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Abstract. In this paper, we present LinkingPark, our system for Se-
mantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab 2020). LinkingPark is an integrated approach for semantic ta-
ble interpretation. Our system includes a cascaded pipeline for candidate
generation, an iterative coarse-to-fine entity disambiguation algorithm,
a multi-pass property linking algorithm, and a type inference algorithm
tackling the issue of loose ontology in Wikidata. Results on SemTab 2020
demonstrate the effectiveness of our approach.

1 Introduction

Semantic table interpretation could be realised by adding annotations over struc-
tured data based on the semantic knowledge stored in a knowledge base. Aiming
at benchmarking systems built for this purpose, the 2020 edition4 of the Seman-
tic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab-
2020) consists of three sub-tasks: Column Type Annotation (CTA), Cell Entity
Annotation (CEA) and Columns Property Annotation (CPA).

Formally, the specified input is a relational table T = {{t11, . . . , t1n}, . . . ,
{tm1, . . . , tmn}} that contains a matrix of m rows and n columns of cells, where
ri = {ti1, . . . , tin} denotes the i-th row and cj = {t1j , . . . , tmj} denotes the j-th
column. The content of each cell is a string, denoted as tij , which is usually used
as a textual mention of a named entity and henceforth called a entity mention.
The knowledge base (KB) in this paper can be described with (E , T ,P,F). Here,
E = {e1, . . . , e|E|} is the set of all entities in the KB. T = {τ1, . . . , τ|T |} ⊆ E is the
set of types in the KB. The types are connected with the subclass of relation
to form a type ontology. P = {p1, . . . , p|P|} is the set of possible properties to

? Work conducted during Shuang and Tingting’s internship at Microsoft Research
Asia and Alperen’s AI residency program at Microsoft Research Cambridge.
Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

4 http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2020/index.html
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describe key attributes of an entity. F is the set of facts which consists of a set
of RDF triples 〈s, p, o〉, where s denotes a subject (an entity e ∈ E), p ∈ P is a
property (also known as predicate or relation) and o denotes an object (an entity
e, or a data value, e.g. number, time, string etc.). The target knowledge base of
SemTab-2020 is Wikidata.5

The three matching tasks of SemTab 2020 can be described as:

– CEA (Cell Entity Annotation): to link each entity mention string tij in table
T to its referent entity in E .

– CTA (Column Type Annotation): to associate a table column cj with an
entity type t ∈ T . A column may be described by multiple types and the
most specific one is usually preferred.

– CPA (Columns Property Annotation): to associate a pair of columns, cs and
ct with a property p ∈ P.

2 Approach
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Fig. 1. Overall framework of LinkingPark.

Fig. 1 illustrates the overall framework of LinkingPark. The input table is
passed to the entity linker and the property linker. The entity linker generates
candidate entities through a cascaded pipeline that becomes the input for both
the entity disambiguation module and the property linker. The entity disam-
biguation module adopts a coarse-to-fine algorithm to output the annotation of
entities. We also integrate the property features from the property linker into

5 http://wikidata.org/
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the entity disambiguation module to characterise the relatedness among different
rows. Finally, we design a heuristic multi-pass sieve method for type inference
based on the linked entities. Next, we describe each component in detail.

2.1 Entity linker

The entity linker is implemented with a typical approach that consists of two
sub-modules: candidate generation and entity disambiguation.

Candidate generation Given an entity mention tij , we generate its candidate
entities Eij = (eij1, . . . , eijk) through a cascaded pipeline which includes three
core steps:

– Accessing Wikidata MediaWiki API: we start by accessing Wikidata
MediaWiki API6. We set the largest number of candidates returned from
this API to be 50.

– Correcting the spelling errors: The MediaWiki API does not handle
spelling errors. Following the design principles of a typical spelling correc-
tor7, we implement a tailored mention spelling corrector for better candidate
retrieval. Specifically, the corrector checks all strings within one edit distance
to the original mention string, then retains the strings among the set of Wiki-
data entity titles as candidates. This step is not intended for mentions with
multiple spelling errors due to the exponential complexity in the length of
edit distance.

– Searching using fine-grained Elastic Search: In addition, we build a
fine-grained Elastic Search index using all entity titles of Wikidata. The
Elastic Search uses a weighted combination of word-based BM25 score and
trigram-based BM25 score to do fuzzy matching. This step can improve
the recall of candidate generation, but may also return more false positive
candidates compared with the first two steps.

Entity disambiguation Given an entity mention tij along with its candidate
list Eij = (eij1, . . . , eijk), the entity disambiguation stage aims to select the
correct entity êij ∈ Eij from its candidate list based on their contextual infor-
mation.

Formally, given a table T = {{t11, . . . , t1n}, . . . , {tm1, . . . , tmn}}, the objec-
tive of entity disambiguation is to find the most compatible entity assignment
for each cell tij :

argmax
e11,e12,...,emn∈E11×E12×Emn

g(e11, e12, . . . , emn|T ). (1)

where g(e11, e12, . . . , emn|T ) is the function measuring the compatibility score of
entity assignments in table T .

6 https://www.wikidata.org/w/api.php?action=help&modules=wbsearchentities
7 https://norvig.com/spell-correct.html
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Algorithm 1 coarse-to-fine disambiguation algorithm

Input: Table T with candidate lists {Eij} and parameters {α, β, γ}
Output: Entity assignments {êij}

1: Initialize e0ij = argmaxe∈Eij
γ · edit dist sim(e, tij) + (1− α− β − γ) · ps(e|tij)

2: while t < max iter and any of the entity assignments have changed do
3: scol = 1

m−1

∑m
k=1;k 6=i coarse ent sim(e, et−1

kj )

4: srow =

{
1

n−1

∑n
k=1;k 6=j max(flexical(e, tik), fentity({e}, Eik)) if j=0

fentity(Ei0, {e}) else

5: sij(e) = α · scol + β · srow + γ · edit dist sim(e, tij) + (1− α− β − γ) · ps(e|tij)
6: end while
7: Prune candidates based on sij(e)
8: while t < max iter and any of the entity assignments have changed do
9: scol = 1

m−1

∑m
k=1;k 6=i fine ent sim(e, et−1

kj )

10: srow =

{
1

n−1

∑n
k=1;k 6=j max(flexical(e, tik), fentity({e}, Êik)) if j=0

fentity({et−1
i0 }, {e}) else

11: sij(e) = α · scol + β · srow + γ · edit dist sim(e, tij) + (1− α− β − γ) · ps(e|tij)
12: end while
13: êij = etij
14: return {êij}

Since the exact inference of the above objective is NP-hard, we adopt the
framework of an Iterative Classification Algorithm (ICA) [1] for approximate
inference. ICA is an iterative local search method which greedily re-assigns each
cell to the entity that maximises the probability conditioned on the current en-
tity assignments of other cells. The main assumption behind the design of the
disambiguation model is to characterise: (1) type consistency along each col-
umn of entities, and (2) property relatedness within each row of attribute values.
In other words, entities mentioned in the same column should have compatible
types, while entities or values mentioned in the same row (henceforth describ-
ing the same entity) should be related via relational facts and satisfy lexical
constraints. Specifically, our model includes a coarse-grained phase which tries
to filter out type-incompatible candidates and a fine-grained phase which se-
lects the best candidate by considering more fine-grained property values. The
pseudo-code of the disambiguation procedure is shown in Algorithm 1, which
can be described as the following four steps:

1. Initialization (line 1): Let etij be the cell tij ’s entity assignment at itera-
tion t. Initially, the entity assignments for all cells are independently set by
maximising local scores for each specific cell (line 1). The score is a weighted
combination of the string similarity between the cell text and the title of the
candidate entity (edit dist sim(e, tij)

8) and a prior score ps(e|tij). The prior
score ps(e|tij) is calculated as ps(e|tij) = 1

ranke
, where ranke is the ranking

index (starting at 1) of the entity e in its candidate list Eij .

8 Implemented using the Levenshtein.ratio function in Python
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2. Coarse-grained phase (lines 2-6): During the coarse phase, the candidate
entity’s score sij(e) is a weighted combination of column support score scol,
row support score srow, string similarity edit dist sim(e, tij) and prior score
ps(e|tij). The column score scol is calculated by averaging the entity similar-
ity between the current candidate entity and each of the remaining cells’ en-
tity assignments in the same column of the previous iteration (et−1kj ). Specifi-
cally, we represent each entity as a sparse feature vector where each property
and the value of instance of (P31) / subclass of (P279) properties serve
as one feature dimension. Our basic assumption is that the properties of an
entity are also a proxy of its type besides the explicit types annotation in
the KB. The coarse ent sim(·, ·) function is implemented by calculating the
cosine similarity of the above sparse feature vectors. Obviously, the features
are not equally important. We adopt a dynamic method to generate feature
weights by considering how the feature is shared along the column and how
discriminative it is for disambiguating the current cell. We use something
similar to TF-IDF weighing: the term fraction of a feature f in a column j
denoted by TFj(f) is defined as

TFj(f) =
|{et−1ij |f ∈ e

t−1
ij , 1 ≤ i ≤ m}|
m

, (2)

which is the fraction of entities in the column of last time step consisting of
this feature. To avoid the noise of irrelevant features, we set TFj(f) = 0 if
it is lower than 0.5. The Inverse Document Frequency (IDF) of a feature f
over one cell Tij is defined as

IDFij(f) = log
( |Eij |+ 1

|{e|f ∈ e, e ∈ Eij}|+ 1

)
+ 1, (3)

essentially treating each candidate as a document and measures the IDF over
it. Here we adopt a smoothed version of IDF to avoid zero-divisions and zero
weights. Finally, a feature over a cell Tij denoted by fij is defined as

fij = TFj(f) · IDFij(f). (4)

Similar TF-IDF formulations have been used successfully in previous SemTab
participants (e.g., the Tabularisi system [7] at SemTab 2019 calculating the
ranking score). We adapt this formulation for the ICA framework to calcu-
late pairwise entity similarities by implementing a smoothed version of IDF
and prune features with low support to mitigate the noise.
The row score srow is calculated by extracting the property features at both
lexical and entity level. This feature characterises the property relatedness
between current candidate entity and the remaining cells in the same row.
Specifically, for each cell if it lies in the main column of the table, we will
calculate the support score from each remaining cell in the same row. Oth-
erwise, we only consider the support score from the cell in the main column.
Given the property distribution from the property linker, the support score
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(fentity(·, ·) or flexical(·, ·)) is calculated by first retrieving the possible prop-
erties between the current candidate entity and the remaining cells followed
by getting the largest confidence in the corresponding property distribution.

3. Pruning (line 7): We reduce the search space at the current stage before
more fine-grained processing. For each entity we look at the candidates sorted
by their final scores. If the difference between the final scores of the top-2
entities is above a threshold min diff, then we only keep the top-1 candidate.
Otherwise, we only keep the top-K candidates plus candidates whose final
score is above a certain threshold (min abs).

4. Fine-grained phase (lines 8-12): For some highly ambiguous cases, we need
to compare the specific values of a certain property instead of looking at only
the appearance of the property fields. For example, for a column of Canadian
cities such as [“Kingston”, “Montreal”], the system could know that these
are cities after the coarse-grained step, but there exist multiple cities named
“Kingston”. We still have to make a choice between Kingston in Jamaica
and Kingston in Canada. In such cases, we have to further consider the
specific values of certain key properties, such as Country = Canada. In this
fine-grained phase we extend the sparse features for calculating entity simi-
larity from all properties to all property values.

2.2 Property linker

For the property linking algorithm, we use the approach presented in the tech-
nical report [3]. For every relational column, we start from the strings in the
cells and try to generate candidates as described in the previous section for the
coarse-grained phase. When the search does not return satisfactory results (for
example, none of the strings in the column can be matched to an entity), we
usually encounter numerical properties which contain numbers or dates and we
treat them as special columns.

For columns where we can identify KB entities, we try to find direct matches
or matches within a given edit distance with the property values of the entities
in the main column. For numerical properties, we try to find direct matches
within unit conversion. Once we have a set of matches, each row votes to find
a first most-likely property. If we do not reach a certain threshold, or the dif-
ference between the top choices is too small, we use a second refinement phase
that is more computationally expensive. For numerical properties we have pre-
computed a set of characteristic statistics per type (for example, human heights
have a certain range, mean and standard deviation). For each given type that
can suitably describe the main column, we check which of the pre-computed
statistics are best matches for the numerical column that we could not identify.
For the SemTab dataset we found that just looking at ranges suffices.

A common issue we encounter for Wikidata is that the entities do not have
complete information, i.e. some properties could be missing. For columns where
we can identify KB entities, we extend the ranking score by considering the
properties of similar entities. If several rows voted for a given property and
a given row does not have that property, we want to know if that property is
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missing or not applicable. We extend binary scoring, a given property present for
a given entity, to a new score in (0, 1) that takes into account how many similar
entities do or do not contain the relevant property. We define the most similar
entities of a given entity as the set of nearest neighbours (in cosine distance)
that share the same type with the given entity in the BigGraph space [4].

2.3 Type inference

Our type inference algorithm is a heuristic multi-pass sieve method that is fully
dependent on the entity linking results. To predict the type of column j, we
first acquire the entity linking results Ej = {êij |1 ≤ i ≤ m} from the entity
linker. Then we retrieve the entity types T (e) for each entity e ∈ Ej , where we
define T (e) as the set of all types satisfying the SPARQL expression ?entity

wdt:P31/wdt:P279?/wdt:P279? ?types., treating the values of instance of

(P31) and subclass of (P279) as the types for each entity. Then the goal is to
find the most common types shared by most of the entities. To do so, we define
the first criterion named SupportCount(t):

SupportCount(t) = |{e|e ∈ Ej , t ∈ T (e)}|. (5)

We select the type with maximum SupportCount(t), but multiple types may
have the same count. In that case, we want to prioritise the most specific one.
We design a second criterion named AverageLevel(t) based on the type ontology
to characterise the specificity of a type t:

AverageLevel(t) = AVG({h|e is instance of t via a h length path, e ∈ Ej}) (6)

Since lower distance with respect to the entity nodes indicates a more specific
type, we select the type with the minimum AverageLevel(t) to break the above
ties. However, this method does not guarantee uniqueness. In practice, we found
the following design works well on the SemTab data for tie-breaking. For the
main column, we select the type with minimum Population(t) on Wikidata,
where

Population(t) = |{e|t ∈ T (e), e ∈ E}|. (7)

For relation columns, we select the type with the minimum InstanceRank.

InstanceRank(t) = AVG({r|e is instance of t at r rank , e ∈ Ej}), (8)

where rank means the position of the type t among the statement group of the
instance of property.

3 Setup and Results

Accessing the online SPARQL endpoint is very slow given the large amount of
data, so we use an offline Wikidata dump (20200525). Our experimental pipeline
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starts by calling the MediaWiki API which usually takes 2-3 days for each Round.
After we generate the entity candidates, we cache the results and extract the
relevant subset of the Wikidata dump. Our multi-threaded Python pipeline takes
at most 20-30 minutes for each Round on a Intel(R) Xeon(R) CPU E7-4860 v2
(4 processors) machine. As we do not train the hyper-parameters, we empirically
set α to be 0.20, β to be 0.50, γ to be 0.1, min diff to be 0.30, min abs to be
0.50 and K to be 2.

3.1 Results

Table 1 shows the performance of our approach on SemTab 2020. For Round 1-3,
our system is consistently among the top-3 ranking systems in the leaderboard9.
Specifically, our approach is among the top-2 for CEA, top-1 for CTA and top-3
for CPA. For Round 4, the evaluation dataset additionally introduced a Tough
Tables (2T) subset with an average number of approximately 1,080 rows in each
table. This additional complexity makes it almost infeasible to use the original
candidate generation scheme that starts from accessing WikiMedia API, with the
number of queries significantly increased. We instead try to match the mention
strings with the entity titles, and query the online MediaWiki API only for
those remaining unmatched mentions. Without the ranking information of entity
candidates returned from MediaWiki API which induces our entity prior scoring
(Sec 2.1), the performance of our system drops on Round 4, especially on the
2T subset. The above results are indicative of the effectiveness of our approach.

Table 1. Experiment results on SemTab 2020 dataset

CEA CTA CPA

Dataset F1 Precision Rank AF1 APrecision Rank F1 Precision Rank

Round1 0.987 0.988 1 0.926 0.926 1 0.967 0.978 2
Round2 0.993 0.993 2 0.984 0.985 1 0.993 0.994 2
Round3 0.986 0.986 2 0.978 0.978 1 0.985 0.988 3
Round4 0.985 0.985 2 0.953 0.953 4 0.985 0.988 5
Round4 - 2T 0.810 0.811 3 0.686 0.687 3 - - -

4 Discussion

4.1 Synthetic data vs. Real data

The evaluation datasets for the SemTab challenge use synthetic data that is
automatically generated from the knowledge base. Although in the generation
process various refinement strategies have been adopted to simulate real data,
we argue that there is still a significant gap.

9 https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2020/results.html
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– In real data a table expresses the intent of its creator, while synthetic data
is generated through a random combination of type compatible entities,

– The spelling errors introduced are not necessarily representative of the errors
that a table creator might produce,

– Real data might contain much more entities, types, and relations outside the
specified knowledge base, making them more challenging than data synthe-
sised from the knowledge base.

The currently available datasets curated from real-world data are either in
small scale [5, 6] or with huge noise as the data is automatically extracted from
Wikipedia [2]. In order to make progress in this field, better datasets need to
be curated and carefully annotated to compliment the synthetic SemTab data
produced in the current way.

4.2 Type ontology in Wikidata

The type ontology in Wikidata is noisy, as we can see from the example in Fig 2.
Under an ontology with such complex sub-structures, it is hard to determine
the specificity of a certain type. In order to define the CTA task more clearly
and more fairly on the Wikidata ontology, further cleaning is required (either
manually or automatically) to reach a more reliable structure such as the one
curated for DBpedia.

Fig. 2. The graph of subclass of relations for the item Q5 labelled as hu-
man and its respective ancestors. Source: https://angryloki.github.io/wikidata-graph-
builder/?property=P279&item=Q5.
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4.3 Challenge design

Finally, we would like to suggest to split the dataset into a development set and
a test set. The test set should be used for final evaluation, while the development
set should be released for model design and tuning. This way participants can
try to improve their systems without having to make multiple submissions.

5 Conclusion

In this paper, we present LinkingPark, our system for SemTab 2020. Our pipeline
with multiple components is an integrated approach for semantic table interpre-
tation. Results on SemTab 2020 demonstrate the effectiveness of our approach
for all three tasks. We hope that some parts of our solutions as well as the ob-
servations and insights we gathered during the challenge will be beneficial for
future research efforts towards better understanding of tabular data.
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