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Abstract. Model checking is a very well-known problem, with many
practical applications. A possible variation of such a problem in the in-
terval logic setting is the so-called finite model checking, that consists
of verifying an interval temporal logic formula, typically of Halpern and
Shoham’s logic of Allen’s relations HS, on a fully represented finite inter-
val model. Multivariate time series are collections of temporally ordered
sets of values, and they allow to describe a variety of situations, such as
the medical history of an hospitalized patient or the sensor values during
a plane flight. In this paper we argue how the recently introduced fuzzy
generalization of interval temporal logic is a suitable language in which
interesting properties of a multivariate time series can be expressed and
checked, and we define, solve, and discuss the complexity of the multi-
variate time series fuzzy interval logic checking problem.

Keywords: Model checking · Time series · Fuzzy logic.

1 Introduction

A temporal variable is a variable whose value changes over time. A time series
is a set of temporal variables. They can be univariate, if only one temporal
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variable is involved, or multivariate, otherwise. Each variable of a multivariate
time series is an ordered collection of n numeric values, instead of a single value.
Multivariate time (or temporal) series emerge in many application contexts: the
temporal history of some hospitalized patients can be described by the time
series of the values of their temperature, blood pressure, and oxygenation; the
pronunciation of a word in sign language can be described by the time series of
the relative and absolute positions of the ten fingers w.r.t. some reference point;
different sport activities can be distinguished by the time series of some relevant
physical quantities; all active sensors during a flight give time-changing values
that form a time series. A repository of time series extracted from real-world
data can be found in [3].

In its original formulation, model checking (MC) is the problem of verifying
if a given formula is satisfied by a given model [12]. Usually, the model is the ab-
stract representation of a system, in which the relevant properties become propo-
sitional letters, where the formula is written in a temporal logic and represents
an interesting property. The prevailing adopted ontology for both the model and
the logic is point-based: systems are represented in such a way that each state is
a vertex on a Kripke model, atomic properties are descriptions of states, and the
underlying logic is a point-based temporal logic, often LTL or CTL [32,33]. As
interval-based temporal logics emerged as a possible alternative to point-based
ones, the concept of interval temporal logic model checking (IMC) emerged with
them. Halpern and Shoham’s interval temporal logic HS [18], which features one
modality for each Allen relation [2], is the most representative interval-based
temporal logic, and its model checking problem is the one that received the
most attention. The problem of model checking HS formulæ has been formu-
lated in two ways. On the one side, model checking for full HS, interpreted over
finite Kripke structures according to a state-based semantics has been studied
in [24,28]. The authors showed that, under the homogeneity assumption, which
constrains a proposition letter to hold over an interval if and only if it holds over
each component state, the problem is non-elementarily decidable (EXPSPACE-
hardness has been later shown in [5]). Since then, the attention was brought to
HS fragments, which are often computationally much better [5,6,25,26,27]. Also,
the model checking problem for some HS fragments extended with epistemic
operators has been investigated in [20,21]. The semantic assumptions for these
epistemic HS fragments differ from those of [24,28] in two important respects,
making it difficult to compare the two families of logics: formulæ are interpreted
over the unwinding of the Kripke structure (computation-tree-based semantics)
and interval labeling takes into account only the endpoints of intervals. The
latter assumption has been later relaxed by making it possible to use regular
expressions to define the labeling of proposition letters over intervals in terms of
the component states [22]. On the other side, the problem of checking finite, lin-
ear, and fully represented interval models (FIMC problem) against HS formulæ
was formulated in [14], and its infinite, periodical generalization was presented
in [15] for a fragment of HS.
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These interval model checking strategies share the following elements: first,
the object to be checked is abstracted in some way, and, second, the underlying
temporal logic is a crisp (i.e., non-fuzzy) logic. We define multivariate time series
model checking as the problem of checking if an interval temporal logic formula is
satisfied by a finite multivariate time series. Time series are represented without
abstraction, and we capture the intrinsic uncertainty carried by real-world data
by checking formulæ of the fuzzy generalization of HS (FHS) [13], effectively
introducing the fuzzy interval logic multivariate time series checking problem
(TFIMC). On the one hand, fuzzy model checking has received very little atten-
tion in the literature, having been attempted in [16,31] for fuzzy generalizations
of CTL; however, these frameworks are not directly comparable with the one
we present here. On the other hand, our approach could be associated with the
concept of probabilistic model checking (PMC) on Markov models, which has
a large recent history in the literature (see [19], and references within); how-
ever: (i) fuzzy logics generalize probabilistic logics by having non-crisp both
accessibility relations and atomic properties, (ii) probabilistic model checking
is point-based, and (iii) Markov models are, as Kripke models, abstractions of
the underlying systems. The TFIMC problem is the fuzzy, time series general-
ization of the FIMC problem. The major obstacle in solving the latter lies in
the representation of the model, which may be exponentially succinct w.r.t. the
size of the input (i.e., the pair model+formula). In [14] it has been proved that
FIMC is polynomial, but the necessary pre-processing of the model has an im-
pact on the overall complexity. Such an obstacle does not present itself in solving
TFIMC, as time series cannot be succinctly represented, and, as a consequence,
its complexity is lower than FIMC; however, the problem itself is conceptually
not easier (in fact, it is slightly more difficult), and such a difference is hidden,
so to say, in the representation of the model.

2 Preliminaries: Fuzzy Interval Temporal Logic

Crisp interval temporal logic. Let D = 〈D,≤〉 be a linearly ordered set. An
interval over D is an ordered pair [x, y], where x, y ∈ D and x < y. While in the
original approach to interval temporal logic intervals with coincident endpoints
were included in the semantics, in the recent literature they tend to be excluded
except, for instance, in [4] where a two-sorted approach has been studied. If
we exclude the identity relation, there are 12 different relations between two
intervals in a linear order, often called Allen’s relations [2]: the six relations RA
(adjacent to, or meets), RL (later than), RB (begins), RE (ends), RD (during),
and RO (overlaps), depicted in Figure 1, together with their inverses RX =
(RX)−1, for each X ∈ {A,L,B,E,D,O}. We interpret interval structures as
Kripke structures, with Allen’s relations playing the role of the accessibility
relations. Thus, we associate a universal modality [X] and an existential modality
〈X〉 with each Allen’s relation RX . For each X ∈ {A,L,B,E,D,O}, the inverse
of the modalities [X] and 〈X〉 are the modalities [X] and 〈X〉, corresponding to
the inverse relation RX of RX . Halpern and Shoham’s logic, denoted HS [18], is a
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Fig. 1. Allen’s interval relations and HS modalities.

multi-modal logic with formulæ built from a finite, non-empty set AP of atomic
propositions (also referred to as propositional letters), the classical propositional
connectives, and a modal operator for each Allen’s relation, as follows:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ.
In the above grammar, p ∈ AP and X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}.
The other propositional connectives and constants (e.g., →, and >), as well as
the dual modalities, can be defined in the standard way (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ).
Given a formula of HS, its inverse formula is obtained by substituting ev-
ery operator 〈X〉 with its inverse one 〈X〉, and the other way around, for
X ∈ {A,L,B,E,D,O}, while its symmetric is obtained by substituting every op-
erator 〈X〉 with its inverse one 〈X〉, and the other way around, forX ∈ {A,L,O},
and every 〈B〉 (resp., 〈B̄〉) with 〈E〉 (resp., 〈Ē〉), and the other way around.

The semantics of HS is given in terms of interval models of the type:

M = 〈I(D), V 〉,
where D is a linear order, I(D) is the set of all intervals over D, and V is a
valuation function V : AP 7→ 2I(D), which assigns to each atomic proposition
p ∈ AP the set of intervals V (p) on which p holds. In this work, we are interested
in finite structures and thus we restrict our attention to linear orders over finite
domains. A finite domain of length n will be denoted [n]. The truth of a formula
ϕ on a given interval [x, y] in an interval model M is defined by structural
induction on formulæ as follows:

M, [x, y] 
 p if [x, y] ∈ V (p), for p ∈ AP ;
M, [x, y] 
 ¬ψ if M, [x, y] 6
 ψ;
M, [x, y] 
 ψ ∨ ξ if M, [x, y] 
 ψ or M, [x, y] 
 ξ;
M, [x, y] 
 〈X〉ψ if M, [z, t] 
 ψ for [z, t] s.t. [x, y]RX [z, t],

for X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}.
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During the past decades, several computational problems related to the logic
HS have been studied, including the satisfiability problem, analyzed for the full
logic in the original work by Halpern and Shoham [18], in which the authors
prove that it is undecidable when the logic is interpreted in virtually all inter-
esting classes of linearly ordered sets, and for various fragments (with differ-
ent computational behaviours) in, among others, [1,8,9,10,23,29,30], the model
checking problem, in [21,24,14], and, more recently, different knowledge extrac-
tion problems, in [7,11].

Fuzzy interval temporal logic. Fuzzy HS was introduced in [13], where its
satisfiability problem, along with certain expressive power problems, were stud-
ied. A formula of a fuzzy modal logic is usually evaluated in a Heyting Algebra.
A Heyting Algebra is a structure:

H = (H,∧,∨,→, 0, 1),

that is, a bounded distributive lattice with (non-empty) domain H, with internal
operations ∧ (meet6) and ∨ (join), both commutative, associative, and connected
by the absorption law, in which a partial order can be defined as:

α � β ⇔ α ∧ β = α⇔ α ∨ β = β.

The symbols 0 and 1 denote, respectively, least and the greatest elements of H.
In a Heyting algebra, the relative pseudo-complement of α w.r.t. β (aka Heyting
implication), usually denoted as α→ β, is defined as:∨

{γ | α ∧ γ � β},

and it exists for every α and β [17]. A Heyting algebra is said to be complete
if for every subset S ⊆ H, both its least upper bound

∨
S and its greatest

lower bound
∧
S exist. Typical realizations of Heyting algebras include the two-

element Boolean algebra and the closed interval [0, 1] in R. Given a complete
Heyting algebra H with domain H, the fuzzy generalization of HS is defined
starting with a domain D enriched with two functions:

<̃, =̃ : D ×D → H,

and defining the structure:

D̃ = 〈D, <̃, =̃〉

as a fuzzy linearly ordered set if it holds, for every x, y, and z:

1. =̃(x, y) = 1⇔ x = y (reflexivity of =̃);
2. =̃(x, y) = =̃(y, x) (symmetry of =̃);
3. <̃(x, x) = 0 (irreflexivity of <̃);

6 This is the classical nomenclature in lattice theory, and it should not be confused
with Allen’s relation meets, used in this paper.
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4. <̃(x, z) � <̃(x, y) ∧ <̃(y, z) (transitivity of <̃);

5. <̃(x, y) � 0 &<̃(y, z) � 0⇒ <̃(x, z) � 0 (transfer of <̃);

6. <̃(x, y) = 0 &<̃(y, x) = 0⇒ =̃(y, x) = 1 (weak totality);

7. =̃(x, y) � 0⇒ <̃(x, y) ≺ 1 (non-contradiction of <̃ over =̃).

Observe that in the above formulæ we have used a meta-language with {&,⇒
,⇔} in order to avoid confusion. Given a set of propositional letters AP and a
complete Heyting algebra H, a well-formed fuzzy interval temporal logic (FHS,
for short) formula is obtained by the following grammar:

ϕ ::= α | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | 〈X〉ϕ | [X]ϕ,

where α ∈ H, p ∈ AP , and, as in the crisp case, X ∈ {A,L,B,E,D,O,A,L,B,
E,D,O}. We use ¬ϕ to denote the formula ϕ→ 0.

Given a fuzzy linearly ordered set, we can now define the set of fuzzy (strict)

intervals in D̃:

I(D̃) = {[x, y] | <̃(x, y) � 0}.

Generalizing classical Boolean evaluation, propositional letters are directly eval-
uated in the underlying algebra, by defining a fuzzy valuation function Ṽ :
AP × I(D̃) → H that generalizes the crisp function V . Similarly, Allen’s rela-
tions now have a fuzzy behaviour, which is obtained by generalizing the original,
crisp definition, and substituting every = with =̃ and every < with <̃:

R̃A([x, y], [z, t]) = =̃(y, z);

R̃L([x, y], [z, t]) = <̃(y, z);

R̃B([x, y], [z, t]) = =̃(x, z) ∧ <̃(t, y);

R̃E([x, y], [z, t]) = <̃(x, z) ∧ =̃(y, t);

R̃D([x, y], [z, t]) = <̃(x, z) ∧ <̃(t, y);

R̃O([x, y], [z, t]) = <̃(x, z) ∧ <̃(z, y) ∧ <̃(y, t).

Now, we say that an H-valued interval model (or fuzzy interval model) is a tuple
of the type:

M̃ = 〈I(D̃), Ṽ 〉,

where D̃ is a fuzzy linearly ordered set that respects properties 1-7, and Ṽ is a
fuzzy valuation function. We interpret an FHS formula in a fuzzy interval model
M̃ and an interval [x, y] by extending the valuation Ṽ of propositional letters as

follows, where X ∈ {A,L,B,E,D,O,A,L,B,E,D,O} and [z, t] varies in I(D̃):
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Ṽ (α, [x, y]) = α;

Ṽ (ψ ∧ ξ, [x, y]) = Ṽ (ψ, [x, y]) ∧ Ṽ (ξ, [x, y]);

Ṽ (ψ ∨ ξ, [x, y]) = Ṽ (ψ, [x, y]) ∨ Ṽ (ξ, [x, y]);

Ṽ (ψ → ξ, [x, y]) = Ṽ (ψ, [x, y])→ Ṽ (ξ, [x, y]);

Ṽ (〈X〉ψ, [x, y]) =
∨
[z,t]

{R̃X([x, y], [z, t]) ∧ Ṽ (ψ, [z, t])};

Ṽ ([X]ψ, [x, y]) =
∧
[z,t]

{R̃X([x, y], [z, t])→ Ṽ (ψ, [z, t])}.

We say that a formula ϕ of FHS is α-satisfied at an interval [x, y] in a fuzzy

interval model M̃ = 〈I(D̃), Ṽ 〉, denoted M̃, [x, y] 
α ϕ, if Ṽ (ϕ, [x, y]) � α. The
formula ϕ is α-satisfiable if and only if there exists a fuzzy interval model and
an interval in that model where it is α-satisfied. A formula is satisfiable if it
is α-satisfiable for some α ∈ H, α 6= 0. A formula is α-valid if it is α-satisfied
at every interval in every model, and valid if it is 1-valid. Observe that since
a Heyting algebra, in general, does not encompass classical negation, and since
our definition of satisfiability is graded, rather than absolute, the usual duality
between satisfiability and validity does not hold anymore.

3 Fuzzy Time Series Checking

Multivariate time series. A temporal variable is a variable whose value
changes over time. A time series is a set of temporal variables. They can be
univariate, if only one temporal variable is involved, or multivariate, otherwise.
In data science, a time series defined over a set of temporal variables (or temporal
attributes) A = {A1, . . . , Am} is usually represented as an n×m matrix:

T =


a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m
. . . . . . . . . . . .
an,1 an,2 . . . an,m

 .

We denote the domain of an attribute A, that is, the set in which A takes values,
by dom(A). We assume that each variable Ai that forms a multivariate series
T has n values, and that there are no missing values, or that missing values
are symbolized by placeholders; so, the length of a multivariate time series n is
well-defined, as well as its width m. By A(t), we denote the value of variable A
at point t. An example of time series with m = 2 and n = 8 can be found in
Figure 2; in this example, the variable A1 (circles) represents the evolution of a
patient’s temperature during the observed period, while the variable A2 (stars)
represents his/her blood pressure during the same period.

Problem definition. Let T be a time series of length n defined over a set of
variables A = {A1, . . . , Am}. We define a set of decisions S as:

S = {A ./ a | A ∈ A, a ∈ dom(A), ./∈ {≤, <,=, >,≥}},
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Fig. 2. A multivariate time series with two variables.

and we set S as our set of propositional letters. Now, consider a time series T

with n distinct points, and the finite domain [ñ+ 1] obtained by adding a point 0
at the beginning of the series with undefined values a0,i, for each i. After having

fixed two concrete relations =̃ and <̃, we can form the set of intervals I([ñ+ 1]),
and define a function f to give truth values to decisions:

f : S × I([ñ+ 1])→ H.

By means of f , we allow a decision to be H-valuated on an interval. Interpreting
a formula of FHS on a time series T simply consists of defining a H-valued
interval model:

T̃ = 〈I([ñ+ 1]), Ṽ , f〉,

and of imposing that decisions are evaluated through f :

Ṽ (Ai ./ a, [x, y]) = f(Ai ./ a, [x, y]).

Since the variables Ai are all undefined on 0, we may assume that f is undefined
on every interval of the type [0, y] as well. Given a time series T , an algebra H, a
value α ∈ H, and a formula ϕ of FHS, the fuzzy interval logic multivariate time
series checking problem (TFIMC) is the problem of establishing if it holds:

T̃ , [0, 1] 
α ϕ.

In a way, we can say that the function f implicitly defines the domain of the
algebra on which T̃ is defined.

Concretizing a model: an example. Given a time series T , there are many
ways to produce a concrete temporal model; some of them are more intuitive
than others. In this example, we assume H to be the closed interval [0, 1] in R
equipped with the relation minimum (as meets) and maximum (as join), and we
describe a concretization of f . The function f can be thought as a black-box
function representing the domain-expert knowledge. In the example in Figure 2,
for instance, one has to decide when temperature can be considered, say, over
38 degrees. One possible way is to define f , for a generic variable A, relation ./,
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value a, and interval [x, y], as the ratio between the number of points x ≤ t ≤ y
that satisfy A ./ a and y−x+1. Similarly, we have to describe a concretization of
=̃ and <̃. Among the many ways that exist to do so, we fix a positive parameter
h ∈ N (which can be thought of as an horizon), and define two parametric
versions for =̃ and <̃ as follows: =̃h(x, y) is always 0, except when |x − y| < h,

in which case it is h−|x−y|
h ; instead, <̃h(x, y) is 1 when y − x > h, it is 0 when

y < x, and it is y−x
h when 0 ≤ y − x ≤ h. It is immediate to see that they

satisfy axioms 1-7. Moreover, if h = 1 our definition immediately reduces to the
crisp definitions of = and <. Consider, again, the time series from Figure 2 and
its corresponding model T̃ obtained with the above fuzzy equality and ordering
relations, and in which we assume, for the purpose of this example, h = 4. A
possibly interesting property to be evaluated on this time series is starting from
day two, it is never true that blood pressure is low while temperature is high.
We can translate such a property as starting from day two, there is no interval
in which blood pressure is low (i.e., less than or equal to 100) and temperature
is high (i.e., greater than or equal to 38). The existence of such an interval is
translated to FHS as:

〈L〉(A2 ≤ 100 ∧A1 ≥ 38).

Among all witnesses of such a condition in T̃ , we find the interval [5, 6]: <̃(1, 5) =
4
4 , f(A1 ≥ 38, [5, 6]) = 2

2 , and f(A2 ≤ 100, [5, 6]) = 2
2 , so that Ṽ (〈L〉(A2 ≤

100 ∧A1 ≥ 38), [0, 1]) = 1.

Algorithm. We are ready to formalize the fuzzy time series checking algorithm.

Let T̃ = 〈I( ˜[n+ 1]), Ṽ , f〉 be a model based on some complete algebra H, ϕ a
formula of FHS, and α ∈ H. Algorithm 1 is the adaptation of Emerson and
Clarke’s classical CTL algorithm to the interval, fuzzy case, and it returns true if
and only if the value of ϕ on the (auxiliary) interval [0, 1] is greater than or equal

to α in T̃ . In Algorithm 1, we use the symbol ◦ ∈ {∨,∧,→} to denote a logical
symbol, and the symbol • to denote its algebraic corresponding one. Unlike the
crisp case, every sub-formula must be checked on every interval, because, in the
fuzzy case, any two intervals [x, y] and [z, t] may be related by any relation RX̃ .
The auxiliary data structure L can be thought of as a hash table indexed by
three elements, namely ψ, x, y, that is, a sub-formula, and two points. Accessing
L may be considered to have constant time complexity. Formulæ, classically
represented as binary trees, can be pre-processed in order to identify repeating
sub-formulæ, so that the main cycle of Algorithm 1 can be implemented in an
efficient way. It is worth observing that such a solution implicitly assumes that
n is a reasonably low value; for very high values of n, a different solution should
be designed for the dimension of L to be manageable.

Complexity. Let T̃ = 〈I( ˜[n+ 1]), Ṽ , f〉 be a model based on m temporal at-
tributes, each with n distinct points, and let k be the length of the input formula
ϕ. Since the length of the time series grows as time passes, while its width remains
unchanged as well as the property to check, we can assume that m, k = o(n),
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Algorithm 1 Fuzzy interval logic multivariate time series checking algorithm.

1: function Check(T̃ , ϕ, α)
2: L = ∅
3: for ψ ∈ sub(ϕ) in increasing length order do
4: if ψ = β, with β ∈ H then

5: for [x, y] ∈ I( ˜[n+ 1]) do
6: L(ψ, [x, y]) = β

7: if ψ = A ./ a then

8: for [x, y] ∈ I( ˜[n+ 1]) do
9: L(ψ, [x, y]) = f(A ./ a, [x, y])

10: if ψ = τ ◦ ξ then

11: for [x, y] ∈ I( ˜[n+ 1]) do
12: L(ψ, [x, y]) = L(τ, [x, y]) • L(ξ, [x, y])

13: if ψ = 〈X〉τ then

14: for [x, y] ∈ I( ˜[n+ 1]) do
15: s = 0
16: for [z, t] ∈ I( ˜[n+ 1]) do
17: s← s ∨ (RX̃([x, y], [z, t]) ∧ L(τ, [z, t]))

18: L(ψ, [x, y]) = s

19: if ψ = [X]τ then

20: for [x, y] ∈ I( ˜[n+ 1]) do
21: s = 1
22: for [z, t] ∈ I( ˜[n+ 1]) do
23: s← s ∧ (RX̃([x, y], [z, t])→ L(τ, [z, t]))

24: L(ψ, [x, y]) = s

25: return L(ϕ, [0, 1]) � α

that is, that there are much less temporal variables and much less sub-formulæ
than there are distinct points. Thus, we can express the size of the input as
O(n). Also, we can assume that the join (∨), meet (∧), and Heyting implication
(→) operations take constant time in n, and that each call to f takes time O(n)
(in the worst case scenario, in fact, each call to f requires exploring an interval
with n points). The most external cycle is executed O(n) times. In the worst-
case scenario, during each execution ψ is a modal formula. Since there are O(n2)

intervals in T̃ , the complexity of the modal case is O(n4). Therefore, the entire
algorithm runs in O(n5).

Theorem 1. The TFIMC problem can be solved in polynomial time by a deter-
ministic algorithm.

4 Conclusions

In this paper we first defined, and then solved, the multivariate time series fuzzy
interval logic checking problem. Despite its simplicity, the interest in this prob-
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lems lies in the fact that multivariate time series are ubiquitous in certain areas
of data science and learning, but they have never before been linked to the clas-
sical model checking problem. Yet, we believe that many interesting properties
can be formulated, and therefore checked, on a time series, and that the recently
introduced fuzzy interval temporal logic FHS is a suitable language to do so. As
future work, our intention is to design and test an efficient implementation of
our algorithm, and to explore further interactions between model checking and
learning, specifically, symbolic learning of FHS formulæ over time series.
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