ 𝐶
ExtER

p𝑠1 ff 𝑠11 _ ¨ ¨ ¨ _ 𝑠𝑛 ff 𝑠1𝑛 ¨ ¨ ¨ _ 𝐶q𝜎

𝑠 « 𝑡 _ 𝑠1 « 𝑢 _ 𝐶
ExtEF

p𝑠1 ff 𝑠11 _ ¨ ¨ ¨ _ 𝑠𝑛 ff 𝑠1𝑛 _ 𝑡 ff 𝑢 _ 𝑠1 « 𝑢 _ 𝐶q𝜎

Rules ExtSup, ExtER, and ExtEF are extensional versions of superposition, equality resolution

and equality factoring [23]. The union of these three rules is denoted by Ext. In each rule, 𝜎
is a most general unifier of the types of 𝑠 and 𝑠1, and dpp𝑠𝜎, 𝑠1𝜎q “ tp𝑠1, 𝑠

1
1q, . . . , p𝑠𝑛, 𝑠

1
𝑛qu. All
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side conditions for extensional rules are the same as for the standard rules, except that condition

that 𝑠 and 𝑠1 are unifiable is replaced by the condition that at least one 𝑠𝑖 is of functional type

and that 𝑛 ą 0. This rule is easily extended to support Boolean extensionality by requiring that

at least one 𝑠𝑖 is of functional or type 𝑜, and adding the condition “dpp𝑓, 𝑔q “ tp𝑓, 𝑔qu if 𝑓 and

𝑔 are different formulas” to the definition of dp.

Consider the clause f p␣p_␣qq ff f p␣pp ^ qqq. This problem is obviously unsatisfiable,

since arguments of f on different sides of the disequation are extensionally equal; however,

without Ext rules Zipperposition will rely on Cases(Simp) and EC rules to derive the empty

clause. Rule ExtER will generate 𝐶 “ ␣p_␣q ff ␣pp ^ qq. Then, 𝐶 will get clausified using

EC, effectively reducing the problem to ␣p␣p_␣qô ␣pp ^ qqq, which is first-order.

Zipperposition restricts ExtSup by requiring that 𝑠 and 𝑠1 are not of function or Boolean

types. If the terms are of function type, our experience is that better treatment of function

extensionality is to apply fresh free variables (or Skolem terms, depending on the sign [10])

to both sides of a (dis)equation to reduce it to a first-order literal; Boolean extensionality is

usually better supported by applying EC on the top-level Boolean term. Thus, for the following

discussion we can assume 𝑠 and 𝑠1 are not 𝜆-abstractions or formulas. Then, ExtSup is applicable

if 𝑠 and 𝑠1 have the same head, and a functional or Boolean subterm. To efficiently retrieve such

terms, we added an index that maps symbols to positions in clauses where they appear as a

head of a term that has a functional or Boolean subterm. This index will be empty for first-order

problems, incurring no overhead if extensionality reasoning is not needed. Furthermore, we

do not apply Ext rules if all disagreement pairs have at least one side whose head is a variable;

those will be dealt with more efficiently using standard, non-extensional, versions of the rules.

We also eagerly resolve literals 𝑠𝑖 ff 𝑠1𝑖 using at most one unifier returned by terminating,

pragmatic variant of unification algorithm by Vukmirović et al. [21].

Expressiveness of higher-order logic allows users to define equality using a single axiom,

called Leibniz equality [16]: @p𝑥 : 𝛼qp𝑦 : 𝛼q. p@p𝑝 : 𝛼 Ñ 𝑜q. 𝑝 𝑥 ñ 𝑝 𝑦q ñ 𝑥 « 𝑦. Leibniz

equality often appears in TPTP problems. Since modern provers have the native support for

equality, it is usually beneficial to recognize and replace occurrences of Leibniz equality.

Before we began our modifications, Zipperposition had a powerful rule that recognizes clauses

that contain variations of Leibniz equality and instantiates them with native equality. This rule

was designed by Simon Cruanes, and to the best of our knowledge, it has not been documented

so far. With his permission we describe this rule as follows:

𝑝 𝑠1𝑛 « J _ ¨ ¨ ¨ _ 𝑝 𝑠𝑖𝑛 « J _ 𝑝 𝑡
1
𝑛 ff J _ ¨ ¨ ¨ _ 𝑝 𝑡

𝑗
𝑛 ff J _ 𝐶

ElimPredVar

p𝑝 𝑠1𝑛 « J _ ¨ ¨ ¨ _ 𝑝 𝑠𝑖𝑛 « J _ 𝐶q𝜎

where 𝑝 is a free variable, 𝑝 does not occur in any 𝑠𝑙𝑘 or 𝑡𝑙𝑘, or in 𝐶 , and 𝜎 is defined as

t𝑝 ÞÑ 𝜆𝑥𝑛.
Ž𝑗

𝑘“1p
Ź𝑛

𝑙“1 𝑥𝑙 « 𝑡𝑘𝑙 qu.
To better understand how this rule removes variable-headed negative literals, consider the

clause 𝐶 “ 𝑝 a1 a2 « J _ 𝑝 b1 b2 ff J _ 𝑝 c1 c2 ff J. Since all side conditions are fulfilled, the

rule ElimPredVar will generate 𝜎 “ t𝑝 ÞÑ 𝜆𝑥𝑦. p𝑥 « b1^𝑦 « b2q_p𝑥 « c1^𝑦 « c2qu. After

applying 𝜎 to 𝐶 and subsequent 𝛽-reduction, negative literal 𝑝 b1 b2 ff J will reduce to pb1 «
b1 ^ b2 « b2q _ pb1 « c1 ^ b2 « c2q ff J, which is equivalent to K. Thus, we can remove this

literal and all negative literals of the form 𝑝 𝑡𝑛 ff J from 𝐶 and apply 𝜎 to the remaining ones.
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The previous rule removes all variables occurring in disequations in one attempt. We imple-

mented two rules that behave more lazily, inspired by the ones present in Leo-III and Satallax:

𝑝 𝑠𝑛 « J _ 𝑝 𝑡𝑛 ff J _ 𝐶
ElimLeibniz`

p𝑠𝑖 « 𝑡𝑖 _ 𝐶q𝜎

𝑝 𝑠𝑛 ff J _ 𝑝 𝑡𝑛 « J _ 𝐶
ElimLeibniz´

p𝑠𝑖 « 𝑡𝑖 _ 𝐶q𝜎1

where 𝑝 is a free variable, 𝑝 does not occur in 𝑡𝑖, 𝜎 “ t𝑝 ÞÑ 𝜆𝑥𝑛. 𝑥𝑖 « 𝑡𝑖u and 𝜎1 “ t𝑝 ÞÑ
𝜆𝑥𝑛.␣p𝑥𝑖 « 𝑡𝑖qu. This rule differs from ElimPredVar in three ways. First, it acts on occurrences

of variables in both positive and negative literals. Second, due to its simplicity, it usually does

not require EC as the following step. Third, it imposes much weaker conditions on 𝑝. However,

removing all negative variables in one step might improve performance. Coming back to example

of the clause 𝐶 “ 𝑝 a1 a2 « J _ 𝑝 b1 b2 ff J _ 𝑝 c1 c2 ff J, we can apply ElimLeibniz`

using the substitution 𝜎 “ t𝜆𝑥𝑦. 𝑥 « b1u to obtain the clause 𝐶 1 “ a1 « b1 _ a1 ff c1.

3.4. Additional Rules

Zipperposition’s unification algorithm [21] uses flattened representation of terms with logical

operators ^ and _ for heads to unify terms that are not unifiable modulo 𝛼𝛽𝜂-equivalence,

but are unifiable modulo associativity and commutativity of ^ and _. Let ˛ denote either ^

or _. When the unification algorithm is given two terms ˛ 𝑠𝑛 and ˛ 𝑡𝑛, where neither of 𝑠𝑛 nor

𝑡𝑛 contain duplicates, it performs the following steps: First, it removes all terms that appear

in both 𝑠𝑛 and 𝑡𝑛 from the two argument tuples. Next, the remaining terms are sorted first by

their head term and then by their weight. Finally, the sorted lists are unified pairwise. As an

example, consider the problem of unifying the pair

`

^pp aq pq pf aqq, ^ pq pf aqq p𝑟 pf pf aqqq
˘

where 𝑟 is a free variable. If the arguments of ^ are simply sorted as described above, we

would unsuccessfully try to unify p a with q pf aq. However, by removing term q pf aq from the

argument lists, we will be left with the problem pp a, 𝑟 pf pf aqqq which has a unifier.

The winner of THF division of CASC-27 [27], Satallax [15], has one crucial advantage over

Zipperposition: it is based on higher-order tableaux, and as such it does not require formulas

to be converted to clauses. The advantage of tableaux is that once it instantiates a variable with

a term, this instantiation naturally propagates through the whole formula. In Zipperposition,

which is based on higher-order superposition, the original formula is clausified and instantiating

a variable in a clause 𝐶 does not automatically instantiate it in all clauses that are results of

clausification of the same formula as 𝐶 . To mitigate this issue, we have created extensions of

equality resolution and equality factoring that take Boolean extensionality into account:

𝑠 « 𝑠1 _ 𝐶
BoolER

𝐶𝜎

𝑝 𝑠𝑛 « J _ 𝑠1 ff J _ 𝐶
BoolEF`´

p𝑝 𝑠𝑛 « ␣𝑠
1 _ 𝐶q𝜎

𝑝 𝑠𝑛 ff J _ 𝑠1 « J _ 𝐶
BoolEF´`

p𝑝 𝑠𝑛 « ␣𝑠
1 _ 𝐶q𝜎

𝑝 𝑠𝑛 ff J _ 𝑠1 ff J _ 𝐶
BoolEF´´

p𝑝 𝑠𝑛 « 𝑠1 _ 𝐶q𝜎

All side conditions except for the ones concerning the unifiability of terms are as in the original

equality resolution and equality factoring rules. In rule BoolER, 𝜎 unifies 𝑠 and ␣𝑠1. In the
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`´ and ´` versions of BoolEF, 𝜎 unifies 𝑝 𝑠𝑛 and ␣𝑠1, and in the remaining version it unifies

𝑝 𝑠𝑛 and 𝑠1. Intuitively, these rules bring Boolean (dis)equations in the appropriate form for

application of the corresponding base rules. It suffices to consider literals of the form 𝑠 « 𝑠1

for BoolER since Zipperposition rewrites 𝑠 ô 𝑡 « J and ␣p𝑠 ô 𝑡q ff J to 𝑠 « 𝑡 (and does

analogous rewriting into 𝑠 ff 𝑡).
Another approach to mitigate harmful effects of eager clausification is to delay it as long

as possible. Following the approach by Ganzinger and Stuber [28], we represent every input

formula 𝑓 as a unit clause 𝑓 « J and use the following lazy clausification (LC) rules:

p𝑓 ^ 𝑔q « J _ 𝐶
LC^

𝑓 « J _ 𝐶 𝑔 « J _ 𝐶

p𝑓 _ 𝑔q « J _ 𝐶
LC_

𝑓 « J _ 𝑔 « J _ 𝐶

p𝑓 ñ 𝑔q « J _ 𝐶
LCñ

𝑓 ff J _ 𝑔 « J _ 𝐶

p␣𝑓q « J _ 𝐶
LC␣

𝑓 ff J _ 𝐶

p@𝑥. 𝑓q « J _ 𝐶
LC@

𝑓t𝑥 ÞÑ 𝑦u _ 𝐶

pD𝑥. 𝑓q « J _ 𝐶
LCD

𝑓t𝑥 ÞÑ skx𝛼y𝑦𝑛u _ 𝐶

𝑓 « 𝑔 _ 𝐶
LC«

𝑓 ff J_ 𝑔 « J _ 𝐶 𝑓 « J_ 𝑔 ff J _ 𝐶

The rules described above are as given by Ganzinger and Stuber (adapted to our setting), with

the omission of rules for negative literals (𝑓 ff J), which are easy to derive and which can be

found in their work [28]. In LC« we require both 𝑓 and 𝑔 to be formulas and at least one of

them not to be J. In LC@, 𝑦 is a fresh variable, and in LCD, sk is a fresh symbol and 𝛼 and 𝑦𝑛
are all the type and term variables occurring freely in D𝑥. 𝑓 .

Naive application of the LC rules can result in exponential blowup in problem size. To avoid

this, we rename formulas that have repeated occurrences. We keep the count of all non-atomic

formulas occurring as either side of a literal. Before applying the LC rule on a clause 𝑓
.
« J _ 𝐶 ,

we check whether the number of 𝑓 ’s occurrences exceeds the threshold 𝑘. If it does, based on

the polarity of the literal 𝑓
.
« J, we add the clause p 𝑦𝑛 ff J _ 𝑓 « J (if the literal is positive)

or p 𝑦𝑛 « J _ 𝑓 ff J (if the literal is negative), where 𝑦𝑛 are all free variables of 𝑓 and p is

a fresh symbol. Then, we replace the clause 𝑓
.
« J _ 𝐶 by p 𝑦𝑛

.
« J _ 𝐶 .

Before the number of occurrences of 𝑓 is checked, we first check (using a fast, incomplete

matching algorithm) if there is a formula 𝑔, for which definition was already introduced, such

that 𝑔𝜎 “ 𝑓 , for some substitution 𝜎. This check can have three outcomes. First, if the definition

q𝑥𝑛 is already introduced for 𝑔 with the polarity matching that of 𝑓
.
« J, then 𝑓 is replaced

by pq𝑥𝑛q𝜎. Second, if the definition was introduced, but with different polarity, we create the

clause defining 𝑔 with the missing polarity, and replace 𝑓 with pq𝑥𝑛q𝜎. Last, if the there is no

renamed formula 𝑔 generalizing 𝑓 , then we perform the previously described check.

In addition to reusing names for formula definitions, we reuse the Skolem symbols introduced

by the LCD rule. When LCD is applied to 𝑓 “ D𝑥. 𝑓 1 we check if there is a Skolem skx𝛼𝑚y𝑦𝑛
introduced for a formula 𝑔 “ D𝑥. 𝑔1, such that 𝑔𝜎 “ 𝑓 . If so, the symbol sk is reused and D𝑥. 𝑓 1

is replaced by 𝑓 1t𝑥 ÞÑ pskx𝛼𝑚y𝑦𝑛q𝜎u. Renaming and name reusing techniques are inspired by

the VCNF algorithm described by Reger et al. [29].

Rules Cases and CasesSimp deal with Boolean terms, but we need to rely on extensionality

reasoning to deal with 𝜆-abstractions whose body has type 𝑜. Using the observation that the
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formula @𝑥𝑛. 𝑓 implies that 𝜆𝑥𝑛. 𝑓 is extensionally equal to 𝜆𝑥𝑛.J (and similarly, if @𝑥𝑛.␣𝑓 ,

then 𝜆𝑥𝑛. 𝑓 « 𝜆𝑥𝑛.Kq, we designed the following rule (where all free variables of 𝑓 are 𝑥𝑛
and variables occurring freely in 𝐶):

𝐶r𝜆𝑥𝑛. 𝑓 s
Interpret𝜆

p@𝑥𝑛. 𝑓q ff J _ 𝐶r𝜆𝑥𝑛.Js p@𝑥𝑛.␣𝑓q ff J _ 𝐶r𝜆𝑥𝑛.Ks

4. Alternative Approaches

An alternative to heavy modifications of the prover needed to support the rules described above

is to treat Booleans as yet another theory. Since the theory of Booleans is finitely axiomatizable,

simply stating those axioms instead of creating special rules might seem appealing. Another

approach is to preprocess nested Booleans by hoisting them to the top level.

4.1. Axiomatization

A simple axiomatization of the theory of Booleans is given by Bentkamp et al. [10]. Following

their approach, we introduce the proxy type bool , which corresponds to 𝑜, to the signature.

We define proxy symbols t, f, not, and, or, impl, equiv, forall, exists, choice, and eqwhich correspond

to the homologous logical constants from Section 2. In their type declarations 𝑜 is replaced by

bool .
To make this paper self-contained we include the axioms from Bentkamp et al. [10]. Definitions

of symbols are computational in nature: symbols are characterized by their behavior on t and

f . This also reduces interferences between different axioms. Axioms are listed as follows:

t ff f
𝑥 « t _ 𝑥 « f

not t « f
not f « t

and t𝑥 « 𝑥
and f 𝑥 « f

or t𝑥 « t
or f 𝑥 « 𝑥
impl t𝑥 « 𝑥
impl f 𝑥 « t

𝑥 ff 𝑦 _ eqx𝛼y 𝑥 𝑦 « t
𝑥 « 𝑦 _ eqx𝛼y 𝑥 𝑦 « f

equiv 𝑥 𝑦 « and pimpl𝑥 𝑦q pimpl 𝑦 𝑥q
forallx𝛼yp𝜆𝑥. tq « t

𝑦 « p𝜆𝑥. tq _ forallx𝛼y 𝑦 « f
existsx𝛼y 𝑦 «

not pforallx𝛼y p𝜆𝑥. not p𝑦 𝑥qqq
𝑦 𝑥 « f _ 𝑦 pchoicex𝛼y𝑦q « t

4.2. Preprocessing Booleans

Kotelnikov et al. extended VCNF, Vampire’s algorithm for clausification, to support nested

Booleans [13]. Vukmirović et al. extended the clausification algorithm of Ehoh, the lambda-free

higher-order version of E, to support nested Booleans inspired by VCNF extension [11, Section

8]. Zipperposition and Ehoh share the same clausification algorithm, enabling us to reuse the

extension with one notable difference: unlike in Ehoh, not all nested Booleans different from

variables, J and K will be removed. Namely, Booleans that are below 𝜆-abstraction and contain

𝜆-bound variables will not be preprocessed. They cannot be easily hoisted to the level of an atom

in which they appear, since this process might leak any variables bound in the context in which

the nested Boolean appears. Similar preprocessing techniques are used in other higher-order

provers [30].
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5. Examples

The TPTP library contains thousands of higher-order benchmarks, many of them hand-crafted

to point out subtle interferences of functional and Boolean properties of higher order logic. In

this section we discuss some problems from the TPTP library that illustrate the advantages and

disadvantages of our approach.

In the last five instances of the CASC theorem proving competition, the core calculus of the

best performing higher-order prover was tableaux – a striking contrast from first-order part

of the competition dominated by superposition-based provers. TPTP problem SET557^1 (a

statement of Cantor’s theorem) might shed some light on why tableaux-based provers excel on

higher-order problems. This problem conjectures that there is no surjection from a set to its

power set:

␣pDp𝑥 : 𝜄Ñ 𝜄Ñ 𝑜q.@p𝑦 : 𝜄Ñ 𝑜q. Dp𝑧 : 𝜄q. 𝑥 𝑧 « 𝑦q

After negating the conjecture and clausification this problem becomes sk1 psk2 𝑦q « 𝑦 where sk1
and sk2 are Skolem symbols. Then, we can use ArgCong rule [10] which applies fresh variable

𝑤 to both sides of the equation, yielding clause 𝐶 “ sk1 psk2 𝑦q𝑤 « 𝑦 𝑤. Most superposition-

or paramodulation-based higher-order theorem provers (such as Leo-III, Vampire and Zip-

perposition) will split this clause into two clauses 𝐶1 “ sk1 psk2 𝑦q𝑤 ff J _ 𝑦 𝑤 « J and

𝐶2 “ sk1 psk2 𝑦q𝑤 « J _ 𝑦 𝑤 ff J. This clausification step makes the problem considerably

harder. Namely, the clause 𝐶 instantiated with the substitution t𝑦 ÞÑ 𝜆𝑥.␣psk1 𝑥𝑥q, 𝑤 ÞÑ

sk2 p𝜆𝑥.␣psk1 𝑥𝑥qqu yields the empty clause. However, if the original clause is split into two

as described above, Zipperposition will rely on PI rule to instantiate 𝑦 with imitation of ␣ and

on equality factoring to further instantiate this approximation. These desired inferences need

to be applied on both new clauses and represent only a fraction of inferences that can be done

with 𝐶1 and 𝐶2, reducing the chance of successful proof attempt. Rule BoolER imitates the

behavior of tableaux prover: it essentially rewrites the clause 𝐶 into ␣psk1 psk2 𝑦q𝑤q ff 𝑦 𝑤
which makes finding the necessary substitution easy and does not require a clausification step.

Combining rule (Bool)ER with lazy clausification is very fruitful as the problem SYO033^1
illustrates. This problem also contains the single conjecture

Dp𝑥 : p𝜄Ñ 𝑜q Ñ 𝑜q.@p𝑦 : 𝜄Ñ 𝑜q.p𝑥 𝑦 ô p@p𝑧 : 𝜄q. 𝑦 𝑧qq

The problem is easily solved if we instantiate variable 𝑥 with the constant @. Moreover, the

prover does not have to blindly guess this instantiation for 𝑥, but can obtain it by unifying

𝑥 𝑦 with @ 𝑦 (which is the 𝜂-short form of @p𝑧 : 𝜄q. 𝑦 𝑧). However, when the problem is

clausified, all quantifiers are removed. Then, Zipperposition only finds the proof if appropriate

instantiation mode of PI is used, and if both clauses resulting from clausifying the negated

conjecture are appropriately instantiated. In contrast, lazy clausification will derive the clause

𝑥 psk𝑥q ff @ psk𝑥q from the negated conjecture in three steps. Then, equality resolution results

in an empty clause, swiftly finishing the proof without any explosive inferences. This effect

is even more pronounced on problems SYO287^5 and SYO288^5, in which critical proof step

is instantiation of a variable with imitation of _ and ^. In configurations that do not use lazy

clausification and BoolER, Zipperposition times out in any reasonable time limit; with those

two options it solves mentioned problems in less than 100 ms.
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In some cases, it is better to preprocess the problem. For example, TPTP problem SYO500^1.005
contains many nested Boolean terms:

f0 pf1 pf1 pf1 pf2 pf3 pf3 pf3 pf4 aqqqqqqq « f0 pf0 pf0 pf1 pf2 pf2 pf2 pf3 pf4 pf4 pf4 aqqqqqqqqqqq

In this problem, all functions f𝑖 are of type 𝑜Ñ 𝑜, and constant a is of type 𝑜. FOOL unfolding

of nested Boolean terms will result in exponential blowup in the problem size. However,

superposition-based theorem provers are well-equipped for this issue: their CNF algorithms

use smart simplifications and formula renaming to mitigate these effects. Moreover, when the

problem is preprocessed, the prover is aware of the problem size before the proving process

starts and can adjust its heuristics properly. E, Zipperposition and Vampire, instructed to

perform FOOL unfolding, solve the problem swiftly, using their default modes. However, if

problem is not preprocessed, Zipperposition struggles to prove it using Cases(Simp) and due to

the large number of (redundant) clauses it creates, succeeds only if specific heuristic choices are

made.

6. Evaluation

We performed extensive evaluation to determine usefulness of our approach. As our benchmark

set, we used all 2606 monomorphic theorems from the TPTP library, given in THF format.

All of the experiments were performed on StarExec [31] servers with Intel Xeon E5-2609 0

CPUs clocked at 2.40 GHz. The evaluation is separated in two parts that answer different

questions: How useful are the new rules? How does our approach compare with state-of-the-art

higher-order provers?

6.1. Evaluation of the Rules

For this part of the evaluation, we fixed a single well-performing Zipperposition configuration

called base (b). Since we are testing a single configuration, we used the CPU time limit of 15 s

– roughly the time a single configuration is given in a portfolio mode. Configuration b uses the

pragmatic variant pv
2
1121 of the unification algorithm given by Vukmirović et al. [21]. It enables

BoolSimp rule, EC rule, PI rule in Pragmatic mode with 𝑘 “ 2, ElimLeibniz and ElimPredVar

rules, BoolER rule, and BoolEF rules. To evaluate the usefulness of all rules we described above,

we enable, disable or change the parameters of a single rule, while keeping all other parameters

of 𝑏 intact. In figures that contain sufficiently different configurations, cells are of the form 𝑛p𝑚q
where𝑛 is the total number of proved problems by a particular configuration and𝑚 is the number

of unique problems that a given configuration solved, compared to the other configurations in the

same figure. Intersections of rows and columns denote corresponding combination of parameters.

Result for the base configuration is written in cursive; the best result is written in bold.

First, we tested different parameters of Cases and CasesSimp rules. In Figure 1 we report

the results. The columns correspond to three possible options to choose subterm on which the

inference is performed: a stands for any eligible subterm, lo and li stands for leftmost outermost

and leftmost innermost subterms, respectively. The rows correspond to two different rules: b is

the base configuration, which uses CasesSimp, and bc swaps this rule for Cases. Although the

margin is slim, the results show it is usually preferable to select leftmost-outermost subterm.
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a lo li

b 1646 1648 1640

bc 1644 1645 1644

Figure 1: Effect of the Cases(Simp) rule on success rate

´PI b𝑝 b𝑓 b^ b_ b« b␣ b@D

𝑘 “ 1

1636

1648 1628 1637 1634 1630 1641 1637

𝑘 “ 2 1646 1629 1636 1631 1627 1638 1634

𝑘 “ 8 1643 1625 1633 1631 1623 1637 1635

Figure 2: Effect of PI rule on success rate

´EL `EL

´EPV 1584 (0) 1644 (0)

`EPV 1612 (0) 1646 (0)

Figure 3: Effect of Leibniz equality elimination

´BEF `BEF

´BER 1644 (2) 1643 (0)

`BER 1645 (0) 1646 (0)

Figure 4: Effect of BoolER and BoolEF

Second, we evaluated all the modes of PI rule with 3 values for parameter 𝑘: 1, 2, and 8 (Figure

2). The columns denote, from left to right: disabling the PI rule, Pragmatic mode, Full mode,

and Imit‹ modes with appropriate logical symbols. The rows denote different values of 𝑘. The

results show that different values for 𝑘 have a modest effect on success rate. The raw data reveal

that when we focus our attention to configurations with 𝑘 “ 2, mode Full can solve 10 problems

no other mode (including disabling PI rule) can. Modes Imit^ and Pragmatic solve 2 problems,

whereas Imit_ solves one problem uniquely. This result suggests that, even though this is not

evident from Figure 2, sets of problems solved solved by different modes somewhat differ.

Figure 3 gives results of evaluating rules that treat Leibniz equality on the calculus level: EL

stands for ElimLeibniz, whereas EPV denotes ElimPredVar; signs ´ and ` denote that rule is

removed from or added to configuration b, respectively. Disabling both rules severely lowers

the success rate. The results suggest that including ElimLeibniz is beneficial to performance.

Similarly, Figure 4 discusses merits of including (`) or excluding (´) BoolER (BER) and

BoolEF (BEF) rules. Our expectations were that inclusion of those two rules would make bigger

impact on success rate. It turned out that, in practice, most of the effects of these rules could be

achieved using a combination of the PI rule and basic superposition calculus rules.

Combining these two rules with lazy clausification is more useful: when the rule EC is replaced

by the rule LC, the success rate increases (compared to 1646 problems solved by 𝑏) to 1660

problems. We also discovered that reasoning with choice is useful: when rule Choice is enabled,

the success rate increases to 1653. We determined that including or excluding the conclusion 𝐷
of Choice, after it is simplified, makes no difference. Counterintuitively, disabling BoolSimp

rule results in 1640 problems, which is only 6 problems short of configuration 𝑏. Disabling Ext

and Interpret-𝜆 rules results in solving 25 and 31 problems less, respectively. Raw data show
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CVC4 Leo-III Satallax Vampire Zipperposition

pure 1806 (5) 1627 (0) 2067 (0) 1924 (7) 1980 ( 0)

coop – 2085 (3) 2214 (9) – 2190 (17)

Figure 5: Comparison with other higher-order provers

that in total, using configurations from Figure 1 to Figure 4, 1682 problems can be solved.

Last, we compare our approach to alternatives. Axiomatizing Booleans brings Zipperposition

down to a grinding halt: only 1106 problems can be solved using this mode. On the other hand,

preprocessing is fairly competitive: it solves only 8 problems less than the 𝑏 configuration.

6.2. Comparison with Other Higher-Order Provers

We compared Zipperposition with all higher-order theorem provers that took part in THF

division of CASC-27[27]: CVC4 1.8 prerelease [4], Leo-III 1.4 [14], Satallax 3.4 [15], and Vampire-

THF 4.4 [6]. In this part of the evaluation, Zipperposition is ran in portfolio mode that runs

configurations in different time slices. We set the CPU time limit to 180 s, the time allotted to

each prover at CASC-27.

Leo-III and Satallax are cooperative theorem provers – they periodically invoke first-order

provers to finish the proof attempt. Leo-III uses CVC4, E and iProver [32] as backends, while

Satallax uses Ehoh [11] as backend. Zipperposition can use Ehoh as backend as well. To test

effectiveness of each calculus, we run the cooperative provers in two versions: pure, which

disables backends, and coop which uses all supported backends.

In both pure and cooperative mode, Satallax comes out as the winner. Zipperposition comes

in close second, showing that our approach is a promising basis for further extensions. Leo-

III uses SMT solver CVC4, which features native support for Booleans, as a backend. It is

possible that the use of CVC4 is one of the reasons for massive improvement in success rate of

cooperative configuration of Leo-III, compared with the pure version. Therefore, we conjecture

that including support for SMT backends in Zipperposition might be beneficial.

7. Discussion and Related Work

Our work is primarily motivated by the goal of closing the gap between higher-order “hammer”

or software verifier frontends and first-order backends. Considerable amount of research effort

has gone into making the translations of higher-order logic as efficient as possible. Descriptions

of hammers like HOLyHammer [1] and Sledgehammer [2] for Isabelle contain details of these

translations. Software verifiers Boogie [33] and Why3 [34] use similar translations.

Established higher-order provers like Leo-III and Satallax perform very well on TPTP benchmarks;

however, recent evaluations show that on Sledgehammer problems they are outperformed by

translations to first-order logic [10, 11, 9]. Those two provers are built from the ground up as

higher-order provers – treatment of exclusively higher-order issues such as extensionality or

choice is built into them usually using explosive rules. Those explosive rules might contribute
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to their suboptimal performance on mostly first-order Sledgehammer problems.

In contrast, our approach is to start with a first-order prover and gradually extend it with

higher-order features. The work performed in the context of Matryoshka project [35], in which

both authors of this paper participate, resulted in adding support for 𝜆-free higher-order logic

with Booleans to E [11] and veriT [9], and adding support for Boolean-free higher-order logic

to Zipperposition. Authors of many state-of-the-art first-order provers have implemented some

form of support for higher-order reasoning. This is true both for SMT solvers, witnessed by

the recent extension of CVC4 and veriT [9], and for superposition provers, witnessed by the

extension of Vampire [36]. All of those approaches were arguably more focused on functional

aspects of higher-order logic, such as 𝜆-binders and function extensionality, than on Boolean

aspects such as Boolean subterms and Boolean extensionality. A notable exception is work by

Kotelnikov et al. that introduced support for Boolean subterms to first-order Vampire [12, 13].

The main merit of our approach is that it combines two successful complementary approaches

to support features of higher-order logic that have not been combined before in a modular

way. It is based on a higher-order superposition calculus that incurs around 1% of overhead

on first-order problems compared with classic superposition [10]. We conjecture that it is this

efficient reasoning base on which the approach is based that contributes to its competitive

performance.

8. Conclusion

We presented a pragmatic approach to support Booleans in a modern automatic prover for

clausal higher-order logic. Our approach combines previous research efforts that extended

first-order provers with complementary features of higher-order logic. It also proposes some

solutions for the issues that emerge with this combination. The implementation shows clear

improvement over previous techniques and competitive performance.

What our work misses is an overview of heuristics that can be used to curb the explosion

incurred by some of the rules described in this paper. In future work, we plan to address this

issue. Similarly, unlike Bentkamp et al. [10], we do not give any completeness guarantees for

our extension. We plan to develop a refutationally complete calculus that supports Booleans

around core rules such as Cases and LC in future work.
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