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Abstract. In this paper, we present a numerical simulation of the game-
theoretic model of an environmental pollution problem. This model is
formalized by a noncooperative two-person differential game in Banach
space with separated dynamics of the agents and continuous payoff func-
tions depending on a game trajectory. The numerical simulation is based
on the dynamic programming approach and the finite difference method.
Some numerical results are provided for two-dimensional dynamic con-
flict model of an environmental pollution problem.
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1 Introduction

Application of the game-theoretic approach plays a special role in mathematical
modeling of environmental problems. The dynamic games that deal with similar
or related problems were investigated in many works, see e.g. [3–6, 9–12, 15] and
references therein.

In [14], the existence of ε-Nash equilibrium in a dynamic conflict model of
an environmental pollution problem which is formalized by the noncooperative
n-person differential game in Banach space was proved.

In this paper, we present a numerical simulation for the two-dimensional dy-
namic conflict model of an environmental pollution problem. Enterprises (agents)
contaminate a water reservoir by dumping a pollutant (harmful substance) of
the same type during the production process.

This model is formalized by a noncooperative two-person differential game
in Banach space with separated dynamics of the agents and continuous payoff
functions depending on a game trajectory. For simplicity, we consider the case of
separated dynamics of agents, in which the dynamics of each agent is described
by the initial boundary value problem for the parabolic equation involving Dirac
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measure. The existence of ε-Nash equilibrium in our model follows from the
results of [14].

The paper gives a formal mathematical description of the model and related
numerical method and presents simulation results.

2 The Model

A closed water reservoir (e.g. lake) is considered. Two enterprises dump a pol-
lutant (harmful substance) of the same type into this water reservoir during the
process of production. Both enterprises dump the pollutant at some prescribed
points of the reservoir.

Furthermore, it is assumed that the reservoir has a water intake. The level
of pollution at the water intake point (the total concentration of the pollutant
released by all enterprises) must not exceed the maximum permissible value.
It is assumed that if this value is exceeded, all the enterprises will pay a fine
(penalty) as a percentage of their income. It is also assumed that the company
has certain expenses associated with the cleaning of the pollutant.

The spread of the harmful substances in the reservoir occurs by diffusion.
Besides, a pollutant is decomposed with the rate r > 0.

The total income of an enterprise depends on its volume of production, which
is tightly linked with its total volume of dumped pollutant. Besides, the total
income depends on the overall cleaning expenses and possible pollution fines.
The aim of each enterprise is to maximize the total income for finite period of
time.

3 Differential Game

We will study the differential two-person game Γ (c0, T ) with a prescribed dura-
tion T <∞ and an initial position of the game c0. Let I = {i} = {1, 2} be a set
of the agents (enterprises).

We will consider the closed water reservoir as a rectangle Ω = [0, d1]× [0, d2].
Let zi(x1, x2, t) be the pollutant concentration of the agent i at the point

(x1, x2) ∈ Ω at the moment t ∈ [0, T ]. Denote by (x̄i1, x̄
i
2) ∈ Ω the prescribed

point of dumping the pollutant of the agent i ∈ I and by (xw, yw) the coordinates
of the water intake location inside the domain Ω.

Let us denote by ui(t) the intensity of dumping the pollutant of the agent
i ∈ I at the moment t. We assume that the intensity of dumping the pollutant
satisfies the following conditions:

0 ≤ ui(t) ≤ Gi(t), i ∈ I, (1)

at any moment t ∈ [0, T ]. Here Gi(t) > 0 is a given square integrable function
which describes the maximal intensity of dumping the pollutant of the agent i at
the moment t. Let us assume that the production expenditures per unit product
of the enterprise i are constant and equal to Mi > 0, i ∈ I.
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The dynamics of the agent i = 1, 2 in the game Γ (c0, T ) is described by
the initial boundary value problem for the following differential equation on the
domain Ω = (0, d1)× (0, d2) :

∂zi

∂t
= D

∂2zi

∂x21
+D

∂2zi

∂x22
− rzi + uiψi(x1, x2), x ∈ Ω, t > 0. (2)

Here D > 0 is the diffusion coefficient; r > 0 is the coefficient characterizing the
pollution decomposition; ui = ui(t) is a control function of the agent i, satisfying
the condition (1). The function ψi(x1, x2) = δ(x1− x̄i1, x2− x̄i2) gives the location
of the agent i inside the domain Ω.

Let the function zi(x1, x2, t) satisfies the following boundary conditions of
impenetrability:

∂zi

∂x1
= 0, x1 = 0, x2 ∈ [0, d2], t > 0, (3)

∂zi

∂x1
= 0, x1 = d1, x2 ∈ [0, d2], t > 0, (4)

∂zi

∂x2
= 0, x1 ∈ [0, d1], x2 = 0, t > 0, (5)

∂zi

∂x2
= 0, x1 ∈ [0, d1], x2 = d2, t > 0, (6)

and the following initial condition:

zi(x1, x2, 0) = ci0(x1, x2), x1 ∈ [0, d1], x2 ∈ [0, d2], t = 0, (7)

where ci0(x1, x2) is some given function describing the initial distribution of the
pollutant concentration of the agent i in the water reservoir at the initial moment
t = 0.

Definition 1. A measurable function ui = ui(t), satisfying the condition (1)
for all t ∈ [0, T ] is called the admissible control of the agent i ∈ I. Let us denote
by U i ⊂ Lp(0, T ), i ∈ I, the set of admissible controls (measurable functions)
ui(t), t ∈ [0, T ].

Let the function fi(t) ≥ 0 for all t ∈ [0, T ] determine the amount of the
penalty of the agent i for exceeding the maximum permissible value of pollution
at the water intake point (xw, yw) as follows:

fi(t)=



0, if
2∑
j=1

zj(xw, yw, t) ≤ Cw,

zi(xw, yw, t)
2∑
j=1

zj(xw, yw, t)

·

2∑
j=1

zj(xw, yw, t)− Cw

Cw
, if

2∑
j=1

zj(xw, yw, t) > Cw,
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where Cw is the maximum permissible value of pollution at the water intake
point.

Denote by qi = qi(t) the volume of production of the agent i at the moment
t. Let P̄i > 0 be the price of the product of the agent i.

Assume that the intensity of dumping the pollutant ui(t) linearly depends
on the production volume of the agent i:

ui(t) = αqi(t), α > 0.

Let p̄ > 0 be the payment for the discharge of a unit of pollutant. Then the
payoff of the agent i at time T is defined by the following functional:

Hi(z, ui) =

T∫
0

Piui(τ)(1− pfi(τ))dτ −
T∫

0

Miui(τ)dτ, (8)

where z = (z1, z2), Pi = P̄i/α, p = p̄/Pi, Mi > 0 is the production expenditures
per unit product of the enterprise i. The goal of the agent i is to maximize Hi(·).

Game Γ (c0, T ) is a particular case of a noncooperative n-person differential
game in Banach space that was studied in [14]. Below, for the sake of complete-
ness, let us recall the main results of [14].

The dynamics of the agent i ∈ I = {i} = {1, . . . , n} in the n-person differ-
ential game Γ (c0, T ) is described by the initial boundary value problem for the
following differential equation:

∂zi

∂t
=

∂

∂x

(
D(x, y, t)

∂zi

∂x

)
+

∂

∂y

(
D(x, y, t)

∂zi

∂y

)
−

−rzi + uiψi(x, y), (x, y) ∈ Ω ∈ R2, t > 0. (9)

Here D(x, y, t) > 0 is the diffusion coefficient; r > 0 is the coefficient char-
acterizing the pollution decomposition; ui ∈ Ui is a control parameter of the
agent i, Ui ⊂ Rmi is a compact set in Euclidean space. The function ψi(x, y) =
δ(x− xi, y − yi) gives the location of the agent i inside the domain Ω.

Let the function zi(x, y, t) satisfies the following boundary and initial condi-
tions:

D(t, x, y)
∂zi

∂m
= 0, (x, y) ∈ S, t ∈ [0, T ], (10)

zi(x, y, 0) = ci0(x, y), (x, y) ∈ Ω, t = 0, (11)

where m is an outward normal to the boundary surface S×[0, T ], ci0(x, y) is some
given function describing the initial distribution of the pollutant concentration
of the agent i in the water reservoir at the initial moment t = 0.

Let us represent the problem (9)–(11) as the initial-value problem for the
following operator-differential equation

dci(t)

dt
−A(t)ci(t) = νi(t), t ∈ [0, T ], (12)
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ci(0) = zi0 = ci0, (13)

where ci(t) = zi(x, y, t), νi(t) = ui(t) · δ(x − xi, y − yi). The operator Ac =
∂x(D(t, x, y)cx) + ∂y(D(t, x, y)cy)− rc allows for the boundary condition (10).

The equation (12) involves the Dirac measure. The existence of a unique
solution of abstract parabolic evolution equations involving Banach space-valued
Radon measures is proved in [1].

We assume that the coeffitients D and r in (9)–(11) satisfy the following con-
ditions D(t, x, y) ∈ C([0, T ];C1(Ω)), r ∈ L∞(0, T ;Lq(Ω)). According to results
of [1], the unique solution ci ∈ Lp(0, T ;W 1

p (Ω)), cit ∈ Lp(0, T ; (W 1
q (Ω))′), i ∈ I

of the problem (12)–(13) exists for all νi ∈ Lp(0, T ; (W 1
q (Ω))′), for all admissible

control ui ∈ U i ⊂ Lp(0, T ), and for all initial condition ci0 ∈ (W
2/p−1
q (Ω))′ and

q > 2 (1/p+ 1/q = 1).
Let us denote by Fi(c

i
0, t0, t) the set of the points ci(·) ∈ W 1

p (Ω) for which
there exists an admissible control ui(t) such that the game goes from the state
ci(t0) = ci0 to the state ci(t+ t0) for the time interval [t0, t]. The set Fi(c

i
0, t0, t)

is a bounded set of the space W 1
p (Ω). It is known [7] that if the boundary of the

domain Ω is smooth then a bounded set of the space W 1
p (Ω) is a compact set in

Lp(Ω). This implies that Fi(c
i
0, t0, t) is a compact set for all ci0 ∈ (W

2/p−1
q (Ω))′,

t0, t ∈ [0, T ] as well. Fi(c
i
0, t0, t0) = ci0 for all ci0 ∈ (W

2/p−1
q (Ω))′, t0 ∈ [0, T ].

The set Fi(c
i
0, t0, t) has semigroup property.

The set Fi(c
i
0, t0, t) is called the attainability set of the player i, i = 1, n

from the initial state ci0 on the time interval [t0, t].

Let us denote by F̂i(c
i
0, t0, t), i ∈ I the set of trajectories ĉi(ci0, t − t0) of

(12)–(13) which start at ci0 at the moment t0 and which are defined on the time

interval [t0, t]. The set of trajectories F̂i(c
i
0, t0, t) is compact e.g. in the space

Lp(0, T ;W 1−s
p (Ω)) for any s > 0, and the function F̂i(c

i
0, t0, t) is continuous in

the corresponding Hausdorff metric.
At every moment t ∈ [0, T ] of the game Γ (c0, T ) the agents know the realized

trajectory of the game, the dynamics and the duration T of the game.
Let ĉi(·) ∈ F̂i(ci0, 0, T ) be the trajectory of (12)–(13) arising from a control

ui and Πi
δ(ĉ

i) be the trajectory arising from the same control ui delayed by δT .
The following lemma describes the relation between these trajectories.

Lemma 1. For each δ ∈ (0, 1] there exists a map Πi
δ : F̂i(c

i
0, 0, T )→ F̂i(·) such

that, if ĉi(τ) = ĉ′i(τ) for τ ∈ [0, t], then Πi
δ(ĉ

i)(τ) = Πi
δ(ĉ
′i)(τ) for τ ∈ [0, t+δT ]

if (t + δT ) ≤ T and Πi
δ(ĉ

i)(τ) = Πi
δ(ĉ
′i)(τ) for τ ∈ [0, T ] if (t + δT ) > T .

Moreover,

εi(δ) = sup
ĉi∈F̂i(·)

‖ĉi −Πi
δ(ĉ

i)‖ −→
δ→0

0.

Let us fix the permutation p = (i1, . . . , ik, . . . , in) and consider n-person
multistep game Γ δp (c0, T ) at every step which the agents i1, . . . , in choose in

sequence controls ui1 , . . . , uik , . . . , uin .
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Definition 2. The strategy

δϕpik : F̂ ∗ik(·) =
∏
j 6=ik

F̂j(·)→ F̂ik(·),

of the agent ik in the game Γ δp (c0, T ) is a mapping such that if ĉj(τ) = ĉ′j(τ)

for j < ik, τ ∈ [0, lδT ] and if ĉj(τ) = ĉ′j(τ) for j > ik, τ ∈ [0, (l − 1)δT ], then
δϕpik(ĉ∗ik(τ)) = δϕpik(ĉ∗

′ik(τ)), τ ∈ [0, lδT ]. Here δ = 1/2N , l = 1, 2, . . . , 2N .

Let us denote by δΦpik the set of the strategies of the agent ik in the game

Γ δp (c0, T ). In the game Γ δp (c0, T ) the players i1, ..., in choose in sequence the

strategies δϕpi1 , . . . ,
δϕpin . The trajectory χ(δϕp) is uniquely defined for every n-

tuple δϕp = (δϕpi1 , . . . ,
δϕpin) stepwise on successive intervals [0, δT ], . . ., [T −

δT, T ]. The payoff function of the agent i ∈ I in the game Γ δp (c0, T ) is defined
as follows:

Hδ
i (c0,

δϕp) = Hi(χ
δ(δϕp)), (14)

here Hi(·) is the functional of the same kind as (8).
So, the n-person differential game Γ δp (c0, T ) with the prescribed duration T

is defined in a normal form:

Γ δp (c0, T ) = 〈I, {δΦpi }
n
1 , {Hδ

i }n1 〉.

Using the Zermelo-Neumann theorem, the existence of ε-equilibrium for any
ε > 0 in the multistep game Γ δp (c0, T ) can be proved.

The previous Lemma 1 implies the following lemma.

Lemma 2. If ik > i1, δϕpik ∈
δΦpik , then Πik

δ · δϕ
p
ik
∈ δΦ

pik
ik

, where pik = (ik, p̃),

p̃ is a permutation of the set I \ ik; moreover, for ĉ∗ik ∈ F̂ ∗ik(·)

‖δϕpik(ĉ∗ik)− (Πik
δ ·

δϕpik)(ĉ∗ik)‖ ≤ ε(δ) −→
δ→0

0.

The following lemma from [8] is valid.

Lemma 3. Let the game ΓH′ = 〈I, {X ′i}n1 , {H ′i}n1 〉 be obtained from the game
ΓH = 〈I, {Xi}n1 , {Hi}n1 〉 by the epimorphic mapping αi : Xi → X ′i, i = 1, . . . , n,
with

‖H(x)−H ′(αx)‖ ≤ ε, αx = (α1(x1), . . . , αn(xn)).

Then, if x is an ε-equilibrium of the game ΓH , then αx is the 3ε-equilibrium of
the game ΓH′ .

Let us define the main game Γ (c0, T ).

Definition 3. The pair (δi, {δϕpii }δ=1/2N ) is called the strategy of the agent i.
Here N ∈ Z, δi is a range of dyadic partition of the time interval [0, T ] and
δϕpii is the strategy of the agent i in the game Γ δpi(c0, T ) for the permutation
pi = (i, p̃) and p̃ is the permutation of the set I \ i.



232 M. Troeva, V. Lukin

For n-tuple ϕ = (ϕ1, . . . , ϕn) the game Γ (c0, T ) is played as follows. The
smallest δi = δ is chosen and the trajectory χ(·) is constructed for n-tuple
δϕ = (δϕp11 , . . . ,

δϕpnn ). This trajectory is unique.
The game Γ (c0, T ) is obtained from the game Γ δp (c0, T ) by the epimorphic

mapping which is defined in Lemma 2. Since in the game Γ δp (c0, T ) there exists
ε-equilibrium, then the existence of the 3ε-equilibrium in the game Γ (c0, T )
follows from Lemma 2 and Lemma 3.

Thus, the following theorem is valid.

Theorem 1. There exists ε-equilibrium in the noncooperative n-person differ-
ential game Γ (c0, T ) for all ε > 0.

4 Numerical Method

The numerical method based on the dynamic programming method [2] and the
finite difference scheme [13] is proposed for the numerical solving of the auxuliary
multistep game Γ δp (c0, T ).

To construct a difference scheme for our problem, we use an approach that
was developed in [13] for constructing a homogeneous difference scheme for the
nonstationary heat conduction problem with a one-point heat source that is
defined by a Dirac delta function expression.

On the rectangle Ω = [0, d1]× [0, d2], we construct the uniform grid with the
step h1 on x1 and the step h2 on x2

ωh = {x1l= lh1, l = 0, . . . , N1; x10 = 0, x1N1
= d1;

x2k= kh2; k = 0, . . . , N2; x20 = 0, x2N2
= d2} ,

(15)

For simplicity, the points of the agents’ dumps are assumed to be grid nodes,
namely (x1l, x2k) = (x̄i1, x̄

i
2) is a location of the agent i, i = 1, 2.

On every interval [ts, ts+1], s = 0, Nσ − 1, we construct the uniform net with
step τ

ωτ,s = {t̄j = jτ, j = 0, N3; t̄0 = ts, t̄N3
= ts+1}.

Here ts ∈ σ, where σ is the time interval partition

σ = {t0 = 0 < t1 < . . . < tNσ = T}.

For numerical simulations, we will consider the admissible control parameters

set Ui = [U
1

i , U
2

i ], where U
1

i = const, U
2

i = const, i = 1, 2, and construct the
following partition on the set Ui:

∆i = {ui,0 = U
1

i < ui,1 < . . . < ui,N4
= U

2

i }, i = 1, 2.

On the time interval [ts, ts+1] we will consider grid functions iys(x1l, x2k, t̄j)
instead of functions zi(x1, x2, t) of continuous arguments (x1, x2, t) ∈ Ω×[ts, ts+1],
where i ∈ I – the agent’s number, s = 0, Nσ − 1. Here the argument of the grid
function (x1l, x2k, t̄j) is a node of the grid ωhτ = ωh × ωτ,s.
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Let us denote by iyj,sl,k = iys(x1l, x2k, t̄j) the grid function defined on the net
ωhτ = ωh × ωτ,s.

We construct for the problem (2)–(7) the following purely implicit difference
schemes [13] on the net ωhτ = ωh × ωτ,s for any pair of admissible controls
(u1,ξ1 , u2,ξ2) ∈ ∆1 ×∆2, ξi ∈ 0, N4, i = 1, 2:

iy
j+1/2,s
0,k − iyj,s0,k

τ
= 2D

iy
j+1/2,s
1,k − iy

j+1/2,s
0,k

h21
− iyj,s0,kr, (16)

iy
j+1/2,s
l,k − iyj,sl,k

τ
= D

iy
j+1/2,s
l+1,k − 2iy

j+1/2,s
l,k + iy

j+1/2,s
l−1,k

h21
−

− iyj,sl,kr + usi,ξiδ
i

l,k, l = 1, N1 − 1, (17)

iy
j+1/2,s
N1,k

− iyj,sN1,k

τ
= −2D

iy
j+1/2,s
N1,k

− iy
j+1/2,s
N1−1,k

h2
− iyj,sN1,k

r, (18)

k = 0, N2,

iyj+1,s
l,0 − iy

j+1/2,s
l,0

τ
= 2D

iyj+1,s
l,1 − iyj+1,s

l,0

h22
− iy

j+1/2,s
l,0 r, (19)

iyj+1,s
l,k − iy

j+1/2,s
l,k

τ
= D

iyj+1,s
l,k+1 − 2iyj+1,s

l,k + iyj+1,s
l,k−1

h22
−

− iy
j+1/2,s
l,k r + usi,ξiδ

i

l,k, k = 1, N2 − 1, (20)

iyj+1,s
l,N2

− iy
j+1/2,s
l,N2

τ
= −2D

iyj+1,s
l,N2

− iyj+1,s
l,N2−1

h22
− iy

j+1/2,s
l,N2

r, (21)

l = 0, N1,

j = 0, N3 − 1,

iy0,sl,k = iyN3,s−1
l,k , l = 0, N1, k = 0, N2, (22)

ξi = 0, N4,

s = 1, Nσ − 1,

iy0,0l,k = ci0(x1l, x2k), l = 0, N1, k = 0, N2, (23)

Here

δ
i

l,k =

0, if (x1l, x2k) 6= (x̄i1, x̄
i
2),

1

h1h2
, if (x1l, x2k) = (x̄i1, x̄

i
2),

The constructed absolutely stable difference scheme (16)–(23) is solved by
the elimination method [13].
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The payoff function of the agent i, i = 1, 2 in the game Γ δp (c0, T ) is approx-
imated as follows:

Hi(u
0
1, . . . , u

Nσ−1
1 , u02, . . . , u

Nσ−1
2 ) = τ

Nσ−1∑
s=0

N2−1∑
j=0

Piu
s
i (1− pf

j
i )−

− τ
Nσ−1∑
s=0

N2−1∑
j=0

Miu
s
i , (24)

Let V δi (·) be the value of the payoff function of the agent i, i = 1, 2 at the
equilibrium point. The following recurrence equations are valid:

V δi (
1yNσ−1, 2yNσ−1, tNσ−1) = max

uNσ−1
i,ξi

∈∆i
{Hi(u

Nσ−1
i,ξi

, ūNσ−1{I\i},ξ{I\i})}, (25)

V δi (
1ys, 2ys, ts) = max

us
i,ξi
∈∆i
{Hi(u

s
i,ξi , ū

s
{I\i},ξ{I\i}) + V δi (

1ys+1
ξ1

, 2ys+1
ξ2

, ts+1)},

s = Nσ − 2, 0, (26)

V δi (
1y0, 2y0, tNσ ) = 0, (27)

Here

Hi(u
s
i,ξi , ū

s
{I\i},ξ{I\i}) = τ

N2−1∑
j=0

Piu
s
i,ξi(1− pf

j
i )− τ

N2−1∑
j=0

Miu
s
i,ξi . (28)

5 Numerical Results

The numerical experiments were carried out for the following input data: D =
4.4, d1 = d2 = 30, h = 0.5, T = 320, τ = 1, Nσ = 8, r = 0.005, p = 3.1,
M1 = 4.5, M2 = 5.5, P1(2) = 15, U i1 = {1, 10, 20, 30}, U j2 = {1, 10, 20, 30},
(x̄11, x̄

1
2) = (5, 5), (x̄21, x̄

2
2) = (25, 25), (x̄1w, x̄2w) = (15, 5), Cw = 3, c0(x) = 0.

The results of numerical experiments are presented in Figures 1–5.
Figure 1 presents the computed distribution of the pollutant concentration

of the first and second agents. The realizations of their optimal strategies are
shown in Fig. 2. The agents reduce the intensity of dumping the pollutant (stop
production) to minimize fines. Then the intensity of production is resumed to
the maximum values for obtaining the maximum income by the time T . The
time development of the payoff functions for both agents is given in Fig. 3. The
dynamics of changing the pollutant concentration at the intake point is presented
in the Fig. 4. The agent pays the penalty (Fig. 5) in the case of exceeding the
maximum permissible value Cw.
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Fig. 1. Distribution of the pollutant concentration of agents at the moment T : 1 – light
color, 2 – dark.

Fig. 2. Optimal strategies of agents: 1 – blue dashed line, 2 – red dot-dashed line.
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Fig. 3. Payoff functions of agents: 1 – blue dashed line, 2 – red dot-dashed line.

Fig. 4. The pollutant concentrations at the point of intake: total – green dotted line,
1 – blue dashed line, 2 – red dot-dashed line.
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Fig. 5. The penalty functions f(t): 1 – blue dashed line, 2 – red dot-dashed line.

6 Conclusion

We investigated the noncooperative two-person differential game in Banach space
which models a conflict-controlled process of the contaminating a closed water
reservoir. The dynamics of the agents is described by the initial boundary value
problem for the two-dimensional diffusion equation with a point source.

The proposed numerical algorithm for solving the considered differential
game is based on the dynamic programming method and the finite difference
scheme. It has been applied to compute the auxiliary multistep game.
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