
Comparison of Code Smells in iOS and Android
Applications
Kristiina Rahkemaa, Dietmar Pfahla

aInstitute of Computer Science, University of Tartu, Tartu, Estonia

Abstract
Code smells are patterns indicating bad practices that may lead to maintainability problems. For mobile applications
most of the research has been done on Android applications with very little research on iOS applications. Our goal
is to compare the variety, density, and distribution of code smells in iOS and Android applications. We analysed
273 open source iOS and 694 open source Android applications. We used PAPRIKA and GraphifySwift to find 19
object oriented code smells. We discovered that the distributions and proportions of code smells in iOS and Android
applications differ. More specifically, we found: a) with the exception of one code smell (DistortedHierarchy) all
code smells that could be observed in Android apps also occurred in iOS apps; b) the overall density of code smells is
higher on iOS than on Android with LazyClass and DataClass particularly sticking out; c) with regards to frequency,
code smells are more evenly distributed on iOS than on Android, and the distributions of code smell occurrences on
class level are more different between the platforms than on app level.

Keywords
Mobile applications, Android, iOS, Code smells

1. Introduction
Code smells are patterns indicating bad practices
that often lead to maintainability problems [1].
Code smells have been studied extensively for
desktop applications (shortened to ”apps” in the
following). For mobile apps most of the analysis
has been done on the Android platform.

Mannan et al. [2] analyzed 21 object oriented
code smells in open source Android apps. They
compared code smell occurrences on Android and
Java desktop apps looking at differences in variety,
density and distribution of code smells. They dis-
covered that the variety of code smells is the same,
but density and distribution of code smells in desk-
top Java and Android apps differ. They mention
that other mobile platforms should have the same
variety of code smells but do not discuss possible
differences in density or distribution.

Habchi et al. [3] used the tool PAPRIKA [4]
to analyse iOS and Android apps and compared

QuASoQ 2020: 8th International Workshop on Quantitative
Approaches to Software Quality, December 1st, 2020, Singapore
" kristiina.rahkema@ut.ee (K. Rahkema);
dietmar.pfahl@ut.ee (D. Pfahl)
� 0000-0003-2400-501X (D. Pfahl)

© 2020 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR Workshop Proceedings (CEUR-
WS.org)

proportions of code smells on these platforms.
They analysed iOS apps for four object oriented,
three iOS specific and Android apps for four ob-
ject oriented and two Android specific code smells.
They discovered that code smell proportions were
higher in Android apps.

Our goal is to compare the variety, density and
distribution of code smells in iOS and Android
apps. First we will check if variety, density and dis-
tribution of code smells differ in iOS and Android
apps to see if the results are similar to differences
found between Android and desktop Java apps by
Mannan et al. [2]. Second we extend the analysis
done by Habchi et al. [3] by comparing the den-
sities and distributions of more code smells in iOS
and Android apps, to see if Android apps are in
general more prone to code smells and if different
platforms are more prone to different code smells.
In this study we aim to answer the following re-
search questions:

RQ 1: Are all types of object-oriented code
smells present in both iOS and Android apps?

To answer this and the following research ques-
tions, we used the tool GraphifySwift1 [5] to anal-
yse iOS Apps and the tool PAPRIKA [4] to anal-
yse Android apps. To make the code smell defi-
nitions (and calculations) comparable across plat-

1https://github.com/kristiinara/GraphifySwift

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

79

mailto:kristiina.rahkema@ut.ee
mailto:dietmar.pfahl@ut.ee
https://orcid.org/0000-0003-2400-501X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org
https://github.com/kristiinara/GraphifySwift


forms, we adapted the code smell queries defined
by Rahkema et al. [5] when searching for code
smells in Android apps. In total, we identified 19
code smell types that could potentially occur in
apps on both platforms. We took under consider-
ation that the variety of code smells depends on
the programming language used. For example, the
code smell RefusedParentBequest is not applica-
ble to Swift because Swift lacks the 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 key-
word. Therefore, we did not include it in our anal-
yses.

Our analysis showed that 18 of the 19 identified
code smells occurred in apps on both platforms,
i.e., Android and iOS. Code smell DistortedHier-
archy never occurred in iOS apps.

To better understand whether the frequency of
occurrence is similar, we formulated our second re-
search question.

RQ 2: Do code smells occur with the same
density in iOS and Android apps?

To answer this question, we calculated the over-
all density of all code smells and the densities of
each of the 19 code smells over all apps on both iOS
and Android. It turned out that, contrary to what
Habchi et al. [3] expected, the overall density of
code smells is higher in iOS apps than in Android
apps. Code smells LazyClass, DivergentChange,
PrimitiveObsession and DataClass had a particu-
larly high density in iOS apps. On the other hand,
code smells LongMethod, LongParameterList and
ShotgunSurgery were clearly more frequent in An-
droid apps. In addition, we found that the code
smell densities per code smell type were some-
times higher and sometimes smaller in iOS apps
as compared to Android apps. This might be ex-
plained by the fact that Android apps tend to have
more of the code smells that correspond to more
complex classes whereas iOS apps tend to have
more of the code smells that correspond to more
simple classes.

To better understand the distributions of code
smells in apps on the two platforms iOS and An-
droid, we formulated our third research question.

RQ 3: Do code smell distributions differ be-
tween iOS and Android apps?

To answer this question we first compared the
proportions of code smell occurrences across all
iOS and Android apps. The results confirmed what
we had seen when we compared code smell densi-

ties: the proportions of code smells differ between
platforms. In addition, we saw that code smells are
more evenly distributed in iOS apps as compared
to Android apps.

Then we analyzed how large the share of smelly
apps on each platform is and how large the share
of smelly classes is on each platform. We did these
analyses for each code smell type separately. It
turned out that the percentages of smelly apps
are relatively similar between platforms. Only the
code smell DataClass is much more prominent in
iOS apps than in Android apps.

In addition, we found that the distributions of
code smell occurrences on class level are more dif-
ferent between the platforms than on app level.
This result might, again, be explained by the fact
that Android apps usually have larger classes and,
thus, tend to have more of the code smells that cor-
respond to more complex classes whereas iOS apps
tend to have more compact classes and, thus, tend
to have more of the code smells that correspond to
more simple classes. This effect is more prominent
when doing the analysis on class level than on app
level.

2. Related Work
Code smells in desktop applications: Fowler
[1] defined 22 object oriented code smells and pro-
vided refactorings for these code smells. Khomh
et al. [6] studied the impact of code smells. They
found that code smells affect classes negatively
and that classes with more code smells were more
prone to changes [6]. Olbrich et al. [7] studied the
evolution and impact of code smells based on two
open source systems. Their findings confirmed
that code smells affect the way how code changes
in a negative way. They were also able to iden-
tify different phases of evolution in code smells [7].
Linares et al. [8] made a large scale analysis of
Java Mobile apps and discovered that anti-patterns
negatively impact software quality metrics such as
fault-proneness [8].

Tufano et al. [9] studied the change history
of 200 open source projects and found that most
code smells are introduced when the correspond-
ing code is created and not when it is changed.
They also found that when code does become

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

80



smelly through evolution then it can be character-
ized by specific code metrics. Contrary to common
belief [10] they discovered that most code smells
are not introduced by newcomers, but by develop-
ers with high work loads and high release pressure
[9].

Code smells in Android applications: Dif-
ferent kinds of code smells have been researched
for Android, such as object-oriented, Android-
specific, security-related and energy-related code
smells. Gottschalk et al. proposed an approach
to detect energy related code smells on mobile
apps and validated this approach on Android and
showed that it is possible to reduce energy con-
sumption by refactoring the code [11]. Ghafari et
al. [12] studied security-related code smells and
discovered that most apps contain at least some
security-related code smells.

Hecht [4] proposed an approach to detect code
smells and anti-patterns on Android systems and
implemented this approach in a tool called PA-
PRIKA. This tool analyses the Android APK, cre-
ates a model of the code and inserts this model into
the neo4j database. Code smells are then defined as
database queries which makes it possible to query
code smells on a large number of apps at the same
time. He analysed 15 popular apps for the occur-
rences of four object oriented and three Android
code smells. Hecht et al. [13] tracked, the soft-
ware quality of 106 popular Android apps down-
loaded from the Google Play Store along their evo-
lution. They calculated software quality scores for
different versions of these apps and tracked their
evolution. There were different evolution graphs,
such as constant decline, constant rise, stability or
sudden change in either direction depending on
the programming practices of the team [13]. This
shows that code quality is not necessary linked
to app size, but the programming practices of the
developers. Mateus et al. [14] used PAPRIKA to
analyze Android apps written in Java and kotlin.
They compared code smell occurrences in both
languages and concluded that apps that were ini-
tially written in Java and later introduced kotlin
were of better quality than other Android apps
[14]. They analysed a set of 2167 open source An-
droid apps combining different databases of open
source Android apps.

In these papers using PAPRIKA the number of

code smells studied was limited due to the num-
ber of code smells PAPRIKA is able to detect and
ranged from three to four object oriented code
smells and four to six Android specific code smells
[15][13][14]. Mannan et al. [2] decided to broaden
this scope and studied 21 object oriented code
smells using the commercial tool InFusion. They
analyzed open source Android and Java desktop
apps for these 21 code smells and compared their
occurrences. Mannan et al. detected that the va-
riety of code smells was the same and most code
smells occur in both systems in a similar frequency
with major differences only for a couple of code
smells. They concluded that studying code smells
on mobile platforms can be done with tools meant
for desktop apps. They also found that the code
smells that have been researched so far are not
the same ones that occur most and that the focus
should change to code smells that are more rele-
vant [2]. They suggest that other mobile platforms
will have the same code smells, but do not give
any suggestions towards the possible differences
in density or distribution. They analysed 500 An-
droid and 750 Java desktop apps randomly selected
from GitHub. Unfortunately, the tool Infusion used
by Mannan et al. does not seem to be available
anymore. Therefore a direct comparison using In-
fusion for code smell analysis on iOS is no longer
possible.

Code smells in iOS applications: Habchi et
al. [3] used PAPRIKA to detect code smells in
iOS apps. They used ANTLR4 grammars to gen-
erate parsers for Swift and Objective-C code. They
created the apps graphs that could then be used
by PAPRIKA. They analysed 176 Swift and 103
Objective-C apps from a collaborative list of open
source iOS apps. In their study they analysed four
object oriented, three iOS specific and two Android
specific code smells. They compared smell propor-
tions in iOS and Android apps and discovered that
the proportions of code smells were higher in An-
droid apps. On the other hand proportions of code
smells in Objective-C and Swift were similar [3].

Rahkema et al. [5] introduced a tool called
GraphifySwift that analyses Swift code and detects
34 object oriented code smells. Similarly to PA-
PRIKA, GraphifySwift enters data about the anal-
ysed app into the neo4j database. The database
structures used by PAPRIKA and GraphifySwift

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

81



are similar, but slightly different. In their analy-
sis they used the same collaborative list of open
source iOS apps but did not compare the results to
Android.

In the following, we extend the research in
[2, 3, 5]. We adapted the queries defined in [5],
where possible, so that they could be applied to
a database populated by PAPRIKA. We used PA-
PRIKA to analyse Android apps and GraphifySwift
to analyse Swift apps. Then we compared the two
platforms with regards to variety, density, and dis-
tribution of 19 code smells.

3. Methods
In Section 3.1, we present the tools used for code
smell analysis. In Section 3.2, we cover the choice
of apps and in Section 3.3 we describe the analysis
performed.

3.1. Code Smell Analysis
In previous research a tool called PAPRIKA has
been used to find code smells in Android appli-
cations [4, 15, 13, 3, 14]. PAPRIKA analyses the
Android APK, enters data about the applications
into a neo4j database and defines queries for each
code smell. For analysing iOS applications Habchi
et al. [3] used PAPRIKA to query code smells, but
populated the neo4j database using ANTLR gram-
mars. Rahkema et al. [5] introduced a new tool
called GraphifySwift that extends the functional-
ity of PAPRIKA. It analyses Swift code, enters data
about the iOS applications into a neo4j database
and defines database queries to find code smells.
PAPRIKA is able to find four object oriented code
smells. Since the queries for these four code smells
are implemented identically in GraphifySwift, it
produces the same results as PAPRIKA for them.
In GraphifySwift additional code smell queries are
defined. Overall, GraphySwift is able to find 34 ob-
ject oriented code smells.

For the analysis of iOS apps we used the tool
GraphifySwift. We used the same thresholds as
in Rahkema et al. [5]. Note that we focused on
Swift code as Swift has replaced Objective-C and
not many differences between the two languages
are to be expected according to Habtchi et al. [3].

For Android apps we used PAPRIKA to populate
the neo4j database. We then took the queries de-
fined by Rahkema et al. for GraphifySwift to find
code smells. Since GraphifySwift was originally
developed to analyse iOS apps we had to adapt the
code smell queries so that they could be used on
the database produced by PAPRIKA. We made the
following changes to the code smell queries:

We removed references to Module nodes, i.e.,
the relationship

(app)-APP_OWNS_MODULE->(module)-
MODULE_OWNS_CLASS->(class)

was substituted by the relationship

(app)-APP_OWNS_CLASS->(class)

We removed references to argument type or
substituted them with argument name. Argu-
ment names are not accessible in Java bytecode
and therefore the argument name provided by PA-
PRIKA is actually the argument type.

Finally, we added the relationship

(variable|argument)-IS_OF_TYPE
->(class)

by finding classes whose name matched the argu-
ment name or variable type.

After these modifications of the database and
queries, 19 of the 34 GraphifySwift code smell
queries could be used on the Android app database
produced by PAPRIKA.

The code smell queries that had to be excluded
contained metrics or attributes that were not pro-
vided by PAPRIKA. We excluded for example
queries referring to code duplication, maximum
nesting depth, number of switch statements and
number of comments.

For the analysis of Android apps we calculated
new thresholds based on the apps that we anal-
ysed. The list of iOS and Android thresholds is in-
cluded in the thresholds table2.

3.2. Choice of Applications
For analysis of iOS apps we used the same collab-
orative list of open source iOS apps as was used by

2https://figshare.com/articles/conference_contribution/
Thresholds_for_iOS_and_Android_code_smell_analysis/
13102991

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

82

https://figshare.com/articles/conference_contribution/Thresholds_for_iOS_and_Android_code_smell_analysis/13102991
https://figshare.com/articles/conference_contribution/Thresholds_for_iOS_and_Android_code_smell_analysis/13102991
https://figshare.com/articles/conference_contribution/Thresholds_for_iOS_and_Android_code_smell_analysis/13102991


Rahkema et al. [5] and whose older version was
used by Habchi et al. [3]. The final set of success-
fully analysed apps was the same as in [5] and in-
cluded 273 open source iOS apps.

For analysis of Android apps we took the list of
apps provided by Habchi et al. [3]. Since the list
only included app package names, we queried All-
FreeAPK api3 to find and download these apps. We
decided to search AllFreeAPK instead of GitHub,
as PAPRIKA uses APKs for analysis and this way
we were able to skip the step of compiling these
apps. Later during the analysis we needed to dis-
card some of the very big apps due to performance
issues. In total we included 694 open source An-
droid apps in our analysis.

3.3. Data Analysis
To answer RQ1, we checked whether any of the 19
identified code smells occurred in at least one app
on each platform.

To answer RQ2, we calculated the densities of
code smells for both iOS and Android apps and
compared these. Code smell density was calcu-
lated by counting the number of code smells (total
and per code smell type) and dividing by the num-
ber app instructions.

To answer RQ3, we had to perform several cal-
culations. To calculate the relative frequencies of
code smells per code smell type on each platform,
we counted the code smells of a type in all apps
and divided by the total code smell count. We did
this per platform. To calculate the code smell dis-
tributions on app and class levels per platform, we
counted how many apps (and classes) contain at
least one code smell of a certain type and then di-
vided by the total number of apps (and classes).

4. Results
We analysed 273 open source iOS apps using
GraphifySwift and 694 open source Android apps
using PAPRIKA and modified code smell queries
from GraphifySwift to answer our research ques-
tions. We analyzed the apps with regards to
19 code smells: BlobClass, ComplexClass, Cyclic-
ClassDependency, DataClass, DataClumpFields,

3https://m.allfreeapk.com/api/

DistortedHierarchy, DivergentChange, Inappro-
priateIntimacy, LazyClass, LongMethod, LongPa-
rameterList, MiddleMan, ParallelInheritanceHier-
archies, PrimitiveObsession, SAPBreaker, Shot-
gunSurgery, SpeculativeGeneralityProtocol, Swis-
sArmyKnife and TraditionBreaker.

Below, we present and discuss the results for
each research question separately.

RQ 1: Are all types of object-oriented code
smells present in both iOS and Android apps?

When comparing the occurrence of code smells
on each platform, we found that 18 of the 19 iden-
tified code smells occurred in apps on both plat-
forms, i.e., Android and iOS. Code smell Distort-
edHierarchy never occurred in iOS apps.

Our result does not fully support Mannan et al.’s
expectation that mobile apps on other platforms
than Android should exhibit the same code smells
[2].

RQ 2: Do code smells occur with the same
density in iOS and Android apps?

The results of our code smell density analysis
is shown in Figure 1. Accumulated over all code
smells it turned out that the apps on the iOS plat-
form had a density of 41.7 smells/kilo-instructions
while the apps on Android only had a density of
34.4 smells/kilo-instructions. This result is con-
trary to what Habchi et al. [3] expected.

Moreover, it can be seen from Figure 1 that the
code smell densities differ between iOS and An-
droid. Code smells LazyClass, DivergentChange,
PrimitiveObsession and DataClass had a particu-
larly high density in iOS apps. On the other hand,
code smells LongMethod, LongParameterList and
ShotgunSurgery were clearly more frequent in An-
droid apps. The fact that code smell densities
were sometimes higher and sometimes lower in
iOS apps as compared to Android apps might be
explained by the fact that Android apps tend to
have more of the code smells that correspond to
more complex classes whereas iOS apps tend to
have more of the code smells that correspond to
more simple classes.

RQ 3: Do code smell distributions differ be-
tween iOS and Android apps?

Figure 2 shows the relative frequency of code
smell occurrences over all apps on the Android
platform (blue bars) and the iOS platform (red
bars). The results confirm what we had seen when

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

83

https://m.allfreeapk.com/api/


Lo
ng

M
et

ho
d

Lo
ng

P
ar

am
et

er
Li

st

S
ho

tg
un

S
ur

ge
ry

La
zy

C
la

ss

S
A

P
B

re
ak

er

D
iv

er
ge

nt
C

ha
ng

e

P
rim

iti
ve

O
bs

es
si

on

D
at

aC
lu

m
pF

ie
ld

s

C
om

pl
ex

C
la

ss

In
ap

pr
op

ria
te

In
tim

ac
y

D
is

to
rt

ed
H

ie
ra

rc
hy

B
lo

bC
la

ss

C
yc

lic
C

la
ss

D
ep

en
de

nc
y

S
pe

cu
la

tiv
eG

en
er

al
ity

P
ro

to
co

l

D
at

aC
la

ss

S
w

is
sA

rm
yK

ni
fe

P
ar

al
le

lIn
he

rit
an

ce
H

ie
ra

rc
hi

es

Tr
ad

iti
on

B
re

ak
er

M
id

dl
eM

an

C
od

e 
sm

el
l c

ou
nt

 p
er

 1
00

0 
in

st
ru

ct
io

ns

0

2

4

6

8 Android

iOS

Figure 1: Comparison of code smell densities between
Android (blue) and iOS (red) apps

Lo
ng

M
et

ho
d

Lo
ng

P
ar

am
et

er
Li

st

S
ho

tg
un

S
ur

ge
ry

La
zy

C
la

ss

S
A

P
B

re
ak

er

D
iv

er
ge

nt
C

ha
ng

e

P
rim

iti
ve

O
bs

es
si

on

D
at

aC
lu

m
pF

ie
ld

s

C
om

pl
ex

C
la

ss

In
ap

pr
op

ria
te

In
tim

ac
y

D
is

to
rt

ed
H

ie
ra

rc
hy

B
lo

bC
la

ss

C
yc

lic
C

la
ss

D
ep

en
de

nc
y

S
pe

cu
la

tiv
eG

en
er

al
ity

P
ro

to
co

l

D
at

aC
la

ss

S
w

is
sA

rm
yK

ni
fe

P
ar

al
le

lIn
he

rit
an

ce
H

ie
ra

rc
hi

es

Tr
ad

iti
on

B
re

ak
er

M
id

dl
eM

an

%
 o

f c
od

e 
sm

el
ls

0

5

10

15

20

25

Android

iOS

Figure 2: Code smell proportions on Android (blue) and
iOS (red)

we compared code smell densities: the proportions
of code smells differ between platforms. In addi-
tion, we see that code smells are more evenly dis-
tributed in iOS apps as compared to Android apps.

Then we analyzed how large the share of smelly
apps on each platform is and how large the share
of smelly classes is on each platform. We did these
analyses for each code smell type separately.

Figures 3 and 4 show the percentages of apps
and classes, respectively, containing code smells of
a certain type.

We found that the percentages of smelly apps
are relatively similar between platforms. The
biggest differences occurs for code smell DataClass
(79% of iOS apps have at least one affected class

La
zy

C
la

ss

Lo
ng

M
et

ho
d

Lo
ng

P
ar

am
et

er
Li

st

S
ho

tg
un

S
ur

ge
ry

S
A

P
B

re
ak

er

D
iv

er
ge

nt
C

ha
ng

e

P
rim

iti
ve

O
bs

es
si

on

C
om

pl
ex

C
la

ss

D
at

aC
lu

m
pF

ie
ld

s

B
lo

bC
la

ss

In
ap

pr
op

ria
te

In
tim

ac
y

D
is

to
rt

ed
H

ie
ra

rc
hy

C
yc

lic
C

la
ss

D
ep

en
de

nc
y

S
pe

cu
la

tiv
eG

en
er

al
ity

P
ro

to
co

l

D
at

aC
la

ss

S
w

is
sA

rm
yK

ni
fe

P
ar

al
le

lIn
he

rit
an

ce
H

ie
ra

rc
hi

es

Tr
ad

iti
on

B
re

ak
er

M
id

dl
eM

an

%
 o

f a
pp

s 
w

ith
 c

od
e 

sm
el

l

0

20

40

60

80 Android

iOS

Figure 3: Comparison of code smell frequencies on app
level between Android (blue) and iOS (red)

while only 7% of Android apps are affected), Mid-
dleMan (15% of iOS apps are affected but only 1%
of Android apps), and DistortedHierarchy (25 % of
Android apps are affected but none of the iOS apps
is).

We found that the distributions of code smell oc-
currences on class level are more different between
the platforms than on app level. This result might,
again, be explained by the fact that Android apps
usually have larger classes and, thus, tend to have
more of the code smells that correspond to more
complex classes whereas iOS apps tend to have
more compact classes and, thus, tend to have more
of the code smells that correspond to more simple
classes. This effect is more prominent when doing
the analysis on class level than on app level.

In addition, we analyzed the occurrence of the
method-based code smells LongMethod and Long-
ParameterList separately. We found that in iOS
apps 9% of methods are considered LongMethod
while this is the case for 14% of the methods in An-
droid apps. In iOS apps 5% of the methods have a
LongParameterList while this is the case for 9% of
methods in Android apps.

5. Threats to Validity
Internal Validity: In our case internal validity
might be affected by how code smells are detected
by the tools used. PAPRIKA has been used in mul-
tiple studies [15, 13, 3, 14]. GraphifySwift was in-

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

84



La
zy

C
la

ss

Lo
ng

M
et

ho
d

Lo
ng

P
ar

am
et

er
Li

st

S
ho

tg
un

S
ur

ge
ry

S
A

P
B

re
ak

er

D
iv

er
ge

nt
C

ha
ng

e

D
at

aC
lu

m
pF

ie
ld

s

C
om

pl
ex

C
la

ss

In
ap

pr
op

ria
te

In
tim

ac
y

P
rim

iti
ve

O
bs

es
si

on

D
is

to
rt

ed
H

ie
ra

rc
hy

B
lo

bC
la

ss

D
at

aC
la

ss

C
yc

lic
C

la
ss

D
ep

en
de

nc
y

S
pe

cu
la

tiv
eG

en
er

al
ity

P
ro

to
co

l

P
ar

al
le

lIn
he

rit
an

ce
H

ie
ra

rc
hi

es

S
w

is
sA

rm
yK

ni
fe

Tr
ad

iti
on

B
re

ak
er

M
id

dl
eM

an

%
 o

f c
la

ss
es

 w
ith

 c
od

e 
sm

el
l

0

10

20

30

40
Android

iOS

Figure 4: Comparison of code smell frequencies on
class level between Android (blue) and iOS (red)

troduced in [5] and validated by replicating results
in [3]. We adapted code smell queries defined in
[5], but did so by not changing the code smell def-
initions themselves.

External Validity: We analysed open source
apps. For swift the analysis can only be performed
if the code of the app is accessible. For Android the
analysis could be performed on apps from the app
store. Therefore for both platforms open source
apps were chosen. Previously [5] it was shown that
although there are some differences between apps
that are on the app store the differences are small.
On the iOS platform we only analyzed apps written
in Swift. Given that Objective-C and Swift code is
quite similar, we assume our results extend to apps
written in Objective-C.

Construct Validity: GraphifySwift uses stan-
dard definitions of code smells found in literature
[5]. In code smell queries we use thresholds calcu-
lated based on the app set analysed. Using thresh-
olds is a common approach for detecting code
smells. We used the same method to determine
thresholds as was used by Hecht et al. [13], Habchi
et al. [3] and [5]. Thresholds might differ between
languages, but since they are calculated based on
the current set of apps analysed language specific
differences should be resolved.

Reliability: For iOS analysis we used the same
collaborative list of open source iOS apps written
in Swift as was used in [5]. All these apps are
available on GitHub. The list of successfully anal-
ysed apps can be found on the tool GitHub page.

GraphifySwift is open source and also available on
the tool GitHub page. For Android analysis we
used the list of apps analysed by [3], the list of suc-
cessfully analysed apps can be found in the list of
apps4. PAPRIKA is open source and also available
on GitHub. The adapted code smell queries used
for Android analysis can be found in the list of An-
droid code smell queries5.

6. Conclusion
Mannan et al. [2] analysed the density and dis-
tribution of code smells in Android apps. We cal-
culated a similar density and distribution for iOS
and Android apps and saw that these densities and
distributions were different. Additionally we dis-
covered that one of the code smells analysed by
Mannan et al. was not present in iOS apps.

Habchi et al. [3] compared ratios of code smell
occurrences on iOS and Android. We extended
their research by adding additional code smells
to the analysis and found that code smell occur-
rences are not always higher in Android apps. For
some code smells they were higher in iOS apps.
This shows that Android apps are not necessar-
ily smellier, but different kinds of code smells are
more prevalent depending on the platform.

These results can be interesting for developers
moving from one platform to the other. It can also
be useful for developers of tools for these plat-
forms. We see that the emphasis on which code
smells to look at is different depending on the plat-
form.

Acknowledgments
This research was partly funded by the Estonian
Center of Excellence in ICT research (EXCITE),
the IT Academy Programme for ICT Research De-
velopment, the Austrian ministries BMVIT and
BMDW, and the Province of Upper Austria un-
der the COMET (Competence Centers for Excel-
lent Technologies) Programme managed by FFG,

4https://figshare.com/articles/dataset/iOS_and_Android_
app_analysis_data/13103012

5https://figshare.com/articles/conference_contribution/
GraphifySwift_queries_adapted_for_PAPARIKA_for_
Android_code_smell_analysis/13102994

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

85

https://figshare.com/articles/dataset/iOS_and_Android_app_analysis_data/13103012
https://figshare.com/articles/dataset/iOS_and_Android_app_analysis_data/13103012
https://figshare.com/articles/conference_contribution/GraphifySwift_queries_adapted_for_PAPARIKA_for_Android_code_smell_analysis/13102994
https://figshare.com/articles/conference_contribution/GraphifySwift_queries_adapted_for_PAPARIKA_for_Android_code_smell_analysis/13102994
https://figshare.com/articles/conference_contribution/GraphifySwift_queries_adapted_for_PAPARIKA_for_Android_code_smell_analysis/13102994


and by the group grant PRG887 of the Estonian Re-
search Council. We thank Rudolf Ramler for the
thorough review of a previous version of this pa-
per.

References
[1] M. Fowler, Refactoring: improving the de-

sign of existing code, Addison-Wesley Profes-
sional, 2018.

[2] U. A. Mannan, I. Ahmed, R. A. M. Almurshed,
D. Dig, C. Jensen, Understanding code smells
in android applications, in: 2016 IEEE/ACM
Int’l Conf. on Mobile Softw. Eng. and Systems
(MOBILESoft), IEEE, 2016, pp. 225–236.

[3] S. Habchi, G. Hecht, R. Rouvoy, N. Moha,
Code smells in ios apps: How do they com-
pare to android?, in: 2017 IEEE/ACM 4th
Int’l Conf. on Mobile Softw. Eng. and Systems
(MOBILESoft), IEEE, 2017, pp. 110–121.

[4] G. Hecht, An approach to detect android an-
tipatterns, in: Proc. of the 37th Int’l Conf. on
Software Engineering-Volume 2, IEEE Press,
2015, pp. 766–768.

[5] K. Rahkema, D. Pfahl, Empirical study on
code smells in ios applications, in: Proc.
of the IEEE/ACM 7th Int’l Conf. on Mobile
Softw. Eng. and Systems, MOBILESoft ’20,
Association for Computing Machinery, New
York, NY, USA, 2020, p. 61–65.

[6] F. Khomh, M. Di Penta, Y.-G. Gueheneuc,
An exploratory study of the impact of code
smells on software change-proneness, in:
2009 16th Working Conf. on Reverse Engi-
neering, IEEE, 2009, pp. 75–84.

[7] S. Olbrich, D. S. Cruzes, V. Basili, N. Zaz-
worka, The evolution and impact of code
smells: A case study of two open source sys-
tems, in: 2009 3rd Int’l symposium on empir-
ical software engineering and measurement,
IEEE, 2009, pp. 390–400.

[8] M. Linares-Vásquez, S. Klock, C. McMillan,
A. Sabané, D. Poshyvanyk, Y.-G. Guéhéneuc,
Domain matters: bringing further evidence
of the relationships among anti-patterns, ap-
plication domains, and quality-related met-
rics in java mobile apps, in: Proc. of the
22nd Int’l Conf. on Program Comprehension,

ACM, 2014, pp. 232–243.
[9] M. Tufano, F. Palomba, G. Bavota, R. Oliveto,

M. Di Penta, A. De Lucia, D. Poshyvanyk,
When and why your code starts to smell bad,
in: Proc. of the 37th Int’l Conf. on Software
Engineering-Volume 1, IEEE Press, 2015, pp.
403–414.

[10] T. Sharma, Extending Maintainability Analy-
sis Beyond Code Smells, Ph.D. thesis, 2019.

[11] M. Gottschalk, J. Jelschen, A. Winter, Saving
energy on mobile devices by refactoring., in:
EnviroInfo, 2014, pp. 437–444.

[12] M. Ghafari, P. Gadient, O. Nierstrasz, Security
smells in android, in: 2017 IEEE 17Th Int’l
Working Conf. on Source Code Analysis and
Manipulation (SCAM), IEEE, 2017, pp. 121–
130.

[13] G. Hecht, O. Benomar, R. Rouvoy, N. Moha,
L. Duchien, Tracking the software quality of
android applications along their evolution (t),
in: 2015 30th IEEE/ACM Int’l Conf. on Auto-
mated Softw. Eng. (ASE), IEEE, 2015, pp. 236–
247.

[14] B. G. Mateus, M. Martinez, An empirical
study on quality of android applications writ-
ten in kotlin language, Empirical Software
Engineering (2018) 1–38.

[15] G. Hecht, R. Rouvoy, N. Moha, L. Duchien,
Detecting antipatterns in android apps, in:
Proc. of the Second ACM Int’l Conf. on Mo-
bile Softw. Eng. and Systems, IEEE Press,
2015, pp. 148–149.

8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2020)

86


	1 Introduction
	2 Related Work
	3 Methods
	3.1 Code Smell Analysis
	3.2 Choice of Applications
	3.3 Data Analysis

	4 Results
	5 Threats to Validity
	6 Conclusion

