
Understanding the Involvement of Developers in Missing
Link Community Smell: An Exploratory Study on Apache
Projects
Toukir Ahammed, Moumita Asad and Kazi Sakib

Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Abstract
Missing link smell occurs when developers collaborate in source code without communication. This can affect software
maintenance by the means of lacking mutual awareness, mistrust and knowledge gap. Existing studies have investigated
the relationship of missing link smell with code smell and different socio-technical factors like turnover. This study aims to
understand how many developers are involved with missing link smell, by calculating the percentage of smelly developers
for a project. The study also investigates the relationship between the number of contributions and the number of missing
link involvements of a developer. The result shows that the percentage of smelly developers involved with missing link smell
is 8.7% on average. The result also suggests a moderate positive correlation between the contribution of a developer to the
project and the involvement in smell.

Keywords
missing link smell, community smell, software engineering, empirical analysis

1. Introduction
Community smells are the organizational and social anti-
patterns in a development community [1]. Community
smells may lead to the emergence of social debt which
indicates unforeseen project costs connected to a sub-
optimal software development community. Community
smells may not be an immediate obstacle for software
development but these can affect software maintenance
negatively in the long run [2]. Missing link is one of the
common community smells. It refers to the condition
when two co-committing developers show uncooperative
behavior by not communicating [3].

Missing link community smell decreases communi-
cation activities in the development community. The
lack of communication and cooperation negatively af-
fects mutual awareness and trust among developers [3].
A software product can be thought of as the combined ef-
fort of all developers. So, collaboration along with proper
communication is necessary among developers. It is im-
portant to know how many developers are involved in
missing link smell as they may affect the whole project.
Identifying these developers and analyzing their charac-
teristics is important. This will help the project managers
to take steps such as task reassigning, team reformation,
increasing awareness about communication etc. to keep
communication issues lower among the developers in
the community.

QuASoQ 2020: 8th International Workshop on Quantitative
Approaches to Software Quality
email: bsse0806@iit.du.ac.bd (T. Ahammed); bsse0731@iit.du.ac.bd
(M. Asad); sakib@iit.du.ac.bd (K. Sakib)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

The detection of missing link smell and its impact on
software artifacts have been analyzed in previous stud-
ies. S. Magnoni proposed the identification pattern of
missing link community smell [3]. Tamburri et al. ex-
amined the relationship between community smells and
different socio-technical factors, e.g., socio-technical con-
gruence, turnover etc [4]. This study considered missing
link, organizational silo, black cloud and radio silence
community smell. Palomba et al. investigated the impact
of missing link smell and four other community smells on
code smell intensity [2]. Catolino et al. analyzed the role
of four community smells including missing link smell
on gender diversity and women participation in open-
source community [5]. However, developer involvement
in missing link smell and how developer contributions in
the project relate to missing link smell have not been ana-
lyzed yet. In this context, the current study aims to focus
on these factors by addressing the following Research
Questions (RQs).

RQ1: Howmany developers are involved inmiss-
ing link community smell?

In an open-source project, there can be many devel-
opers who contribute to the project. All the developers
may not be involved in missing link community smell.
This RQ aims to find how many developers are involved
in missing link smells in a community. This is important
to know the collective contribution of developers to the
number of missing link smells in a project. This finding
will help the project managers to understand the severity
of communication issues among developers in the com-
munity. The action can be different to mitigate missing
link smell based on the number of developers involved
in smells.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

64

mailto:bsse0806@iit.du.ac.bd
mailto:bsse0731@iit.du.ac.bd
mailto:sakib@iit.du.ac.bd
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

RQ2: How does missing link smell relate with a
developer contribution?

This RQ focuses on the involvement of individual de-
veloper in missing link smell. This RQ relates an impor-
tant characteristic of a developer, i.e., contribution, to
missing link smell. This finding will help project man-
agers understanding which type of developers involve
more in missing link smell. This information can be used
to decide which developers can be monitored to control
missing link smell in the community from the beginning
of a project.

In this study, missing link smells are analyzed on seven
open-source projects ofApache ecosystem. These projects
are selected for being large enough to analyse and the
availability of communication data, i.e., mailing list. First,
the instances of missing link smell are detected in each
project. The missing link smell is identified by finding
cases where a collaboration does not have its communi-
cation counterpart. Then the developers associated with
each smell are identified by extracting the instance of
smell. The fraction of developers involved with missing
link smell is calculated to check whether a subset of de-
velopers are involved with this type of smell. Then the
correlation is investigated between the contribution of
developers and their involvement in missing link smells.

The results of the study show that a small part of the
total developers involved with missing link community
smell. On average, 8.7% of the total developers of a project
are involvedwithmissing link smell. This study also finds
a significant moderate positive correlation between the
developer contribution and their involvement in missing
link smell.

2. Background
This section provides some important terminologies to
better understand the missing link community smell.

Developer Social Network (DSN): A network of a
software development community where a node repre-
sents developer and relationships between developers,
e.g., communication, coordination, are represented by an
edge.

CollaborationNetwork: A specific type of DSNwhich
indicates the collaboration in a development community.
Here, a node represents a developer who contributes to
the project in the version control system. Two develop-
ers are connected through an edge if they contribute to
the same part of source code within a given time frame
[3]. Figure 2 represents an example of a collaboration
network.

Communication Network: A specific type of DSN
which indicates the communication within the defined
communication channel of a development community.
Here, a node represents developers who communicate

Figure 1: Developer Social Network

in the defined communication channel, i.e., mailing list.
Two developers are connected through an edge if they
replied in the same e-mail within a given time frame [3].
A communication network is illustrated in Figure 3.

Missing Link Community Smell: A missing link
community smell occurs when a couple of developers
collaborate with each other but show uncooperative be-
haviors by not communicating. This smell can be identi-
fied by detecting collaboration between two developers
that do not have the communication counterpart in de-
fined communication channel, e.g., development mailing
list [3].

An example of DSN is illustrated in Figure 1. The up-
per part of the graph represents communication and the
lower part represents the collaboration among develop-
ers. The developers are connected with a solid line if
they communicate with each other. The developers are
connected to the file icon through a dashed line if they
contribute to that source code file.

The collaboration and communication network can be
generated separately from this DSN. Figure 2 and Fig-
ure 3 represent the collaboration and the communication
network respectively. The missing link smell can be iden-
tified comparing the collaboration network with the com-
munication network. There is a link between developer
E and F in the collaboration network (Figure 2) but there
is no corresponding link between these two developers
in the communication network (Figure 3). Developer E
and F are collaborating on the same part of source code
but they are not connected through any communication
link. Thus, this is considered as an instance of a missing
link between developer E and F.

3. Related Work
In recent years, community smells are studied to incor-
porate the organizational and social aspects of developer
community in software engineering research. Some stud-
ies focused on defining different community smells that
can lead to unforeseen project costs [1], [6]. On the other
hand, some studies investigated the impact of community

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

65

Figure 2: Collaboration Network

Figure 3: Communication Network

smells on different software artifacts [2], [4].
Tamburri et al. first introduced the concept of social

debt in software engineering [6]. Later, in an industrial
case study, they improved and elaborated the definition of
social debt. In the same study, they defined nine different
community smells which are connected to social debt
[1]. They also suggested a list of possible mitigations of
community smells such as learning community, cultural
conveyors, stand-up voting etc., to avoid the negative
effects.

Magnoni proposed the identification pattern of four
out of nine community smells [3] defined in [1]. He
developed an open-source tool CODEFACE4SMELLS1 as
an extension to CODEFACE [7]. This tool is capable of
detecting community smells from the change history
in the version control system and the communication
history in development mailing list.

Tamburri et al. analysed the distribution of community
smells in open-source projects [4]. They also assessed the
relation between community smells and existing socio-
technical quality factors, e.g., socio-technical congruence,
communicability, turnover etc.

Palomba et. al examined the relationship between so-
cial and technical debt [2], [8]. They assessed the impact
of community smells on code smells. They found commu-
nity smells significantly influencing code smell intensity.
They also proposed a community-aware code smell in-
tensity model in which both technical and community
related factors were considered.

Catolino et al. analysed the role of gender diversity
and women participation in community smell [5]. They
considered four types of community smell i.e., organi-

1https://github.com/maelstromdat/CodeFace4Smells

zational Silo, Lone Wolf, Black Cloud and Radio Silence.
They found that gender diverse team had a lower num-
ber of community smells than non-gender diverse team.
They also showed that gender diversity and women par-
ticipation were important factors for Black Cloud and
Radio Silence whereas organizational Silo and Lone wolf
were found partially related.

The existing studies have focused on community smells
and the impact of these smells on software artifacts. The
phenomenon of community smells is surrounded with
developers in a development community. However, devel-
oper involvement in missing link smell and the relation
between missing link smell and developer contributions
have not been investigated yet. So, the developers in-
volved with community smells and how their contribu-
tion relate to missing link smell need to be explored.

4. Methodology
This study aims to understand how many developers of a
project are involved in missing link smell. This study also
wants to assess the relationship between a developer’s
contribution and involvement in missing link smell. First,
the missing link smell is detected for all the selected
projects. Then the percentage of smelly developers is
retrieved for each project. Later, the correlation analysis
is performed between a developer’s contribution and
involvement in missing link smell.

4.1. Dataset
In this work, seven large open-source projects belonging
to APACHE ecosystem are selected for analysis. These
projects have been chosen because they are large and the
mailing lists are publicly available. Table 1 provides the
list of analysed projects with their name, source code link,
development mailing list and analysis period. All projects
are hosted in online version control system GitHub and
the development mailing list archives are available on
Gmane2.

The selected projects are large enough in terms of
community members and the number of commits. The
projects have 668 community members on average. All
the projects have a substantial number of commits, with
an average of 10359. Thus the study has enough collabo-
ration and communication data for analysis.

4.2. Missing Link Smell Detection
The selected projects are analysed using a six-month anal-
ysis window. The analysis period of a project starts from
when both communication in mailing list and change
history in repository are available. A few more months

2http://gmane.io

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

66

Table 1
List of Analysed Projects

Project Name Source Code Mailing List Analysis Period

1 Apache Cassandra github.com/apache/cassandra gmane.comp.db.cassandra.devel Oct-2009 - Sep-2020
2 Apache Cayenne github.com/apache/cayenne gmane.comp.java.cayenne.devel Nov-2007 - Aug-2020
3 Apache CXF github.com/apache/cxf gmane.comp.apache.cxf.devel Nov-2010 - Sep-2020
4 Apache Jackrabbit github.com/apache/jackrabbit gmane.comp.apache.jackrabbit.devel Dec-2005 - Sep-2020
5 Apache Jena github.com/apache/jena gmane.comp.apache.jena.devel Oct-2012 - Sep-2020
6 Apache Mahout github.com/apache/mahout gmane.comp.apache.mahout.devel Oct-2008 - Aug-2020
7 Apache Pig github.com/apache/pig gmane.comp.java.hadoop.pig.devel Oct-2010 - Aug-2020

are excluded to make the analysis period divisible by six
months. The analysis period for each project is given in
Table 1. For example, Apache Cassandra project has the
analysis period of 11 years starting from October 2009 to
September 2020.

For every analysis window of a project, a communica-
tion network and a collaboration network is built. The
communication network is generated by extracting com-
munication data from development mailing list and the
collaboration network is generated by extracting collab-
oration data from the project repository. After having
both communication and collaboration networks, the in-
stances of missing link smell are identified by comparing
every collaboration link with communication networks.
If any collaboration link does not have its communica-
tion counterpart, this link is identified as a missing link
instance.

An open-source tool, CODEFACE4SMELLS [4], is used
to detect missing link community smell in this study.
This tool is capable of detecting missing link smell in
the aforementioned way from project repository and
development mailing list. The tool requires the link of
source code repository and mailing list archive as input.
Then the tool returns a list of missing link instances for
each window of the project. A missing link instance is
represented by a pair of developers. For example, (𝑎, 𝑏)
represents a missing link instance between developer 𝑎
and 𝑏.

4.3. Smelly Developers Identification
A developer involved with a missing link smell is consid-
ered as a smelly developer. An instance of missing link
smell consists of two collaborating developers who do
not communicate with each other. Thus for every miss-
ing link smell, there are two smelly developers. CODE-
FACE4SMELLS outputs a missing link instance as a pair
of developers. So, the smelly developers can be obtained
by extracting all missing link instances of a project. The
smelly developers of a project 𝑥 can be denoted by a set
𝑆𝐷𝑥. The number of smelly developers of the project will
be the number of elements in 𝑆𝐷𝑥.

To calculate the percentage of smelly developers in a
project, the total number of developers of that project is
required. The total number of developers is defined as
the sum of the number of developers who contribute to
source code and the number of members who communi-
cate on mailing list [3]. The total number of developers
of a project is obtained by counting the number of mem-
bers present in either collaboration or communication
network generated by 𝐶𝑂𝐷𝐸𝐹𝐴𝐶𝐸4𝑆𝑀𝐸𝐿𝐿𝑆. The per-
centage of smelly developers of a project is calculated
using the following formula (Equation 1),

𝑝𝑒𝑟𝑐𝑆𝐷𝑥 =
𝑛𝑢𝑚𝑆𝐷𝑥
𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑣𝑥

× 100%, (1)

where 𝑛𝑢𝑚𝑆𝐷𝑥 is the number of smelly developers in
project 𝑥 and 𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑣𝑥 is the number of total developers
in project 𝑥.

4.4. Correlation Analysis
RQ2 aims to understand the relationship between a de-
veloper’s contribution and involvement in missing link
smell. To address this RQ, the correlation between fol-
lowing two measures is analysed:

1. howmany commits a developer has in the project
repository

2. how many times a developer is involved in miss-
ing link smell

In open-source projects, commits are themost representa-
tive form of coding contribution [9]. So, the contribution
of a developer in a project is measured by the number
of commits of that developer in the project repository.
The number of commits of every individual developer is
retrieved from the source code repository.

The number of involvement in missing link smells can
be obtained from the list of missing link instances of a
project. First, the developers are extracted from all the
missing link instances of the project. Then the number
of involvement is calculated counting how many times a
developer occurs in the list.

Both the number of commits and the number of in-
volvement in smells of a developer are converted into

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

67

Table 2
Correlation coefficient interpretation

Correlation Coefficient (Negative) Correlation Coefficient (Positive) Interpretation

-0.4 < 𝜏𝑏 ≤ 0.0 0.0 ≤ 𝜏𝑏 < 0.4 Weak
-0.7 < 𝜏𝑏 ≤ -0.4 0.4 ≤ 𝜏𝑏 < 0.7 Moderate
-0.9 < 𝜏𝑏 ≤ -0.7 0.7 ≤ 𝜏𝑏 < 0.9 Strong
-1.0 ≤ 𝜏𝑏 ≤ -0.9 0.9 ≤ 𝜏𝑏 ≤ 1.0 Very Strong

percentage to achieve the relative measurement. The
commit percentage of a developer is calculated using
Equation 2.

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝐶𝑜𝑚𝑚𝑖𝑡 =
𝑛𝑢𝑚𝐶𝑜𝑚𝑚𝑖𝑡𝑖

∑𝑛
𝑖=1 𝑛𝑢𝑚𝐶𝑜𝑚𝑚𝑖𝑡𝑖

× 100% (2)

where 𝑛𝑢𝑚𝐶𝑜𝑚𝑚𝑖𝑡𝑖 is the number of commits of devel-
oper 𝑖 and 𝑛 is the total number of smelly developers.

Equation 3 is used to calculate missing link smell in-
volvement of a developer in percentage.

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘 =
𝑛𝑢𝑚𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑖

∑𝑛
𝑖=1 𝑛𝑢𝑚𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑖

×100% (3)

where 𝑛𝑢𝑚𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑖 is the number of involvement
in missing link smells of developer 𝑖 and 𝑛 is the total
number of smelly developers.

Finally, the correlation analysis is performed between
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝐶𝑜𝑚𝑚𝑖𝑡 and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘 for each project
individually. Kendall’s tau-b [10] is used to assess the
degree of association between these two variables. Both
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝐶𝑜𝑚𝑚𝑖𝑡 and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘 have tied values
in the dataset. As Kendall’s tau-b can handle tied ranks,
this is used for the correlation analysis. The correla-
tion coefficient is considered significant if the p-value is
less than 0.01. The correlation coefficient is interpreted
according to Table 2. The correlation coefficient, 𝜏𝑏, in-
dicates the strength of the correlation. 𝜏𝑏 has a range
of value from -1.0 to 1.0. As 𝜏𝑏 closes to 0, it indicates
less correlation between two variables. As 𝜏𝑏 approaches
to -1.0 or +1.0, the strength of correlation between two
variables is increased. The positive value of 𝜏𝑏 indicates a
positive correlation and the negative value of 𝜏𝑏 indicates
a negative correlation between two variables.

5. Result Analysis
This section presents the result analysis and discussion
of this study. All the missing link smells found in se-
lected projects are analysed to answer the two research
questions. Analysis and discussion for both research
questions are provided as follows.

5.1. RQ1: How many developers are
involved in missing link community
smell?

To answer this RQ, all missing link smells of a project are
considered. For every project, the number of total devel-
opers and the number of smelly developers are calculated.
Then the percentage of smelly developers is obtained for
each project.

Table 3 demonstrates the percentage of smelly devel-
opers for each project. For example, Apache Cassandra
project has 1380 total developers and 205 smelly devel-
opers which is 14.9% of total developers. It is observed
that on average 10.5% of total developers of a software
community are involved in missing link smells. Apache
Cayenne community has the highest percentage of smelly
developers (21.1%). This is also the smallest community
among 7 communities. Tamburri et. al. found that the
number of community smell grows quadratically with
the number of community members until the threshold
of 200 community members [4]. The occurrences of com-
munity smell tend to stabilize after this threshold. As the
number of total developers in Apache Cayenne commu-
nity is less than 200, the number of missing link smell
has not stabilized yet. So, this project has relatively more
missing link smell and consequently more smelly devel-
opers. Excluding Apache Cayenne project, the rest six
projects have 8.7% smelly developers on average.

These results suggest that only a small portion of de-
velopers in an open-source software community are in-
volved with missing link smells. They do not commu-
nicate appropriately with their co-committing or collab-
orative developers. Thus, they contribute to the total
number of community smells in a software community.

5.2. RQ2: How does missing link smell
relate with a developer contribution?

To answer this RQ, the correlation between a developer’s
contribution and involvement in missing link smell is an-
alyzed. Kendall’s tau-b is used as a correlation technique
since it can handle tied values.

First, the correlation analysis is performed individually
for each development community. The Kendall’s tau-b
coefficients and p-values are provided in Table 4. For

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

68

Table 3
Percentage of Smelly Developers

Project Name Total Developers Smelly Developers Smelly Developers(%) Average

1 Apache Cassandra 1380 205 14.9%

8.7%

2 Apache CXF 972 94 9.7%
3 Apache Jena 244 34 13.9%
4 Apache Mahout 615 28 4.6%
5 Apache Pig 668 22 6.0%
6 Apache Jackrabbit 927 28 3.0%

7 Apache Cayenne 175 37 21.1%

Average 668 64 10.5%

Table 4
Correlation Analysis

Project Name Tau-b p-value

1 Apache Cassandra 0.508 < 0.01
2 Apache Cayenne 0.543 < 0.01
3 Apache CXF 0.528 < 0.01
4 Apache Jackrabbit 0.589 < 0.01
5 Apache Jena 0.452 < 0.01
6 Apache Mahout 0.409 < 0.01
7 Apache Pig 0.513 < 0.01

Overall 0.612 < 0.01

example, the correlation coefficient for Apache Cassan-
dra project is 0.508 and it represents a moderate positive
correlation. The value of correlation coefficient is sig-
nificant with a p-value less than 0.01. All seven projects
of this study show a moderate positive correlation be-
tween number of commits and number of smells which
is statistically significant with p<0.01.

Another correlation analysis is performed after com-
bining the data from all the projects. The value of the
correlation coefficient is slightly increased to 0.612 but
still falls under the range of moderate positive correlation.
This result is also statistically significant with a p-value
less than 0.01.

These results suggest that a developer who contributes
more in a project tends to have more missing link smells.
This can happen because a developer, who contributes
more, have to communicate more with other develop-
ers. The overload of communication may be the reason
for involving in more missing link smells than others.
From another point of view, a developer having more
contribution to a project is likely to be more familiar and
experienced with that project. As he knows most of the
aspects of that project, he may take the communication
with co-committers lightly while contributing. However
further analysis is required to find out the causes of in-
volving in more smells.

6. Threats to Validity
This section discusses the potential threats that may af-
fect the validity of this study.

Threats to external validity: Threats to external
validity concern the generalization of the obtained results.
In this study, seven projects from Apache are analysed.
Thus the generalisation requires more projects belonging
to different systems. However, to mitigate this threat
large and diverse projects are selected that have a long
change history - 11 years on average.

Threats to internal validity: Threats to internal va-
lidity concern the factors that can influence the result but
are not accounted for. In this study, CODEFACE4SMELLS
tool is used for the detection of missing link smell. The
outputs of CODEFACE4SMELLS are directly incorporated
in this study without checking whether there is any de-
fect in the tool. However, the capability of this tool of
identifying missing link smell was evaluated in [3]. This
tool is also used in other studies in detecting community
smells [2], [5], [11].

Moreover, this tool relies on mailing list to detect
communication among developers. But there may ex-
ist other communication channels, e.g., Skype, Facebook
etc., where developers communicate with each other. The
result can be changed if these communication source are
considered. However, mailing list represents the main
communication channel for the projects analysed in this
study according to the contribution guidelines of these
projects. Besides, mailing list is used as the communica-
tion source in other related studies [4], [7].

7. Conclusion
This study explores the percentage of developers in a
software development community involved in missing
link smells. Furthermore, the relationship between devel-
oper contribution and involvement in missing link smell
is examined. At first, missing link smells are detected for
all the projects. Next, the smelly developers are identified

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

69

by extracting missing link instances. The percentage of
smelly developers are calculated for every project. The
number of appearances of a developer in missing link
smell is counted. The contribution of a developer to a
project is measured by the number of commits. Finally,
correlation analysis is done between contribution and
involvement in smell.

This study analyses seven open-source projects of
Apache. The result shows that the number of developers
involved in missing link smells is 8.7% on average. This
study also founds that there is a moderate positive cor-
relation between the number of commits of a developer
and the number of involvement in missing link smells.
The developers who contribute more tend to involve in
more missing link smell.

In future, projects from other systems can be analysed
to assess the generalization of the result. Besides, other
types of community smell, e.g., organizational silo, radio
silence, can be examined to find their association with
developers contribution.

Acknowledgments
The virtual machine facility used in this research is pro-
vided by Bangladesh Research and Education Network
(BdREN).

References
[1] D. A. Tamburri, P. Kruchten, P. Lago, H. Van Vliet,

Social debt in software engineering: insights from
industry, Journal of Internet Services and Applica-
tions 6 (2015) 10.

[2] F. Palomba, D. A. A. Tamburri, F. A. Fontana,
R. Oliveto, A. Zaidman, A. Serebrenik, Beyond tech-
nical aspects: How do community smells influence
the intensity of code smells?, IEEE transactions on
software engineering (2018).

[3] S. Magnoni, An approach to measure commu-
nity smells in software development communities
(2016).

[4] D. A. Tamburri, F. Palomba, R. Kazman, Exploring
community smells in open-source: An automated
approach, IEEE Transactions on software Engineer-
ing (2019).

[5] G. Catolino, F. Palomba, D. A. Tamburri, A. Sere-
brenik, F. Ferrucci, Gender diversity and women
in software teams: How do they affect community
smells?, in: 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Software Engi-
neering in Society, IEEE, 2019, pp. 11–20.

[6] D. A. Tamburri, P. Kruchten, P. Lago, H. van Vliet,
What is social debt in software engineering?, in:
2013 6th International Workshop on Cooperative

and Human Aspects of Software Engineering, IEEE,
2013, pp. 93–96.

[7] M. Joblin, W. Mauerer, S. Apel, J. Siegmund,
D. Riehle, From developer networks to verified
communities: a fine-grained approach, in: 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 1, IEEE, 2015, pp.
563–573.

[8] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaid-
man, F. A. Fontana, R. Oliveto, Poster: How do
community smells influence code smells?, in: 2018
IEEE/ACM 40th International Conference on Soft-
ware Engineering: Companion, IEEE, 2018, pp.
240–241.

[9] S. Daniel, R. Agarwal, K. J. Stewart, The effects of di-
versity in global, distributed collectives: A study of
open source project success, Information Systems
Research 24 (2013) 312–333.

[10] M. G. Kendall, Rank correlation methods, 1948.
[11] F. GIAROLA, Detecting code and community smells

in open-source: an automated approach (2018).

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

70

	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	4.1 Dataset
	4.2 Missing Link Smell Detection
	4.3 Smelly Developers Identification
	4.4 Correlation Analysis

	5 Result Analysis
	5.1 RQ1: How many developers are involved in missing link community smell?
	5.2 RQ2: How does missing link smell relate with a developer contribution?

	6 Threats to Validity
	7 Conclusion

