=Paper= {{Paper |id=Vol-2788/om2020_Tpaper2 |storemode=property |title=Semantic schema mapping for interoperable data-exchange |pdfUrl=https://ceur-ws.org/Vol-2788/om2020_LTpaper2.pdf |volume=Vol-2788 |authors=Harshvardhan J. Pandit,Damien Graux,Fabrizio Orlandi,Ademar Crotti Junior,Declan O'Sullivan,Dave Lewis |dblpUrl=https://dblp.org/rec/conf/semweb/PanditGOJO020 }} ==Semantic schema mapping for interoperable data-exchange== https://ceur-ws.org/Vol-2788/om2020_LTpaper2.pdf
     Semantic Schema Mapping for Interoperable
                  Data-Exchange

       Harshvardhan J. Pandit(B) , Damien Graux , Fabrizio Orlandi ,
        Ademar Crotti Junior , Declan O’Sullivan , and Dave Lewis

                ADAPT SFI Centre, Trinity College Dublin, Ireland
    {pandith,grauxd,orlandif,crottija,declan.osullivan,dave.lewis}@tcd.ie



        Abstract. GDPR’s Right to Data Portability requires data to be pro-
        vided in an interoperable, commonly used, and machine-readable format
        and facilitates its transfer between controllers. However, a major chal-
        lenge for such data to be used between different services is agreement
        over common schemas to define the semantics of data. We present our
        vision of a holistic process for organisations to export and import data in
        an interoperable manner by using ontology matching and mapping tech-
        niques to identify a common model towards schema-negotiation. Our
        approach enables organisations to exchange data using a common base
        schema, thereby motivating greater innovation in the ecosystem through
        data reuse. To demonstrate our vision, we present a proof-of-concept
        application of ingesting data from Facebook into Twitter.


1     Introduction

Interoperability of data between services can facilitate innovation, collaboration,
and competition to enable a richer ecosystem of services. The Right to Data
Portability (RtDP) was designed and implemented with this as the motivation
in Article 20 of the European General Data Protection Regulation1 to provide a
legal impetus for data to be exported out of silos and shared between services.
RtDP requires organisations2 to provide a copy of personal data they have col-
lected from an individual in a structured, commonly used, and machine-readable
format. RtDP also permits data to be transmitted directly to another organisa-
tion. In principle, this provides individuals as well as organisations the freedom
to obtain and reuse existing data from different services and encourages greater
competition and innovation between services by countering data silos and user
monopolies.
    As of August 2020, however, RtDP is yet to be effectively implemented, and
there is a lack of consensus in structure and semantics of data which presents
technical difficulties associated with interoperability and data sharing across
services [11]. One of the major issues in implementing RtDP concerns the ‘se-
mantics’ of data i.e. how to indicate the structure, context, and meaning of data
1
    http://data.europa.eu/eli/reg/2016/679/oj
2
    consider ‘organisation’, Data Controller (GDPR), and ‘service’ as synonyms in article



Copyright c 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
2        H. J. Pandit et al.

in an interoperable form. This issue is further compounded given that GDPR
does not mandate use of semantics in provision of data. Therefore, data made
under RtDP will either (a) have no schema; or (b) its schema is dictated by the
service that exported it. In either case, an individual or organisation that wants
to use this data must first understand the structure and contents of the data
before building tools to use it – which may be feasible when there are a few
services but difficult to scale within an ecosystem.
    In this article, we present an overview of practical problems regarding im-
plementation of data portability which skew the balance of power against new
services and SMEs (small and medium sized enterprises). We then present our
vision for a solution that aims to solve this problem using the notion of semantic
interoperability where ‘data models’ or ‘schemas’ are a) developed within a com-
munity, b) embedded or associated with data to convey meaning, and c) aligned
with other schemas to enable importing and exporting data between services –
thus achieving the intended goals of RtDP.
    The novelty of our approach is within the lack of consensus about semantics
required between exporting and importing services through a registry of curated
schemas that act as a base for interpretation and permit variations in use-cases
and applications. To achieve this vision, we propose the use of ontology matching
and alignment techniques as the ‘bridge’ for data interoperability between two
services. Further, we discuss the application and role of ontology matching to
produce mappings for exporting (downlift) and importing (uplift) data directly
between services.
    The rest of this article is structured as follows: Section 2 presents the le-
gal requirements and existing implementations of RtDP, and discusses practical
challenges with a focus on the feasibility of meaningful exchange of data and the
role of semantics; Section 3 presents our vision of a solution and its application
on a hypothetical scenario involving transfer of data from Facebook to Twitter;
Section 4 concludes this article with a discussion on the practical considerations
for implementing our solution and its potential for helping SMEs innovate in an
existing dominant ecosystem.


2     RtDP in the Real-World

2.1     GDPR Requirements, Authoritative Opinions, and Guidelines

Article 20 and Recital 68 of the GDPR3 stipulate data to be provided under
RtDP to be structured, commonly used, machine-readable, and interoperable
format. further introduces the requirement of interoperability and motivates cre-
ation of interoperable formats that enable data portability. They also provide
for such data to be transferred (directly) from one Data Controller to another.
The guidelines on RtDP provided by Article 29 Working Party (WP29) further
3
    This articles focuses only on the data formats and interoperability requirements for
    RtDP. Conditions where the right applies, obligations of an organisation, and its
    compliance is not relevant to this work.
                 Semantic Schema Mapping for Interoperable Data-Exchange           3

clarify that the RtDP “does not place obligations on other data controllers to
support these formats” [5].
    Guidelines by WP29 and various Data Protection Authorities on data for-
mats includes use of XML, JSON, and CSV which are widely adopted and used
for interoperability. WP29 states that such data formats should be accompanied
“with useful metadata at the best possible level of granularity, while maintain-
ing a high level of abstraction ... in order to accurately describe the meaning
of exchanged information” [5]. ICO, which is the Data Protection Authority for
UK, explicitly suggests RDF4 as a standardised data format for interoperabil-
ity. Thus, although the GDPR motivates data sharing between services, it only
suggests semantic interoperability5 with RDF being a practical solution.
    Currently, EU’s Next Generation Internet initiative is funding projects through
the Data Portability and Services Incubator (DAPSI6 ) which lists directions for
possible solutions as common shared formats, vocabularies and ontologies for do-
mains, and methods for (semi-)automatically converting data including semantic
mapping. The ISO/IEC 19941:20177 standard for cloud interoperability outlines
the requirements for semantic interoperability, and the practical use of semantic
web standards towards shared understanding. An early paper from 2008 pre-
sented reuse of semantic web vocabularies for data interoperability within social
networks [1]. This shows that the semantic web domain has been a known di-
rection for a solution towards effective implementation of RtDP and achieving
semantic interoperability.

2.2   Real-world Implementations
RtDP has been implemented in a wide range of services given its nature as a legal
obligation. Several organisations have developed dedicated tools for RtDP such
as Google’s ‘Takeout’, Facebook’s ‘Download Your Information’, and Twitter’s
‘Your Twitter Data’. An example of data portability directly between services
is transferring photos from Facebook to Google Photos8 . The Data Transfer
Project9 (DTP) is a combined initiative consisting of IT behemoths Apple, Face-
book, Google, Microsoft, Twitter - to develop an open-source, service-to-service
data portability platform. To this end the project is developing10 ‘Data Models’
as a common interoperable schema between services.
    While these examples are optimistic, the reality is that RtDP has not seen its
full impact, and has not been sufficiently implemented by any service or organi-
4
   https://ico.org.uk/for-organisations/guide-to-data-protection/
   guide-to-the-general-data-protection-regulation-gdpr/
   individual-rights/right-to-data-portability/
 5
   Semantic interoperability was an explicit aim in earlier drafts of WP29 guidelines
   but was reduced to just ‘interoperability’ in the final published version [3]
 6
   https://dapsi.ngi.eu/
 7
   https://www.iso.org/standard/66639.html
 8
   https://about.fb.com/news/2019/12/data-portability-photo-transfer-tool/
 9
   https://datatransferproject.dev/
10
   https://github.com/google/data-transfer-project/
4       H. J. Pandit et al.

sation. A survey of data formats used in RtDP [10] shows variation in responses,
non-conformance with GDPR requirements, and a lack of semantics. The Data
Transfer Project, though it has been running for over 2 years (2018-2020), has
not produced any usable results to achieve its aims despite involving the worlds
largest IT organisations. An article by De Hert et al. [3] outlines the challenges
in implementing RtDP with two potential approaches: (i) minimalist approach
- which requires organisations to minimally comply with the GDPR; and (ii)
empowering approach - where semantic interoperability provides a stimulus of
choice and freedom to the user along with encouraging competition and innova-
tion amongst services. It is the nature of free-market capitalism that established
players prefer (i) whilst users and new entrants would prefer (ii) - each for their
own benefit. Our vision thus rests on making possible the empowering approach
within an ecosystem without additional obligations on organisations that only
want to implement the minimal approach for compliance.


2.3   Challenges in implementing Right to Data Portability

Semantic interoperability, in its role as a solution for data portability, depends
on the establishment and sharing of schemas along with the data. schema.org11
is a good example of shared and interoperable schema development across ser-
vices and use-cases based on its continued development and use at web-scale.
Another example is Shape Repo12 which reuses existing vocabularies (such as
WikiData13 ) to declare schemas for use in SOLID14 application development.
Similar to these, we base our approach on establishment of common schemas
for semantic interoperability through community engagement and maintenance.
In this section, we discuss some challenges present within the ecosystem which
justify our approach of a community-driven common schema.
    (1) When exported data contains no schema: Unless there is an explicit
legal requirement that mandates the association of schemas in a specific manner
with exported datasets, this situation is likely to continue. So the question arises
over who should develop and maintain the schemas? A dominant organisation
has interest in maintaining control over its data and reducing its usefulness to
other organisations who might be potential competitors. At the same time, these
other organisations (and individuals) would be interested in reusing the exported
data to enrich or enhance their own features and offerings. Therefore, it is in the
natural interest of the community at large to produce schemas to enrich its
data-based services to drive innovation and competition. The existing ecosystem
based on services offering APIs presents validation of this argument.
    (2) When exported data contains a schema: If a service already pro-
vides a schema with its exported dataset, it is easier to utilise this schema rather
than develop a new one. However, in the longer run, an independent schema is
11
   https://schema.org/
12
   https://shaperepo.com/
13
   https://www.wikidata.org/
14
   https://solidproject.org/
                Semantic Schema Mapping for Interoperable Data-Exchange          5

more resilient to control by one provider and can also be managed more efficiently
across use-cases. This is evident in the situation where the service changes its
schema, thereby requiring every tool and service dependant on its schema to
also change their implementations. Therefore, even where a data comes with a
schema attached, it is beneficial to develop a common schema and super-impose
the data’s schema on it.
    (3) Stakeholders beyond domains: Thus far, we have only considered
situations where services directly compete with each other within the same do-
main. However, data can also be useful for integration into other services or
for added features. An example of this is a service that offers recording ‘daily
logs’ from a user’s social media posts regardless of service. In such cases, it may
be to the benefit of the service provider to encourage development of features
dependant on its data. While the data providing service would want to restrict
such services to only work with their data, the service itself would be inclined
to support as many services as possible - an avenue for using common schema
and tools based on it.
    (4) Cost of development and Control: Larger organisations have more
resources at their disposal and larger freedom to experiment. Small organisations
(SMEs) are often resource-constrained and rely on innovation to compete. There-
fore, a common and shared approach for managing intoperable data is of greater
benefit to SMEs, which provides an incentive for them to pool their use-cases
and resources together to collaborate and share the burden of competition.


3   Proposed solution

Our vision for implementing RtDP addresses the challenges discussed in Sec-
tion 2.3 by proposing use of common schemas for ‘semantic interoperability’ in
data exchange between services. This includes an interoperable data portability
arrangement that benefits all stakeholders by permitting data exporters to con-
tinue using their own semantics and data importers understanding the embedded
semantics in data. The common schema is used to abstract service-specific de-
sign patterns and to serve as a source for common data within a domain. The
shared-community aspect of the approach enables sharing of tasks and reducing
the effort required in reuse of data and establishing common schemas.
    The role of semantic web in this process concerns acting as an interoperable
semantic representation using the RDF, RDFS, and OWL standards. We propose
utilising ontology matching and alignment to identify the correct schemas for
data exported from service A to be transformed and imported into service B.
We also propose utilising ontology matching to permit reuse of data based on
common schemas without explicit agreement between an exporter and importer.
Similarly, we also propose using uplift/downlift mappings between schemas as a
technique to potentially perform this step without requiring transformation of
data into RDF.
    Ontology matching is “the process of generating an ontology alignment be-
tween a source and a target ontology” [4]. In the last 15 years, a number of sur-
6       H. J. Pandit et al.

veys has been published in the area. They review the various techniques proposed
for two main categories of approaches, focusing either on simple correspondences
between concepts/resources [7][6] (1:1 concept matching) or complex matching
[9] (for m:n or more complex relations). Since ontology matching is one of the
oldest and most relevant research areas in the Semantic Web community15 , it
has produced a wide variety of techniques and tools ready to be used16 . Popular
implementations, such as the Alignment API17 [2] or the NeOn Toolkit18 , assist
practitioners in attempting to automatically align different schemas.
    To explain and discuss the application of semantic web, ontology matching,
and mappings in our approach in detail, consider the hypothetical use-case of
an individual wishing to obtain posts exported from Facebook and import them
to Twitter. This use-case can also be generalised for services both within and
outside the social media domain looking to import and reuse some or all of the
Facebook data - which furthers the usefulness of our approach.


3.1   Data Ingestion & Conversion

Currently, both Facebook and Twitter19 export their data under RtDP as JSON20
— a non-semantic format.
    The first step in ingesting Facebook’s JSON data is thus to understand its
structure and its schema. Where services undertake this effort individually, each
service has to duplicate the effort of understanding the structure and keeping
its tool updated. By sharing this task, the community can maintain a documen-
tation of the data’s schema and structure. If and when Facebook changes the
data structure or format, the community can update its documentation without
duplication of effort. While it is Facebook’s prerogative to structure its data and
change it as it feels fit - an argument can be made that frequent and unreasonable
changes are detrimental to the spirit of RtDP.
    To minimise impact of such changes, a schema corresponding to Facebook’s
data is created in the common registry, and any tools ingesting Facebook’s data
utilise the schema instead. Minimal effort is required to ‘transform’ the data
from its underlying structure to one corresponding with the established schema
- such as through a python script to convert to CSV or through RDF mapping
to convert to JSNO-LD - based on what the desired output format is.
15
   The “OM” workshop has been continuously running at ISWC since 2006.
16
   OAEI, the Ontology Alignment Evaluation Initiative, has been running yearly
   since 2004, evaluating the latest ontology matching technologies: http://oaei.
   ontologymatching.org/
17
   http://alignapi.gforge.inria.fr/
18
   http://neon-toolkit.org/
19
   Information about Twitter’s data may be out-of-date as its export tool has been
   non-operational as of August-15-2020.
20
   Facebook exports data as a JSON dump. Twitter exports data as a JavaScript file
   with JSON objects. Neither supply information about the schema or structure of
   their data.
               Semantic Schema Mapping for Interoperable Data-Exchange        7

3.2   Schema Description

The creation of a Facebook schema is based on first creating a common schema
representing ‘a social media post’. The concepts in the Facebook schema are
thus specialised variations of the common schema, representing Facebook as
a specific type of social media. This abstraction permits a data importer to
target data specifically from Facebook (through the Facebook schema) or any
social media (through the common social media schema). The abstraction also
works to encourage designing common tools to work on the data rather than
specialised ones targeting individual services. Figure 1 depicts an example of a
common schema targeting social media posts.
   The creation of a common schema where none exists is difficult if a com-
munity agreement is necessary over its concepts and structure. Therefore, we
suggest seeding the first common schema with concepts from dominant data
providers in the domain and normalising it towards other existing providers. In
the current use-case, this would mean first creating a schema from Facebook’s
data, then creating a common schema based on Facebook’s schema, and updat-
ing Facebook’s schema to use the common one as its base. By this we mean
sub-classing concepts in specialised schemas from common ones. Later, when
creating Twitter’s schema, the existing common schema for social media can be
used to guide the schema creation process.




           Fig. 1. Example of a common schema for social media post.
8        H. J. Pandit et al.

3.3     Schema Alignment
In the common and Facebook schemas, the generic terms ‘post’, ‘media’, ‘times-
tamp’ are suitable for use in both since Facebook does not have any specialised
variation of these. However, concepts such as ‘like’ or ‘reaction’ may present
problems in abstraction and generalisation as they may not be present in other
service in the same context. For example, Twitter defines21 the ‘ª’ symbol to
mean a ‘like’ whereas Facebook defines22 its ‘reactions’ as an enumeration con-
sisting of ‘like, love, wow, haha, sorry, angry’. Aligning the two is difficult due to
semantic differences in the two terms. One interpretation is that only a Facebook
‘love’ is equivalent to Twitter ‘like’, whereas another possible interpretation is
that any Facebook reaction should be equivalent to Twitter ‘like’.
    We propose the use of ontology matching and alignment techniques to assist
in the schema alignment and discovery process as well as to resolve equivalence
between concepts. This can be an automated process, but we also emphasise
its value in encouraging discussion amongst schema creators and maintainers
through a human-in-the-loop process. The role of common schemas in this is to
provide a measure of commonality in the identification and structuring of source
and target schemas, as well as to ease the process of finding related and equivalent
data patterns. For example, in the case of a Facebook post and Twitter ‘tweet’,
the relationship is easy to establish based on their common super-classes.


           Facebook Common Schema Twitter Type of alignment
           Post       Post        Tweet     Simple
           Contents   Contents    Contents Simple
           Timestamp Timestamp    Timestamp Simple
           User       Person      Profile   Complex
           Friend     Knows       Follows   Complex
           Attachment Media       Media     Simple


     Ontology alignment techniques may also provide a way to integrate data
where no possible contextual similarity is apparent. For example, Facebook’s
‘friend’ concept and Twitter’s ‘follows’ concept are different in their behaviour
and discourse - yet they share similarity in their pattern of association with
an individual. It is up to the importer then to determine whether they want
to support and utilise such alignments or to discard them in favour of more
semantically-refined ones.
     Once the matching concepts have been found, the process of transferring data
to the target service can take place. An explicit way to do this is to first trans-
form the source data to RDF using its corresponding schema (in this case the
Facebook schema), then creating an alignment table using the ontology match-
ing process, and then to generate the dataset using the target schema (in this
21
     https://help.twitter.com/en/glossary
22
     https://developers.facebook.com/docs/graph-api/reference/v8.0/object/
     reactions
                   Semantic Schema Mapping for Interoperable Data-Exchange           9

case the Twitter schema). To reduce the number of transformations required in
this process, mappings can be potentially used to directly enable the importing
service to ingest the source data without the intermediary transformations.
     Uplift mapping is the process of converting a data into RDF, while downlift
is its inverse. Considering that Facebook exports a JSON data dump, and that
Twitter similarly will import23 a JSON data dump - the process of transforma-
tions will involve: (i) uplift Facebook’s JSON data into RDF using Facebook
schema; (ii) transform RDF data from source schema into target schema using
the ontology mapping process; (iii) downlift data into JSON for Twitter. Since
the role of step (ii) is merely to find an alignment between the schemas of Face-
book and Twitter, the actual transformation of data can take place directly from
Facebook’s JSON to Twitter’s JSON format.


3.4     Using mappings to automate the process

An interesting research question thus arises out of this arrangement - “can we
utilise the schema alignments and the mappings to create a tool that will convert
the source data to target data?”. We believe that it is reasonable to hypothesise
that such a tool can indeed be created based on the fact that the structure (i.e.
specific arrangement of data structures) of source and target data can itself be
considered schemas, and therefore can be utilised to convert one to another.
The question around implementing this is then concerned about the efficiency
rather than sufficiency. A related area facing similar research challenges is the
utilisation of GraphQL to retrieve data from a triple-store in the shape requested
by rewriting the query in SPARQL [8].
    The use-case we discussed concerned moving data from one social media
service to another (Facebook to Twitter). However, RtDP makes it possible to
reuse data across a larger plethora of services across domains. For example,
Facebook’s data contains information about locations the user has tagged their
post with (or checked-in). This information could be relevant in any other service
providing features that utilise location data - such as a visualisation service that
shows all the locations an user has been to on a map. Such a service may want to
broaden its data import feature to encourage users to submit any location data
regardless of its source. Potential sources of such data include: explicit location
data shared by user, location tagged in photos, location tagged in social media
posts, location inferred from place names and descriptions, location associated
with review of a restaurant, or location associated with monetary transactions
of a card. Instead of developing separate tools for each of these sources, the
service can instead target the underlying common location schema and utilise
our approach to ingest the data from a variety of source without additional
effort.
    In order to identify the potential sources of data, the service can declare the
schema for the data it intends to import. For example, this can be a location
23
     Twitter does not provide a data import service. So we reasonably assume its import
     tool will accept the same data format and structure as its export tool
10     H. J. Pandit et al.

concept with a label and co-ordinates. A label-based search for related schemas
will only retrieve schemas that contain the concept location or its synonym such
as ‘place’. However, ontology matching techniques can provide richer results
by identifying similarly ‘shaped schemas’ that contain labels and co-ordinates.
Further fine tuning is possible by focusing on co-ordinates and its variations
while excluding labels. This thus provides an opportunity for utilising ontology
matching techniques to identify relevant design patterns for schema discovery.


4    Conclusion

In this paper, we proposed an approach leveraging ontology matching and align-
ment techniques to achieve data interoperability between online services dealing
with personal data. Having GDPR’s Right to Data Portability (RtDP) in mind,
we described a typical use-case where users of a social networking service (e.g.
Facebook & Twitter) are willing to — and should be allowed to — export their
own personal data in a machine-readable format and reuse it on a different ser-
vice. We described how Semantic Web technologies and ontology matching could
assist in the alignment with a common schema that is used as a ‘bridge’ between
heterogeneous data schemas. The role of common schemas is to provide a mea-
sure of commonality in the structuring of source and target schemas. Finally, we
showed how data mappings could be used, and shared via a community-driven
repository, to automate the conversion processes. Actually, this last point opens
the doors of efficient Data Portability to SMEs which have to allow this feature
given the RtDP; in particular, SMEs will be able to minimise the cost of making
user data more easily ported to another provider.
    We envisage several advantages with the adoption of the proposed approach,
both for end-users and companies. First, schemas and mappings are open and
maintained by the community, lowering the costs for both parties in manag-
ing the data transformations. Second, maintenance costs are lowered and dis-
tributed to the community, removing possible bottlenecks or single points of
failure, typical of ad-hoc data transformation pipelines. Third, a descriptive and
machine-readable schema would not be required from the data exporters any-
more, keeping the complexity low at the data sources. Fourth, reliability of data
transformations would increase. For instance, when one data source changes,
mappings updates are faster to perform compared to changes to many ad-hoc
pipelines. Fifth, the automation potential would increase dramatically with im-
proved, more accurate, ontology matching techniques.
    As part of our future work, we plan to implement and test our solution
in different use-cases and with different services. This would create a baseline
that can be offered to the community and, ideally, adopted and expanded by
the community itself. From a more scientific perspective, we will investigate
the increased automation possibilities offered by complex ontology matching
techniques. Other avenues of potential work include exploration of our approach
for interoperability between services and APIs based on semantics, evaluating
                 Semantic Schema Mapping for Interoperable Data-Exchange           11

the efficiency and feasibility at large scales, and discussing the application of our
approach within the broader areas of legal compliance and data protection.


Acknowledgments: This research was conducted with the financial support
of the European Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie Grant Agreements No. 801522 and No. 713567
at the ADAPT SFI Research Centre at Trinity College Dublin. The ADAPT
SFI Centre for Digital Media Technology is funded by Science Foundation Ire-
land through the SFI Research Centres Programme and is co-funded under the
European Regional Development Fund (ERDF) through Grant #13/RC/2106.


References
 1. Boja, U.: Social Network and Data Portability using Semantic Web Technologies.
    In: Social Aspects of the Web (SAW 2008), Advances in Accessing Deep Web
    (ADW 2008), E-Learning for Business Needs. p. 15 (May 2008)
 2. David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The alignment api 4.0. Se-
    mantic Web 2, 3–10 (2011)
 3. De Hert, P., Papakonstantinou, V., Malgieri, G., Beslay, L., Sanchez, I.: The
    right to data portability in the GDPR: Towards user-centric interoperability of
    digital services. Computer Law & Security Review 34(2), 193–203 (Apr 2018).
    https://doi.org/10/gdtmx7
 4. Euzenat, J., Shvaiko, P., et al.: Ontology matching, vol. 18. Springer (2007)
 5. Guidelines on the right to data portability 16/EN WP 242 rev.01. Article 29 Data
    Protection Working Party (Dec 2016)
 6. Otero-Cerdeira, L., Rodrı́guez-Martı́nez, F.J., Gómez-Rodrı́guez, A.: Ontology
    matching: A literature review. Expert Syst. Appl. 42(2), 949–971 (2015), https:
    //www.sciencedirect.com/science/article/pii/S0957417414005144
 7. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: J.
    Data Semantics IV (2005)
 8. Taelman, R., Vander Sande, M., Verborgh, R.: GraphQL-LD: Linked Data
    querying with GraphQL. In: Proceedings of the 17th International Semantic
    Web Conference: Posters and Demos (Oct 2018), https://comunica.github.io/
    Article-ISWC2018-Demo-GraphQlLD/
 9. Thiéblin, E., Haemmerlé, O., Hernandez, N., Trojahn, C.: Survey on complex on-
    tology matching. Semantic Web pp. 1–39 (Oct 2019). https://doi.org/10/gg6rd4
10. Wong, J., Henderson, T.: How Portable is Portable?: Exercising the GDPR’s Right
    to Data Portability. In: Proceedings of the 2018 ACM International Joint Confer-
    ence and 2018 International Symposium on Pervasive and Ubiquitous Computing
    and Wearable Computers. pp. 911–920. UbiComp ’18, ACM, New York, NY, USA
    (2018). https://doi.org/10/gfsqrk
11. Zichichi, M., Rodrıguez-Doncel, V., Ferretti, S.: The use of Decentralized and Se-
    mantic Web Technologies for Personal Data Protection and Interoperability. In:
    GDPR Compliance - Theories, Techniques, Tools Workshop of Jurix 2019. p. 10
    (2019)