
Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Method of Programming Languages Analysis

Lidia Gorodnyaya1,2[0000-0002-4639-9032]

1 A.P. Ershov Institute of Informatics Systems (IIS), 6, Acad. Lavrentjev pr., Novosibirsk

630090, Russia

2 Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia

lidvas@gmail.com

Abstract. The purpose of the article is to describe the method of comparison of

programming languages, convenient for assessing the expressive power of lan-

guages and the complexity of the programming systems. The method is adapted

to substantiate practical, objective criteria of program decomposition, which can

be considered as an approach to solving the problem of factorization of very com-

plicated definitions of programming languages and their support systems. This

method is aimed to issues arising in connection with the problem of measuring

the characteristics of languages and programming systems that affect the com-

plexity of software development and the productivity of software applications.

Paradigmatic models of languages and programming systems can be useful in

systematizing programming languages, assessing their similarities and differ-

ences, which allows us to build concise definitions regarding such models. This

makes it possible to stratify the presentation of the features of the semantics of

programming languages into autonomously developed components in the process

of step-by-step development of experimental programming systems and the for-

mation of schemes for studying and teaching system programming. requirements.

Keywords: Definition of Programming Languages, Programming Paradigms,

Definition Decomposition Criteria, Semantic Systems

1. Introduction

Too high rate of development of computer, telecommunication and information tech-

nologies, in which quick intuitive or volitional decisions that give economic benefits

dominate, imperceptibly turned out to be an obstacle at the formation for objective met-

rics for assessing the quality of programmed solutions and the effectiveness of the tools

used. Another obstacle is associated with the duality of assessing the complexity of

programs, more precisely, with discrepancies in assessing the complexity of application

and the complexity of software development – the external and internal complexity of

programs. The border between them is difficult to recognize.

According to J. Weinberg, the author of the unique monograph "The Psychology of

Computer Programming" [1], the IBM firm in the early 1970s conducted a study of the

spectrum of the complexity of programming depending on experience, age and abilities.

73

It turned out that on simple problems the spread is 1 in 28, and almost regardless of

experience and age. On complex tasks, a positive dependence on abilities, experience

and age is noticeable with a slightly smaller spread, about 1 in 10, noticeably in favor

of experience and age. Moreover, the speed of completing tasks rarely contributes to

the quality of solutions; more often, on the contrary, hasty decisions in programming

lead to a lot of labor costs when debugging and operating programs. No less scatter was

noticed in assessing the quality of programmable solutions; no positive dependence of

program performance on the complexity of programming was revealed.

Fr. Brooks in the early 1970s noted the vulnerability of estimating the complexity

of programming in metrics such as "person-month". Not only does the productivity of

individual people depend a lot on what, but a lot can happen unpredictably in a month.

In this regard, the effect that manifested itself during the mass production of sites in the

1990s is interesting, which then could be observed directly. In this area, it was possible

to structure the work in such a way that each performer received an assignment in the

morning for one day, only sometimes for a week. With such a scheme, production went

on quite steadily. The only pity is that this niche was quickly exhausted.

Various references mention from 20 to 70 programming paradigms (PP) [2, 3], the

list of which is modified and expanded depending on the relevance of certain program-

ming problems and fashion for the features of popular IT. The boom of language crea-

tion in the field of problem-oriented programming languages (PL), which marks the

transition of programming practice from the accumulation of experience at the level of

library modules to the accumulation of sublanguages, shows the importance of para-

digmatic differences in language definitions when choosing tools for practical work.

Another trend is seen in the renewed interest in the creation of monoparadigm PL that

are more convenient for research and study. The development of methods for analyzing

the definitions of PL in order to establish their paradigmatic characteristics can provide

a basis for making recommendations on the choice of tools when creating new software

systems and developing IT.

Descriptions of modern PL usually contain a list of 5–10 predecessors and a number

of PP supported by the language [1, 2]. In this article the method of representation of

paradigms features of PL definition at the level of semantic systems is considered [3].

Using the method of paradigms analysis, it is possible to build a space of constructions

supported in the definitions of programming languages and systems (PL&S). This space

can be the source structure in the selection of criteria of decomposition programs based

on the development of statements of problems in the programming process of their so-

lutions [4], a variety of types of semantic systems of PL and their extensions in the

implementation of programming systems (PS) [5]. The technique is shown on the ma-

terial of four classical programming paradigms without an excursion into the wider

space of paradigms, especially new ones, which have not yet received support in well-

known programming languages and recognition in the form of examples of debugged

programs. The analysis of DSL-languages, which it makes sense to consider as a new

meta-level in the field of programming linguistics, is left for the future.

The concept of "programming paradigm" does not have a strict definition, so the

question arises about the belonging of new approaches in programming to the set of PP

and the ordering of such a set. Programming paradigm is manifested as the way of

thinking associated with the compromise between the characteristics of tasks, methods

of their solution in the form of programs, quality criteria of programs adopted in PP and

decision-making priorities in the programming process. Such feature of PP allows to

understand a paradigm choice as process of acceptance, representation and debugging

of decisions at statement of different tasks therefore it is natural to carry out systemati-

zation of PP on comparison with priorities and variations of schemes of statement of

tasks and methods of their decision.

This article presents an attempt to propose some methods for evaluating program-

mable solutions and measuring the characteristics of programs and PL based on the

conceptual complexity in a form that makes it possible to predict the complexity of

programming and thereby navigate the dynamics of the modern space of tools and so-

lutions. Such a methodology for programming systems (SP) can influence the further

development of information technologies, if we involve the observations of practition-

ers who have noticed the significance of the volume of the intuitive work of the pro-

grammer and a large number of parameters in assessing the quality of the SP imple-

mentation, as well as ideas of conceptual complexity, vertical stratification of programs

and semantic systems [4]. The concept of "Programming Paradigm" here concretizes

the formulation of P. Wegner "a style of thinking that determines the rules for classify-

ing programming languages in accordance with certain conditions that can be tested".

Priorities of decision-making, conditioned by the objectives of the problem being

solved and the requirements for its solution, are considered as the conditions to be

checked.

After the introduction has noted the vulnerability of the integrality of direct meas-

urements of programming labor in such metrics as "man-month", the second section

considers superficially measurable parameters of programming labor and program per-

formance. Most of them almost do not reflect the dependence of the programming result

on the decisions made by the programmer and the choice of PL constructs. The third

section analyzes the relationship between the complexity of programming and the de-

gree of study of the problems being solved. An underestimation of such a relationship

usually leads to systematic errors in forecasting the forthcoming labor costs. In the

fourth section, the role of a programmer's qualifications is noted, showing the relevance

of developing methods for measuring the characteristics of programs that are important

for practice, as well as creating a system of continuous retraining of personnel, whose

qualifications must keep up with the pace of progress of IT. The urgency of issues re-

lated to the certification of professional qualifications of programmers, especially sys-

tem programmers is considering. The fifth section is devoted to the conceptual com-

plexity of programming tools. It can be assessed within the framework of a paradigm-

semantic decomposition, the results of which are represented by concept tables that can

work roughly like a visiting card of a language or programming system. The cellulas of

such a table can be associated with elements of an introductory series of debugged ex-

amples illustrating the meaning of the concepts of PL. The sixth section shows an ex-

ample of presenting the results of comparing PLs with an estimate of the distance be-

tween languages, and the seventh section describes the structure of a measuring bench,

the development of which is aimed at supporting the work on the analysis and compar-

ison of PLs, which is necessary to create a methodology for measuring the contribution

75

of programmable solutions to program performance. In the conclusion, the hypothesis

is expressed that the formula for the complexity of programming can be formalized and

made understandable by using some images from mass-used information systems to

characterize the elements of the PL concept table.

2. Programming complexity parameters

The lexicon of modern practical programming uses the concept of "programming lan-

guage" as "an extended subset of the programming language (PL), which is the input

language of a typical programming system (SP), operating on the basis of a specific

equipment configuration" The difference is that the SP usually accompanies the imple-

mentation of the PL with an extensible set of library modules. As a result, the differ-

ences visible in practice between languages and programming systems (L&SP) are

smoothed out.

In addition, direct measurements of the complexity of programming and the produc-

tivity of programs almost do not reflect the dependence of the result on the decisions

made by the programmer when choosing the PL designs and the pragmatics of the SP.

Although programmable solutions are presented in terms of PL, its influence dissolves

in a very complex that inherits the performance of the programming and operation sys-

tems and hardware. Thus, there is a problem of creating a method that makes it possible

to identify such dependencies by combining direct measurements with the results of

expert assessments of the features of PL&S, possibly differing from the assessments of

the PL. A number of problems of this kind look like a difference in programming para-

digms.

Programming paradigms can be distinguished by the priorities of the categories of

semantic systems in the programming process, noting the paradigm differences in the

general concepts in each category. The differences between programming paradigms

can be expressed as follows. Data are addresses and stored values representation in

imperative procedural programming (IPP), stored methods and object signatures appear

in the object-oriented programming (OOP), be binding with any data in the functional

programming (FP) instead of addresses in memory, and to the identifier in the logic

programming (LP). In IPP and OOP, operations are mostly unary or binary, and in FP

and LP there is also arbitrary arity. True datum in LP include the special data “ESC”,

which allows to distinguish normal predicate values from failure in calculations, and

FP can use any data other than “NIL” as truth. Data structures in the IPP cannot be

considered as values representation processed by the basic means, and in the FP such

structures are processed without special restrictions.

Thus, in addition to preferences on the features of the problem statements, one can

see differences in the schemes for determining functions for different categories of se-

mantic systems depending on the software. It should be noted that the transition from

PL to PS is usually accompanied by an increase in the number of supported PPs, which,

when defining the Haskell language, led to the concept of “monad”, which allows any

PL to achieve practicality, which is usually done with the help of library modules.

For practice, it is useful to describe the derivatives of PP relative, expressing the

difference with the base PP. So, IPP derivatives distinguish different methods of repre-

senting data in memory and organizing sequential processes generated by the program,

OOP derivatives give various concretizations of the concept of “class of objects”, FP

derivatives represent variations in the methods of organizing calculations, and LP de-

rivatives may use different approaches to mitigate the dependence of obtaining results

on excessive or insufficient determinism.

Any programming paradigm can be supplemented with additional forms, such as

declarativeness, abstractions, specification languages, etc., mainly solving problems

such as “scaffolding,” that is, the aim of these forms is not an alternative or opposed

representation of programming tools and methods, but temporary structure which used

to support setting the boundaries of the behavior of programs, highlighting the pro-

cesses that are convenient for practice.

3. The degree of study of the tasks being solved

The classification of programming paradigms can depend on 1) the space and degree

of knowledge of the problems being solved and 2) the potential of technical devices

that support programming paradigms, which reflects the operational and implementa-

tion pragmatics of the PL that support these paradigms. As new problems appear, new

PPs are formed, the recognition of which by specialists requires a significant time, usu-

ally 10–20 years after the emergence of tools. The operational pragmatics of a program-

ming language strongly depends on the space of the problems being solved and the

practicality of their solutions. The implementation pragmatics of programming systems

depends on the range of hardware that can be controlled in PL terms (processor, files

and peripherals, networks and servers). In terms of the degree of study, the following

spaces of problem statements differ significantly, affecting the choice of methods for

solving problems and the complexity of their programming:

- new;

- research;

- practical;

- exact.

New problem statements are characterized by the absence of an accessible precedent

for solving the problem, the novelty of the means used, or the inexperience of the per-

formers. Research problem statements are usually complicated by the requirements of

originality and versatility, which can be demonstrated in a computer experiment. Prac-

tical problem setting is aimed at relevance and convenience of multiple use of ready-

made solutions. Exact problem statements include testing the limiting capabilities of

the tools used, associated with the degree of organization of the created program and

the rank of the implemented solutions. The spread of labor intensity, depending on the

degree of novelty or knowledge of the problem statement, is usually about 1 to 8. An

underestimation of such a spread usually leads to systematic errors in forecasting the

forthcoming labor costs.

Descriptions of modern programming languages (PL) usually contain a list of 5–10

predecessors and a number of programming paradigms (PP) supported by the language

77

[1, 2]. In this article the method of representation of paradigms features of PL definition

at the level of semantic systems is considered [3]. Using the method of paradigms anal-

ysis, it is possible to build a space of constructions supported in the definitions of pro-

gramming languages and systems (PLS). This space can be the source structure in the

selection of criteria of decomposition programs based on the development of statements

of problems in the programming process of their solutions [4], a variety of types of

semantic systems of PL and their extensions in the implementation of programming

systems (PS) [5]. The technique is shown on the material of four classical programming

paradigms without an excursion into the wider space of paradigms, especially new ones,

which have not yet received support in well-known programming languages and recog-

nition in the form of examples of debugged programs. The analysis of DSL-languages,

which it makes sense to consider as a new meta-level in the field of programming lin-

guistics, is left for the future.

The concept of "programming paradigm" does not have a strict definition, so the

question arises about the belonging of new approaches in programming to the set of PP

and the ordering of such a set. Programming paradigm is manifested as the way of

thinking associated with the compromise between the characteristics of tasks, methods

of their solution in the form of programs, quality criteria of programs adopted in PP and

decision-making priorities in the programming process. Such feature of PP allows to

understand a paradigm choice as process of acceptance, representation and debugging

of decisions at statement of different tasks therefore it is natural to carry out systemati-

zation of PP on comparison with priorities and variations of schemes of statement of

tasks and methods of their decision.

4. Qualification levels and training for programmers

The mission of system programming is to create tools that improve the quality of infor-

mation systems, including the search for solutions to ensure the reliability and security

of information technology and improve the skills of programmers. Programming re-

sults, integrated as an IT industry, are rightly explained by a systematic approach to

solving massively demanded problems. A characteristic feature of the systems approach

as the leading programming method is the transition to the class of problems in the

meaningful analysis of problem statements. Class boundaries are established by choos-

ing a problem-solving process. The results of meaningful analysis are ultimately em-

bodied in a form that is convenient enough for their mass use and borrowing: software

documentation, programming languages, computer command systems – architecture,

operating systems, programming systems, software tools, program libraries, algo-

rithms, application guides. This allows you to move on to mass application or assembly

of solutions to similar problems without deep analysis of each of them.

The use of computers and telecommunications in the implementation of programs,

generating mechanisms and solutions to specific problems allows a tempting oppor-

tunity, instead of directly solving problems, to rapidly switch to the practice of using

ready-made recipes, regardless of the labor costs to achieve a good understanding of

the problem. The result of this enthusiasm for this opportunity is well known – the

excessive complexity of the software, which leads to the unsatisfactory reliability of its

application and the growth of overhead costs for its study, maintenance and porting to

new architectures. This can be seen as a rationale for the need for a more fundamental

approach to programming, especially to systems programming.

Extensive development of IT noticeably outstrips human abilities to quickly master

new capabilities of IT hardware and system tools that go beyond the user level sup-

ported by suppliers of tools and software products. In modern conditions of the increas-

ing dependence of all spheres of life on automation based on IT, attention should be

paid to the role of IT specialists' qualifications in the field of system programming and

support for post-university professional development of specialists in this vital system

of society, comparable to medicine and education.

The general solution to educational programming problems can be summarized as

follows. In the rapidly changing world of IT the main goal of training future program-

mers is to bring them to the level of transition to self-learning and invention or creation

solutions for new, previously unknown tasks. This will free the educational process

from the race for production technologies that become obsolete before university grad-

uation, and will provide a way to quickly master new products without excessive labor

costs for forgetting irrelevant or outdated ones. It is known that primary learning is 3–

5 times easier and more reliable than replacing outdated skills.

5. Semantic systems of basic paradigms

Considering the systematization of the paradigmatic features of the definition of PL at

the level of semantic systems [3], it is convenient to classify language concepts by

statement of tasks and language tools used to solve them. Even in last times, Nicholas

Wirth noted the importance of matching the problem statement and the tools used to

solve it, especially if you can catch the likeness of the processed data structures and

their processing algorithms, which is now called homoiconicity. Based on this corre-

spondence, it is possible to build a space of constructions supported in the definitions

of PSL and compared with the complexity of the formulations of successfully solved

problems. The resulting space can be the initial structure when choosing criteria for

decomposing programs, taking into account the peculiarities of the development of

problem statements in the process of programming their solutions [4], expanding the

semantic systems of PL and their refinement when implementing PS [5].

When considering any semantic systems, it is important to do noted the difference

in the nature of the performance of the functions of such systems in different complexes.

So, for any data set D representing values of arbitrary nature, function schemes F are

realistically distinguishable for calculation methods, memory access tools M, control

features of computing C and communication, or reversible complexation and structur-

ing of data S. This leads to an idea of the main categories of semantic systems for dif-

ferently implemented types of functions. Historically, at the hardware level, such cate-

gories of semantic systems have had a cumulative effect in the “DEMCS” order – the

representation of numbers, an arithmometer, a calculator with registers, an analog ana-

lyzer with control system, a computer. Each hardware subsystem can interact with each

other.

79

6. Results of paradigms and programming languages analysis

Analysis and comparison of a large number of PL of different levels allow to identify

the most significant characteristics for the expression of paradigm specificity of a wide

class of PL. The multiparadigmality of long-lived and new PLs shows the need for more

precise detailing of the dependencies between old and new ones. The programming

paradigm as a way of thinking is associated with a compromise between the features of

the tasks being solved and the methods for solving them using programs. The most

objective programming concepts are associated with architectural models, with meth-

ods for implementing a joint project, and with the classification of problems to be

solved. To show the features of software, it is convenient to single out conceptual mono-

paradigmal languages, models or sublanguages and provide criteria for the successful

use of software with evaluating the results using examples of programs that was con-

firmed by programming practice. [5]. From the vast set, a small number of PLs can be

distinguished, attracting attention with interesting combinations of visual means and

semantics that affect the development of the main PPs.

Comparing a pair of languages (PL1 and PL2), one can single out their mutual com-

mon intersection (PL1 Ո PL2) and two asymmetric differences (PL1, PL2) or (PL1 Ո

PL2). For the “predecessor-descendant” pair, a clearer understanding of the differences

arising during the development of PL appears. Thus, it is possible to see not only the

similarities and differences between the two languages, but to show on developing or

time-coordinated languages what is lost or added and whether something fundamentally

new has appeared.

For example, when comparing and assessing the similarity-differences at the level

of the basic semantics of the Lisp (1960) and Pascal (1970) languages, it can be stated

that there is a similarity of mutual five semantic systems, the difference is eighteen,

some of which are absent in the Pascal language, and some are added in comparison

with the semantic systems of the Lisp language. More specifically, the comparison re-

sults for semantic systems are as follows.

 In both the Lisp and Pascal languages, you can:

- to declare your distinguished names;

- compare values;

- associate names with a representation of their meaning;

- use a hierarchy of expressions, procedures and data structures;

- enjoy access to many data through one notation.

 The pragmatic difference between Lisp and Pascal:

- in Lisp, except for NIL, atoms are initially undefined, and in Pascal, self-defined

constants mean the index of occurrence into a array;

- in Lisp, the result of a predicate is an ordinary value of NIL or something different

from it, and in Pascal, a special type of boolean constants False, True appears;

- Lisp does not require special concepts for memory organization, an associative

list is just an ordinary data structure, and Pascal requires not only the concept of

"memory allocation for variables", but they are also divided into labels and described

variables associated with data types, and the organization of their storage not defined

in language, implementation dependent;

- control of the order of computations in Pascal is performed by different mecha-

nisms, expressed using keywords and labels, and in Lisp expressions are either to be

evaluated or blocked;

- Lisp expressions are prefix, and Pascal expressions are infix;

- Lisp builds data structures from binary nodes, while Pascal builds data structures

from adjacent blocks of registers.

1 Losses in the transition to the Pascal language of what existed in the Lisp lan-

guage:

- the ability to determine meaning along the fly and in dynamics;

- the right to use any operation or function as a predicate;

- the Von Neumann principle of architecture: equal presentation in memory of pro-

grams and data;

- freedom from considering the priorities of operations;

- automate GC memory reuse (garbage collection)

 Added in Pascal, was absented in Lisp

- the clarity of the meaning of the names;

- memory allocation according to name descriptions;

- controlled border between calculations and comparisons;

- the ability to use data ordering, go to "neighbors";

- separation of data structures and computation control structures;

- inheritance of habits to the forms accepted in arithmetic expressions;

- the ability to transfer control and assignments to name addresses and vector indi-

ces.

To assess the extent to which these additions are new, a finer analysis of functional

similarity and implementation constraints is needed, the result of which can be illus-

trated by examples.

It can be concluded that almost all categories of semantic systems are represented in

both PLs with variations in implementation technique and application practice, up to

the involvement of standard libraries. The choice of the goals of mutual semantic sys-

tems coincides, the mechanisms for implementing a noticeable number of systems dif-

fer, when switching from Lisp to Pascal, some directions in the space of solutions for

new problems are lost, but many diagnostic situations at the static analysis of program

expanded.

7. The structure of the measuring stand

Analyzing the definition of a programming language begins with an understanding of

the objectives, requirements, and the programming paradigms supported by the lan-

guage. As a result, it is possible to single out conceptual tables characterizing monopar-

adigmatic sublanguages of PL, the work with which is reduced to the following parts:

1) Processing of concept tables.

2) Accumulation of comparison results.

81

3) Filling for the training series of examples.

4) Testing and performance measurement.

The processing of concept tables and the generation of matrices is needed to support

expert work in comparing different PL&S systems and forms for filling the database

with fragments of debugged programs, performed as selections, clippings, and rear-

rangements.

The accumulation of the results of comparison and expert assessment of different

PL&S, their storage, laconic presentation and the conclusion of some statistical and

analytical characteristics are aimed at analyzing the inheritance and mutual influence

of languages during development.

Filling a training series of comparable fragments of debugged programs on differ-

ent PL&S in a form convenient for experiment and measurements, as well as for the

formation of teaching aids and reference books.

Testing and measuring the performance of the studied PL&S systems, organizing

storage, statistical analysis and presentation of measurement results are necessary for

the objectivity of understanding the dependencies.

Of course, it is not so difficult to construct such estimates for two or three dozen Pls.

For the operational work on the analysis and comparison of modern PLs, the number

of which already exceeds tens of thousands, it is necessary to automate even simple

transformations and transitions to the representation of paradigmally semantic charac-

teristics of PL&S in the form of program fragments with use of experimental stands

that already give access to a noticeable number of PLs [7].

Any programming paradigm can be supplemented with additional forms, such as

declarativeness, abstractions, specification languages, etc., mainly solving problems

such as “scaffolding,” that is, the aim of these forms is not an alternative or opposed

representation of programming tools and methods, but temporary structure which used

to support setting the boundaries of the behavior of programs, highlighting the pro-

cesses that are convenient for practice.

8. Conclusions and Outlook

There is a hypothesis that the general formula for assessing the labor intensity of pro-

gramming can be expressed as the sum of the products of estimates of the degree of

study of the problem being solved (from 8 to 1), the qualifications of the programmer

(from 1 to 28), and the conceptual complexity of the main works associated with the

developed program. In this trio, the conclusion of the assessment of the programmer's

qualifications is especially incomprehensible. It depends not only on education and ex-

perience, but very much on the abilities and intuitive mechanisms, the manifestation of

which may clearly contradict the traditions of the general educational system aimed at

controlling static knowledge instead of encouraging the dynamics and prospects of de-

velopment. There exists a project management technique that recommend achieving

reliability of work without "star" programmers. Nevertheless, among practitioners, a

fairly reliable intuitive assessment of the professional potential of familiar programmers

is usually formed.

Most long-lived programming languages support the practical paradigms of imper-

ative-procedural, object-oriented, and functional programming. A growing number of

languages support declarative, reflexive and meta-programming. New languages com-

plement these paradigms with separate networking tools, leading to the formation of

paradigms for remote access, parallel processes, supercomputer computing, and large

data visualization. The complexity of multi-paradigm PLs can be overcome through the

style of separate description of the paradigms supported in them [8].

The proposed methodology can be used to assess the complexity and complexity of

programming, especially if supplemented by dividing the requirements for setting tasks

in the fields of application into academic and industrial, and by the level of knowledge

into clear, developed and complicated difficult to certify requirements.

Basic programming paradigms can be distinguished by ordering the main categories

of semantic systems, and derivatives – by the difference between individual categories

of semantic systems from the basic paradigm. Any programming paradigm can be en-

riched with additional paradigms for representing restrictive conditions for the func-

tioning of programs. For this reason, they cannot be opposed to the actual PP. The clas-

sification of programming paradigms can depend on the degree of knowledge of the

expanding space of tasks to be solved and the progress of available technical means

that occurs within the framework of a stable class of tasks to increase efficiency.

The works of E.M. Lavrishcheva [8] and Peter Wegner [6] should be mentioned as

related works. E.M. Lavrishcheva presented a fairly complete overview of program-

ming paradigms that is relevant for programming technologies [8] and P. Wegner per-

formed a very serious analysis of OOP, methods for supporting this paradigm, and its

comparison with other classical PPs [6].

This work was partially supported by the Russian Foundation for Basic Research,

project No. 18-07-01048-а.

References

1. Weinberg, G.M.: The Psychology of Computer Programming. New York: Van Norstand

Reinhold Comp., 1971.

2. https://www.levenez.com/lang/. Computer Languages History.

3. http://progopedia.ru/. Encyclopedia of programming languages (171 languages and 31

paradigms).

4. Gorodnyaya, L.V.: O predstavlenii rezul'tatov analiza yazykov i sistem programmiro-

vaniya. Nauchnyy servis v seti Internet: trudy XX Vserossiyskoy nauchnoy konfer-

entsii (17–22 sentyabrya 2018 g., g. Novorossiysk). M.: IPM im. M.V. Keldysha, 2018,

https://keldysh.ru/abrau/2018/theses/46.pdf.

5. Lavrov, S.S.: Metody zadaniya semantiki yazykov programmirovaniya. Programmiro-

vaniye, (6), 3–10 (1978).

6. Peter Wegner: Concepts and paradigms of object-oriented programming. SIGPLAN

OOPS Mess. 1, 1 (August 1990), 7–87, https://pdfs.semanticscholar. DOI:

http://dx.doi.org/10.1145/.

7. Gorodnyaya, L.V., Demidov, S.V., Kirichenko, M.D., Tkachenko, D.D.: Proyekt infor-

matsionnogo stenda PRIZMA dlya predstavleniya izmerimykh kharakteristik yazykov

i sistem programmirovaniya. Informatsionnyye i matematicheskiye tekhnologii v

https://www.levenez.com/lang/
http://progopedia.ru/
https://keldysh.ru/abrau/2018/theses/46.pdf
https://www.google.com/url?q=https%3A%2F%2Fpdfs.semanticscholar.org%2F48a6%2F7e434d764769ad66eddd8c4989364a88d708.pdf&sa=D&sntz=1&usg=AFQjCNF0qqjlPKHHvgw3qJzw5t3kQ-wtFg
http://dx.doi.org/10.1145/

83

nauke i upravlenii, 105–119, DOI: 10.38028/ESI.2020.17.1.008.

8. Lavrishcheva, E.M.: Programmnaya inzheneriya i tekhnologii programmirovaniya

slozhnykh sistem. Uchebnik dlya vuzov. M., 2018. 432 p.

9. Gorodnaya, L.V.: The programming paradigm. Textbook. Doe St. Petersburg, 2019.

ISBN 978-5-8114-3565-4, 232 p. (in Russian).

