=Paper= {{Paper |id=Vol-2788/om2020_preface |storemode=property |title=None |pdfUrl=https://ceur-ws.org/Vol-2788/om2020_preface.pdf |volume=Vol-2788 }} ==None== https://ceur-ws.org/Vol-2788/om2020_preface.pdf
                         Ontology Matching
                                    OM-2020


                Proceedings of the ISWC Workshop


Introduction
Ontology matching1 is a key interoperability enabler for the semantic web, as well
as a useful tactic in some classical data integration tasks dealing with the semantic
heterogeneity problem. It takes ontologies as input and determines as output an align-
ment, that is, a set of correspondences between the semantically related entities of
those ontologies. These correspondences can be used for various tasks, such as ontol-
ogy merging, data translation, query answering or navigation over knowledge graphs.
Thus, matching ontologies enables the knowledge and data expressed with the matched
ontologies to interoperate.

   The workshop had three goals:
   • To bring together leaders from academia, industry and user institutions to assess
     how academic advances are addressing real-world requirements. The workshop
     strives to improve academic awareness of industrial and final user needs, and
     therefore, direct research towards those needs. Simultaneously, the workshop
     serves to inform industry and user representatives about existing research efforts
     that may meet their requirements. The workshop also investigated how the on-
     tology matching technology is going to evolve.
   • To conduct an extensive and rigorous evaluation of ontology matching and in-
     stance matching (link discovery) approaches through the OAEI (Ontology Align-
     ment Evaluation Initiative) 2020 campaign2 .
   • To examine similarities and differences from other, old, new and emerging, tech-
     niques and usages, such as process matching, web table matching or knowledge
     embeddings.

    The program committee selected 6 long and 4 short submissions for oral presenta-
tion and 6 submissions for poster presentation. 19 matching systems participated in this
year’s OAEI campaign. Further information about the Ontology Matching workshop
can be found at: http://om2020.ontologymatching.org/.




  1 http://www.ontologymatching.org/
  2 http://oaei.ontologymatching.org/2020




                                           i
Acknowledgments. We thank all members of the program committee, authors and
local organizers for their efforts. We appreciate support from the Trentino as a Lab3
initiative of the European Network of the Living Labs4 at Trentino Digitale5 , the EU
SEALS (Semantic Evaluation at Large Scale) project6 , the EU HOBBIT (Holistic
Benchmarking of Big Linked Data) project7 , the Pistoia Alliance Ontologies Mapping
project8 and IBM Research9 .




Pavel Shvaiko
Jérôme Euzenat
Ernesto Jiménez-Ruiz
Oktie Hassanzadeh
Cássia Trojahn

December 2020




  3 www.facebook.com/trentinoasalab
  4 www.openlivinglabs.eu
  5 www.trentinodigitale.it
  6 www.seals-project.eu
  7 https://project-hobbit.eu/challenges/om2020/
  8 www.pistoiaalliance.org/projects/current-projects/ontologies-mapping
  9 research.ibm.com




                                         ii
                               Organization



Organizing Committee
Pavel Shvaiko,
Trentino Digitale SpA, Italy

Jérôme Euzenat,
INRIA & University Grenoble Alpes, France

Ernesto Jiménez-Ruiz,
City, Univeristy of London, UK & SIRIUS, Univeristy of Oslo, Norway

Oktie Hassanzadeh,
IBM Research, USA

Cássia Trojahn,
IRIT, France




Program Committee
Alsayed Algergawy, Jena University, Germany
Manuel Atencia, University Grenoble Alpes & INRIA, France
Zohra Bellahsene, LIRMM, France
Jiaoyan Chen, University of Oxford, UK
Valerie Cross, Miami University, USA
Jérôme David, University Grenoble Alpes & INRIA, France
Gayo Diallo, University of Bordeaux, France
Daniel Faria, Instituto Gulbenkian de Ciéncia, Portugal
Alfio Ferrara, University of Milan, Italy
Marko Gulić, University of Rijeka, Croatia
Wei Hu, Nanjing University, China
Ryutaro Ichise, National Institute of Informatics, Japan
Antoine Isaac, Vrije Universiteit Amsterdam & Europeana, Netherlands
Naouel Karam, Fraunhofer, Germany
Prodromos Kolyvakis, EPFL, Switzerland
Patrick Lambrix, Linköpings Universitet, Sweden
Oliver Lehmberg, University of Mannheim, Germany
Majeed Mohammadi, TU Delft, Netherlands
Peter Mork, MITRE, USA
Andriy Nikolov, Metaphacts GmbH, Germany
George Papadakis, University of Athens, Greece
Catia Pesquita, University of Lisbon, Portugal

                                       iii
Henry Rosales-Méndez, University of Chile, Chile
Kavitha Srinivas, IBM, USA
Giorgos Stoilos, Huawei Technologies, Greece
Pedro Szekely, University of Southern California, USA
Ludger van Elst, DFKI, Germany
Xingsi Xue, Fujian University of Technology, China
Ondřej Zamazal, Prague University of Economics, Czech Republic
Songmao Zhang, Chinese Academy of Sciences, China




                                       iv
                                                Table of Contents



Long Technical Papers

Using domain lexicon and grammar for ontology matching
Francisco José Quesada Real, Gábor Bella, Fiona McNeill, Alan Bundy . . . . . . . . . . . 1

Semantic schema mapping for interoperable data-exchange
Harshvardhan J. Pandit, Damien Graux, Fabrizio Orlandi,
Ademar Crotti Junior, Declan O’Sullivan, Dave Lewis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A gold standard dataset for large knowledge graphs matching
Omaima Fallatah, Ziqi Zhang, Frank Hopfgartner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Applying edge-counting semantic similarities to link discovery:
scalability and accuracy
Kleanthi Georgala, Mohamed Ahmed Sherif, Michael Röder,
Axel-Cyrille Ngonga Ngomo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

LIGON - link discovery with noisy oracles
Mohamed Ahmed Sherif, Kevin Dreßler, Axel-Cyrille Ngonga Ngomo . . . . . . . . . . . . 48

Supervised ontology and instance matching with MELT
Sven Hertling, Jan Portisch, Heiko Paulheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60


Short Technical Papers

Learning reference alignments for ontology matching
within and across domains
Beatriz Lima, Ruben Branco, João Castanheira, Gustavo Fonseca,
Catia Pesquita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

SUBINTERNM: optimizing the matching of networks of ontologies
Fabio Santos, Kate Revoredo, Fernanda Baião . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A survey of OpenRefine reconciliation services
Antonin Delpeuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

LIGER - link discovery with partial recall
Kleanthi Georgala, Mohamed Ahmed Sherif, Axel-Cyrille Ngonga Ngomo . . . . . . . . 87




                                                                     v
OAEI Papers

Results of the Ontology Alignment Evaluation Initiative 2020
Mina Abd Nikooie Pour, Alsayed Algergawy, Reihaneh Amini, Daniel Faria,
Irini Fundulaki, Ian Harrow, Sven Hertling, Ernesto Jiménez-Ruiz,
Clement Jonquet, Naouel Karam, Abderrahmane Khiat, Amir Laadhar,
Patrick Lambrix, Huanyu Li, Ying Li, Pascal Hitzler, Heiko Paulheim,
Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, Andrea Splendiani,
Elodie Thiéblin, Cássia Trojahn, Jana Vataščinová, Beyza Yaman,
Ondřej Zamazal, Lu Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ALIN results for OAEI 2020
Jomar da Silva, Carla Delgado, Kate Revoredo, Fernanda Baião . . . . . . . . . . . . . . . 139

ALOD2Vec matcher results for OAEI 2020
Jan Portisch, Michael Hladik, Heiko Paulheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

OAEI 2020 results for AML and AMLC
Beatriz Lima, Daniel Faria, Francisco M. Couto, Isabel F. Cruz,
Catia Pesquita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

AROA results for OAEI 2020
Lu Zhou, Pascal Hitzler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

ATBox results for OAEI 2020
Sven Hertling, Heiko Paulheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Results of CANARD in OAEI 2020
Elodie Thiéblin, Ollivier Haemmerlé, Cássia Trojahn . . . . . . . . . . . . . . . . . . . . . . . . . 176

DESKMatcher
Michael Monych, Jan Portisch, Michael Hladik, Heiko Paulheim . . . . . . . . . . . . . . . 181

FTRLIM results for OAEI 2020
Xiaowen Wang, Yizhi Jiang, Hongfei Fan,
Hongming Zhu, Qin Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Lily results for OAEI 2020
Yunyan Hu, Shaochen Bai, Shiyi Zou, Peng Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

LogMap family participation in the OAEI 2020
Ernesto Jiménez-Ruiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

OntoConnect: results for OAEI 2020
Jaydeep Chakraborty, Beyza Yaman, Luca Virgili, Krishanu Konar,
Srividya Bansal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204




                                                                    vi
RE-miner for data linking results for OAEI 2020
Armita Khajeh Nassiri, Nathalie Pernelle, Fatiha Saı̈s, Gianluca Quercini . . . . . . . 211

VeeAlign: a supervised deep learning approach to ontology alignment
Vivek Iyer, Arvind Agarwal, Harshit Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216

Wiktionary matcher results for OAEI 2020
Jan Portisch, Heiko Paulheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225




                                                             vii
Posters

Ontology alignment in ecotoxicological effect prediction
Erik B. Myklebust, Ernesto Jiménez-Ruiz, Jiaoyan Chen, Raoul Wolf,
Knut Erik Tollefsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Towards semantic alignment of heterogeneous structures
and its application to digital humanities
Renata Vieira, Cássia Trojahn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Ontology matching for the laboratory analytics domain
Ian Harrow, Thomas Liener, Ernesto Jiménez-Ruiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Towards matching of domain ontologies to cross-domain ontology:
evaluation perspective
Martin Šatra, Ondřej Zamazal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Towards a vocabulary for mapping quality assessment
Alex Randles, Ademar Crotti Junior, Declan O’Sullivan . . . . . . . . . . . . . . . . . . . . . . . . 241

TableCNN: deep learning framework for learning tabular data
Pranav Sankhe, Elham Khabiri, Bhavna Agrawal, Yingjie Li . . . . . . . . . . . . . . . . . . . 243




                                                                viii
ix