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Abstract. Theoretical, algorithmic and methodological aspects of stochastic 

modeling and technology efficiency control based on game-theoretic approach 

and machine learning are considered. The problem of assigning one of two 

ranks to a control object with the stochastic potential of technology is posed and 

solved for the case when probabilistic characteristics are known. Otherwise, to 

determine the optimal parameter of the ranking rule it is proposed to use the 

procedure of machine learning. The case of asymmetric awareness of the 

manager deciding on the ranking and the staff responsible for the effectiveness 

of the technology is considered. Far-sighted staff selects indicators of 

technology efficiency in such a way as to maximize own objective function, 

which depends on current and future results of ranking. There is a game 

between staff and manager which can lead to a decrease in the effectiveness of 

the technology and distortion of the estimates of the ranking parameters. This 

makes machine learning ineffective. To solve these problems, stochastic game 

model and ranking learning mechanism are proposed. The results of this 

mechanism functioning are estimates of ranking parameters, standards and 

ranks that determine staff stimuli. Sufficient conditions for the synthesis of 

ranking learning mechanism have been found, allowing to reveal the potential 

of technology effectiveness and to determine the optimal parameters of the 

ranking rule. These conditions are illustrated by the example of machine 

learning of ranking the technology electricity effectiveness in the process of 

implementing the program to increase the energy efficiency of the Russian 

Railways holding. 

Keywords: stochastic modeling, game theory, control, machine 

learning, ranking, stimulation 

1   Introduction 

The important aspect of production efficiency in the face of changes is the disclosure 

of internal reserves and technological resources by activating the human factor. This 

determines the relevance of the game-theoretic approach to stochastic modeling of the 

dynamics of organizational and technical systems. This approach allows take into 

account conflicts of interest and the resulting activity of people in the production 

process.  
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The problem of reconciling these interests under conditions of uncertainty has 

traditionally been considered in hierarchical games, or inverse Stackelberg games first 

introduced in [1]. In Russian/Soviet literature, hierarchical games were previously 

considered by Yu. Germeier [2]. 

At the heart of modern research of organizational systems control, taking into 

account the activity of their elements is a game-theoretic approach. Among the 

scientific directions, it should be noted first of all, the theory of mechanisms 

(mechanism design), which has incorporated the control theory, the theory of 

contracts and the theory of feasibility [3]. It should also be noted theory of active 

systems [4], as well as works on the study of individual models using the game-

theoretic approach for example [5]. 

On the other hand, at present, the theoretical, algorithmic and methodological 

aspects of stochastic game-theoretic modeling of organizational and technical systems 

with elements of artificial intelligence are acquiring more importance. For example, 

within the framework of the theory of active systems, mathematical methods are 

developed for smart organization mechanism design [4]. 

The most important element of artificial intelligence is learning. Accordingly, 

game-theoretic approach support mechanism design with learning. For example, a 

behavioral model for mechanism design is based on individual evolutionary learning 

[6]. 

In recent years, machine learning has attracted a lot of interest from both scientists 

and managers of organizational and technical systems. But the development of 

machine learning at the beginning of the 21st century has led to a certain divergence 

with control theory [7]. Control-related views have only been published for narrower 

areas of iterative learning by Bristow et al. [8] and of reinforcing learning by Recht 

[9]. What is a challenge for control theorists is that there is very little rigorous 

mathematical proof in the new machine learning “tsunamis” [7]. Today this 

divergence is the subject of discussion in the control community on “Control and 

learning – is there really a divide?” Among the issues currently being discussed is: 

How can we use control theory to improve machine learning algorithms? [10]. 

To answer these questions in relation to control of organizational and technical 

systems, mechanisms have been designed in recent years using machine learning 

algorithms. So, in [11] on the basis of a game-theoretic approach the mechanism for 

learning digital control of a large-scale industrial system was designed. In [12], a 

business control mechanism based on a learning algorithm with a tutor proposed. In 

[13], a control mechanism of production was designed based on a self-learning of 

identification. This paper discusses a game-theoretic approach to designing a 

mechanism that uses a self-learning algorithm for ranking and stimulation in 

organizational and technical system. 

2   Stochastic Dichotomy 

Many tasks of governing body (briefly – Center) come down to assigning one of two 

ranks to the control object (briefly – dichotomous ranking). The better the rank, the 



higher the incentive for the controlled object. For this, a decision rule is needed. With 

enough complete a priori information, Center can use the rules of the theory of 

statistical decisions.  
 

2.1 Minimization of Losses in Dichotomy 

Denote by t the time period, ,...1,0=t  The sequence ,...1,0=t  is a chronologically 

sorted sequence of time intervals. These intervals are constant in length, not 

overlapping and cover the whole timeline. Unit of time is used here correspond to the 

application problem of organization control is considered (for example month, see 

Section 4). 

Let tz  be a random variable characterizing the efficiency potential of the object in 

period t, ,∆∈tz  where ]σ,λ[=∆  is the finite subset of :1R ,⊂∆ 1
R .0>σ,0<λ  

Variables tz  corresponding different periods ,...1,0=t , are independent identically 

distributed random variables. Dichotomous ranking involves tz  assigning one of the 

two areas that make up the set ∆ . Incorrect ranking leads to losses. 

Denote }{ 21 ∆,∆  some partition of the set ∆  into 2 areas, ∆=∆
2

1=
k

k
U . When 

ranking, i.e. assigning a situation tz  to one of these areas, Center makes a decision 

associated with some losses. The challenge is to define a partition }{ 21 ∆,∆  that 

minimizes the average losses associated with ranking. We introduce for each, so far 

unknown area k∆ , ,,k 21=  the dichotomous ranking loss function: 

– )z,c(L1 – losses in case of assignment z  the rank 1, while 2∆∈z ; 

– )z,c(L2  – losses in case of assignment z  the rank 2, whereas 1∆∈z , 

where c is an unknown parameter. Then the affiliation z of one or another area is 

determined by the sign of the decision rule 
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Assume that Center knows the distribution density )z(q  of a random variable .z  

Then the problem is solved by determining the parameter с of the decision rule (1) 

that minimizes the average losses of ranking: 
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2.2 Learning of Stochastic Dichotomy 

Knowing )z(q  we can find the parameter as a solution to problem (2).  However, in a 

stochastic setting a priori information is often not enough. Suppose )z(q  it is 



unknown to Center. Therefore, the direct determination of the parameter c by solving 

optimization problem (2) is impossible. Then we can then try to tune decision rule 

parameter с  using observations tz , ,...1,0=t , to minimize losses ).c(J  

Write the condition for the minimum average losses of ranking (2) in the form: 
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where zM  is the mathematical expectation operator. For simplicity of calculations, 

consider below the linear loss functions:                      

                                           vczzcL −=),(1 ,   )(),(2 zcdzcL −= ,                                       (5) 

where 

– v is the parameter of loss elasticity when z is assigned rank 1, while 

,∆∈ 2z 0<v<1 ; 

– d  is the parameter of loss elasticity when assigning rank 2 to z, whereas ,∆∈ 1z  

d>0. 

Substituting (5) in (1), we obtain the decision rule in the form: 

          1∆∈z   if  )d/(c)d(z 1+ν+< ,   and  2∆∈z   if  )1/()( +ν+≥ dcdz         (6) 

Solve equation (3) using the method of stochastic approximation [14]. Denote tc  

the optimal estimate of unknown parameter c in period t, obtained by this method. 

Then, according to (3) we obtain a recursive equation for such estimate: 
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k
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There 0b  is the initial value of unknown parameter estimate, 0g  is the initial value of 

the efficiency potential, γt is the adaptation coefficient in period t, 

∑
∞

0=

∞<γ0>γ
t

tt , [14]. Substituting (4), (5) into (7), and taking into account (6), we 

obtain the algorithm for optimal estimate the parameter of the decision rule 
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3   Game-Theoretic Approach to Machine Learning of Dichotomy 

The elements of production are people, as well as the technologies and control 

processes by which they carry out their activities. Therefore, when researching and 

developing organizational and technological systems in the face of uncertainty, it is 

necessary to take into account the socio-psychological aspects of production activities 

including undesirable activity of staff. 

 

3.1 Stochastic Technological Active System 

Let us consider a two-level stochastic technological active system, at the upper level 

of which Center is located, and at the lower level is forward-thinking staff (FTS) that 

implements the technological process. Let us characterize game-theoretic approach to 

the study of the interaction of Center and FTS to increase efficiency of the 

technology, using the results of Section 2. 

Suppose that random value of technological potential tz  becomes known FTS 

before choosing indicator ty  of technology efficiency in period t. Moreover, value tz  

is unknown to Center. Based on the condition that the efficiency indicator cannot 

exceed the potential (i.e. tt zy ≤ ), FTS chooses ,ty  ,...,2,1=t  in such a way as to 

maximize own target function, depending on current and future ranks assigned by 

Center. 

Center, on the other hand, observes only indicator ty  that does not necessarily 

coincide with potential tz  (since tt zy ≤ ). Therefore, Center is forced to form the rank 

of FTS under conditions of uncertainty caused not only by stochastic potential of the 

technology, but also by the undesirable activity of FTS. For this, Center uses the 

learning algorithm (8), substituting the observed indicator ty  in it, instead of the 

unknown tz . In this case, the estimate 1+ta  of the parameter of the decision rule is 

obtained using algorithm similar to (8): 
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3.2 Goals of Center 

Center is interested in unlocking the potential of a technology, as well as in increasing 

its predictability. Constant disclosure of technology potential is achieved when 

,zy tt = ,...1,0=t  Unpredictability of this potential is due not only to the random 

factors, but also to undesirable activity of FTS, due to which .zy tt <  

Since in general case ,tt zy ≠  then ,tt ca ≠  ,...2,1=t  Therefore, estimate ta  

calculated using recurrence algorithm (10) does not converge to optimal estimate *c  

determined according to (9). This makes machine learning algorithm (10) ineffective. 

Substantially, the reason is that Center is not able to take into account random factors 

that become known to FTS in the process of production. This not only reduces the 



effectiveness ( tt zy < ), but also makes such machine learning inefficient. To improve 

the efficiency of machine learning, it is necessary to ensure convergence of estimate 

ta  calculated by recurrent algorithm (10) to optimal estimate *c  determined 

according to (9): 

                                       
ct

tttt cJcyaIa )(minarg=*→),(=1+                                  (11) 

Thus, Center’s goals are to unleash potential of technologies ( ,zy tt = ,...2,1=t ), 

as well as to increase efficiency of machine learning by implementing (11). Thus, 

expected payoff of Center is maximal if ,zy tt = ,...2,1=t  To achieve this, Center 

establishes the necessary order and mechanism for functioning of technological active 

system. 

 

3.3 Dichotomous Ranking Learning Mechanism 

Consider the following order of system’s functioning in period t, ...1,0=t  In period 

0=t  Center knowing initial values 0a  and 0y  calculates estimate 1a  for period 1 by 

means of  (10). Then  Center reports 1a  to FTS.  

In period t, ,...,2,1=t  FTS knows not only ta , but also .∆∈, tt zz  Based on this, 

FTS chooses indicator *
ty   that is preferable for itself, .*

tt zy ≤  Then Center, based on 

observation of *
ty  and known estimate ta , determines rank FTS ).,(=

*
ttt yaRr   Also 

Center calculates estimate 1+ta  for next period t+1 by means of  (10). Then  Center 

reports 1+ta  to FTS, ,...2,1=t   

We will call learning procedure a one-way infinite sequence of functions ),( ttt yaI  

defined according to (10) with ,...,1,0=t  and denote it  

                                             { }...,1,0=),,(= tyaII ttt                                            (12) 

Similarly, we will call { }...,1,0=),,(= tyaRR tt  ranking procedure. Then learning 

procedure I  and ranking procedure R are combined into a dichotomous ranking 

learning mechanism },{=Σ RI  in two-level technological active system shown in 

fig.1. 

 

3.4 Target of Forward-Thinking Staff 

Knowing ,ta  ,tz  and Σ , FTS chooses ty  in such a way as to increase own target 

function tV , which depends on current and future ranks ),,(= τττ yaRr  τ= Tt,t + : 

                                                 ∑
+
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t
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where ρ is the discount rate, ,1<ρ<0  T is the number of periods taken into account 

by FTS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Technological active system with dichotomous ranking learning mechanism Σ .  

    We will assume that FTS know that ,0 ττ ≤≤ zy  and ∆∈τz  in each future 

period τ, .+,1+=τ Ttt  In order to make a choice in conditions of such uncertainty, 

FTS is guided by expected payoff equals to guaranteed value of (13): 

       )Σ(maxmin=)Σ,,,(
+,1+=τ,≤≤0+,1+=τ,∆∈ τττ

t
TttzyTttz

tttt Vzyaw ,  ,...2,1=t      (14)                      

Then the set of possible choices of FTS has the form: 

 }0),,,,(),,,(,0|{),,( ***
tttttttttttttttt zyzyawzyawzyyzaW ≤≤Σ≥Σ≤≤=Σ , ,...2,1=t (15)  

Suppose that the set of FTS possible choices (15) includes tz , i.e. ).Σ,,(∈ tttt zaWz  

In this case we say that the benevolence hypothesis of FTS with respect to Center is 

valid if FTS chooses ,=*
tt zy  ,...2,1=t  

 

3.5 Synthesis of Dichotomous Ranking Learning Mechanism 

Let us turn to current practice of production management. First, ranking and stimulus 

procedures are usually designed in such a way stimuli grow as production indicators 

increase compared with their current scores (plans, standards). Usually, stimulation is 

carried out in case these scores are exceeded [4]. Therefore, the higher a score the 

more difficult it is to get a stimulus. 

Secondly, forecasting procedure in a large corporation is often organized in such a 

way that a score (like plan) in each subsequent period increases by a certain 

ta  

Forward-thinking staff 

ta  

tz  

Machine learning procedure I :  ),(=1+ tttt yaIa  

Ranking procedure  R:  ),(= ttt yaRr  

  Dichotomous ranking learning mechanism },{=Σ RI  

 

Rank  tr   

ty  
TECHNOLOGY 



percentage of result achieved today (the so-called “planning from the achieved level”) 

[4]. Then future score (plan, standard) will be the higher, the higher today's indicators 

are achieved. Therefore, staff may not be interested in exceeding the score (after all, 

the higher the score in the future the more difficult it will be to get a stimulus). 

Thus, problem arises of the lack of interest of forward-thinking staff in unlocking 

the potential of technology. In this case ,< tt zy  and it is impossible to determine *с  

with the aid of machine learning algorithm (10). Therefore, expected payoff of Center 

is not maximal if ,<*
tt zy ,...1,0=t   

Consider the non-cooperative game of Center and FTS in two-level technological 

active system shown in fig.1. The first move in period t is made by Center, setting 

mechanism },{=Σ RI . The second move is made by FTS, choosing indicator .*
ty  

Then these moves are repeated in next period  t+1, ,...2,1=t  

Statement. To unlock the potential ( *
ty = tz , ,...2,1=t ) and improve the efficiency of 

machine learning to obtain (11), it is enough to set a mechanism },{=Σ RI  with 

procedure I  that satisfies (12), and 

                              ),-(Θ=),( tttt xyyaR     )1+/()+(= dvdax tt ,                            (16)                      
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Proof. The expected payoff of FTS (14) depends according to (13) on both current 

and future ranks ),(= τττ yaRr , Tt,t +=τ . By condition (16), with an increase in 

indicator ty , current rank FTS ),(= ttt yaRr  increases (does not decrease). In 

addition, by the hypothesis of Statement, Center uses learning procedure (12). Hence, 

according to (10) estimates τа  decrease (do not increase) with an increase in 

ty , Tt,t +1+=τ . Therefore, according to (16) future ranks FTS ),(= τττ yaRr  

increase (do not decrease) with an increase of ty , Tt,t +1+=τ . 

According to (13), )Σ(tV  increases monotonically in ),(= τττ yaRr , Tt,t +=τ . 

But tr  monotonously increases (does not decrease) by ty . Therefore, with an increase 

in indicator ty , expected payoff (14) also increases (does not decrease). Since 

ty ≤ tz , maximum of )Σ,,,( tttt zyaw  is reached at ty = tz . Therefore, according to 

(15), ).Σ,,(∈ tttt zaWz  Hence, by virtue of the benevolence hypothesis, *
ty = tz , 

,...1,0=t  But then (8) and (10) coincide. Therefore, (11) follows from (9), Q.E.D. 

Following the common game-theoretic notation [15], let comment relation between 

this Statement and Nash equilibrium. In our case, Nash equilibrium is a solution of 

a non-cooperative game in which both Center and FTS know equilibrium strategies of 



the other player, and no player has anything to gain by changing only own strategy. 

Center strategy Σ  determines actions based on what it has seen happen so far in the 

game. Expected payoff of Center is maximal if *
ty = tz , ,...2,1=t  FTS makes the 

strategy choice ty —its own action based on Σ  and tz . Expected payoff of FTS is 

(14). According to Statement, no player can increase expected payoff by changing 

strategy while the other player keep own strategy unchanged. Therefore the set of 

strategy choices }...,2,1=|,Σ{ *
tyt  constitutes Nash equilibrium. This unleashes 

technology potential and increases efficiency of machine learning 

Consider a simple interpretation of Statement. Suppose that a performance 

stimulation is such that the higher the rank the higher the stimulus for staff. Center 

observes a value *
ty  characterizing actual effectiveness in period tt zyt ≤*  , , where tz  

is unknown random maximal efficiency. Center learns tuning the decision rule 

parameter with the aid of (10). Further, in accordance with adopted decision rule, 

Center ranks FTS according to actual effectiveness of technology. Namely, with 

tt xy ≥*  FTS refers to successful ( 2=Θ ) and is encouraged. If tt xy <*  then FTS 

refers to dysfunctional ( 1=Θ ) and is punished. 

Any of these decisions is associated with a certain losses for Center. In first case, 

losses 1L  increase with a decrease in efficiency ty  (undeserved encouragement or 

bonus of staff). In second case, these losses 2L  increase with increasing efficiency 

and unfair punishment of staff. The standard )d/(a)vd(x tt 1++=  corresponds to 

the lower limit of satisfactory work of staff. 

Note that according to (10), the higher is technology efficiency indicator ( *
ty ) the 

lower is estimate for the next period (at+1). But, according to (17), this estimate plays 

the role of the threshold value of indicator 1+ty  at which FTS receives a stimulus in 

period t+1. Therefore, FTS becomes easier to get a stimulus in period t+1 even with a 

smaller value of random potential zt. 

In other words, with an increase in indicator *
ty , staff receives not only a higher 

stimulus. With growth *
ty , estimate for the next period at+1 decreases. Therefore 

threshold value for stimulation in the future decreases. This further interests the staff 

in unlocking the potential of the technology, i.e. in choosing .=*
tt zy  Thus, in 

accordance with (8) – (10) learning procedure (12) ensures convergence of estimate 

ta  to optimal value *c  (11). This makes machine learning algorithm (10) more 

efficient. 



4   Example: Using 2 dichotomous ranking learning mechanisms 

for ranking electricity efficiency in four ranks 

By Statement, dichotomous ranking learning mechanism promotes revelation of 

potential effectiveness of technology and increase efficiency of machine learning. 

Consider the application of this mechanism to ranking the efficiency of energy-saving 

technology under the program of increasing the energy efficiency of the Russian 

Railways holding. 

 

4.1 Ranking Learning Mechanism 

Improving energy efficiency of production technology can be achieved through 

modernization and optimization of technological processes, as well as operating 

modes of heating and lighting systems of an enterprise. The decision on ranking the 

efficiency of energy-saving technology is made by the employee of the energy 

commission of the Russian Railways, responsible for achieving indicators of the 

program for improving energy efficiency in region. This employee acts as Center, 

observing actual effectiveness of energy-saving technology at a subordinate enterprise 

providing wagon-repairing [16]. Consider the application of a mechanism },{=Σ RI  

that satisfies conditions of Statement to improve efficiency of electricity use at such 

enterprise (briefly, FTS). 

The monthly electricity efficiency of wagon-repairing tα  
is calculated as number 

tn  of wagons repaired in month t, divided by appropriate number te  
of megawatt-

month of consumed electricity: ./=α ttt en  There 
 
t  is the number of month in a year, 

.12,1=t  Indicator yt  of monthly electricity efficiency is calculated as deviation of tα  
from the norm (plan) of electricity efficiency tβ  

divided by this norm: tttty β/)β-α(=  

.12,1=t  Thus, the value of indicator yt depends on variables ,tn ,te .βt  In turn, these 

variables depend on many random factors: volume of orders for repairs, weather, 

season, etc. Therefore value yt  has a stochastic character. 

Based on indicator yt, a monthly ranking of technology effectiveness is determined. 

For this, Center uses decision rule with customizable estimates based on algorithm 

(10) and conditions of Statement. In order to make the results more vivid, Center 

defines four ranks of electricity efficiency. There rank 4 corresponds to excellent 

assessment of electricity efficiency, rank 3 – to good assessment, rank 2 – to 

satisfactory assessment, and rank  1 – to poor assessment. 

To determine these four ranks of electricity efficiency, Center uses the following 

procedure for estimate parameters of decision rule and procedure for ranking, based 

on the approach developed above. 

1. In case indicator yt is negative ( 0<ty ) then rank rt of electricity efficiency in 

period t can be 1 or 2. At the beginning of the year (in period 0=t ), Center and FTS 

know ,, vd  initial values of indicator 0y , estimate

 

0a , and standard 



).1+/()+(= 00 dvdax  After that, within a year the estimate of decision rule parameter 

is adjusted according to algorithm (10), by formula 
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Then according to Statement, the rank of electricity efficiency is 
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2. In case indicator yt is non-negative ( 0≥ty ) then the rank of electricity 

efficiency may be 3 or 4. In this case, procedures for parameter estimates of decision 

rule and ranking are based on the approach developed above. Namely, similar to (5) 

denote:

 

+
ta  – the estimate of parameter of decision rule for ranking of electricity 

efficiency to 3 or 4 in period t;  +− vayt  – the loss function for erroneous assignment 

of rank 3 (instead of rank 4), 0<v
+
<1; )( tyad −++  – the loss function for erroneous 

assignment of rank 4, d
+
>0; ;)1+/()+(= +++++

dvdax tt  .12,0=t  

At the beginning of the year (in period 0=t ) Center and FTS know ,,
++

vd  

initial values of indicator 0y , estimate 
+
0a , and standard ).1+/()+(=

++++
0

+
0 dvdax  

After that, within a year the estimate of decision rule parameter is adjusted similar to 

(18) by formula: 
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Then in accordance with Statement, the rank of electricity efficiency is calculated 

using a formula similar to (19): 
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Note that (20) and (21) are similar to (18) and (19), if ,ta ,tx tr  replaced by 

,
+
ta ,

+
tx +

tr , respectively. 

 

4.2 Parameters of Calculations 



Estimates ta  and 
+
ta  in period t  were calculated, respectively, using formulas (18) 

and (20). Based on these estimates, values of tx  and 
+
tx

 

were determined according 

to (18) and (20). Values tx  and 
+
tx

 

make sense, respectively, of the lower and the 

upper standard of electricity efficiency in period t, .12,0=t  

The values of parameters used in calculations of ta  and 
+
ta

 

were based on hard 

and soft knowledge. Information theory of identification [14] shows that in optimal 

algorithm ,...1,0=),1+/(1=γ ttt  The other needed values were assigned by expert – 

invited specialist or tutor [12]. Then these values were adjusted by the employee 

himself or a manager of a higher level. 

In this expert environment, it was generally accepted that the loss in case of 

mistaken assignment of a higher rank was lower than the loss in case of erroneous 

assignment of a lower rank. Based on this, parameters of loss elasticity in case of an 

erroneous assignment of a higher rank were taken equal to 0.15 (i.e.

 

).15,0== +
dd  

In case of an erroneous assignment of a lower rank, parameters of loss elasticity were 

taken equal to 0.10 (i.e.

 

).10,0== +
vv  

In addition, experts a priori considered the deviation of indicator yt from zero level 

by more than 5% noticeable. The result of such a deviation should be an assignment 

to a different rank, and appropriately stimulated. Therefore, the initial values of 

standards of electricity efficiency were taken equal ,05,00 −=x  .05,0=+
0x   Hence, 

according to (19) if 05,000 −=< xy  then FTS attributed to a rank 1. Also according 

to (21) if ,05,000 =≥ +xy  then FTS attributed to a rank 4. 

 

4.3 Estimations and Standards Calculations 

Note if ,05,00 −=x  ,05,0=+
0x then according to (18) and (20), ,6,40 −=a  

.6,4=+
0a  The results of estimations and standards calculations for above parameters 

are shown in fig.2. There are graphs of indicator yt, as well as lower and upper 

standard tx and 
+
tx  during the year, .12,0=t   

According to (20), if indicator yt is less than the upper standard +
tx  then this 

standard is increased. For example, according to fig.2 the upper standard +
tx

 
increases 

in February and March. Also from September until the end of the year, the standard 
+
tx

 
was raised because yt was less than the standard (here the growth of the lower 

standard +
tx  is less noticeable on fig. 2 due to the smallness of the γt). On the other 

hand, according to (21), the standard +
tx

 
is a threshold of excellent rank in the future 

period τ, τ>t. Therefore, even in November, the FTS did not receive an excellent rank, 



although indicator yt   exceeded 0.1. Note that before September this would have been 

enough to get an excellent rank. 

 

        

Fig.2. Monthly indicator, lower standard, and upper standard of electricity efficiency.  

Also from fig.2 we see growth of lower standard tx
 
during the second month of 

the year (in February). The reason is the low FTS indicator in January. This is 

explained by the fact that according to (18), the smaller is indicator yt  the higher is 

the lower standard τx  
using as a threshold for satisfactory rank in future period τ, τ>t. 

In other words, by being poor FTS worsened own ability to become satisfactory rank. 

The situation is similar in the ninth month (here the growth of the lower standard tx  

is also less noticeable on fig. 2 due to the smallness of the γt).  

However, it was enough for FTS not to get poor rank in the following months 

(including August) as lower standard tx
 
began to decline. In essence, from February 

to August FTS worked for own authority. 

 

4.4 Ranks and Stimuli 

Further, Center determined rank Rt in period t, .12,0=t  If current indicator of 

electricity efficiency was negative (yt<0) then to assign rank 1 or 2, (19) was used. 

Otherwise (at yt≥0) to assign rank 3 or 4, (21) was used. Thus, the procedure for 

ranking electricity efficiency in period t, combining (19) and (21), had the form: 

                                      













<

<

<
=

+

+

1

0≤2

≤03

≥4

ˆ

tt

tt

tt

tt

t

xyif

yxif

xyif

xyif

r ,   ,12,0=t                         (22) 

             Indicator                 

            Lower standard 

            Upper standard 

             Zero indicator 

Time, months 

In
d
icato

r &
 stan

d
ard

s o
f electricity

 efficien
cy

 



where tr̂  is the rank of electricity efficiency in month t. In fig.3 shows a graph of rank 

tr̂  calculated by (22), .12,0=t  

Substantially, standard 
+
tx  is the lower limit of electricity efficiency ty , 

corresponding to excellent work of staff. Standard tx

 

is the lower limit of electricity 

efficiency ty  corresponding to satisfactory performance. When electricity efficiency 

was below tx  in February and October, the intervention of Center was required. 

Let comment on the relation between fig. 2 and fig. 3. Note that in general terms 

dynamics of tr̂  resembles dynamics of yt. However fig. 3 gives rougher assessments. 

This was necessary for a qualitative analysis (for example in a report to the higher 

management when there was no time to go into details). Whereas fig. 2 provides more 

accurate quantitative estimates of the ratio of indicators and standards useful for in-

depth analysis. For example fig. 3 shows that in November (t =11) the rank was 3. 

However, fig. 2 shows that this month indicator yt was very close to upper standard, 

that is, could get rank 4. This shows more progress in increasing electricity efficiency 

at the end of the year. 

          
Time, months 

Fig.3. Monthly electricity efficiency ranks of electricity efficiency. 

The higher the rank, the more stimuli the staff gets. Denote ts  stimulus for 

electricity efficiency in period t. Formally, the stimulation procedure is such that the 

stimulus )ˆ(= tt rSs  grows monotonously with increasing rank tr̂ : tt rrS ˆ↑)ˆ( . Then 

given (22), the higher the electricity efficiency indicator the higher rank and stimulus 

of the staff.  

In addition, according to (18) and (20) the higher indicator ty  the lower standards 

for the next period 1+tx  and .+
1+tx  Thus, with an increase in indicator ty  the staff 

receives not only higher stimulus ts . Also threshold value for future stimulation 1+tx  
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and 
+

1+tx  will decrease. This further piques the interest of staff in maximum disclosure 

of electricity efficiency potential and makes machine learning more efficient.  

5   Conclusions 

An important aspect of development and application of game theory and stochastic 

modeling in a wide range of organizational and technical systems is study of 

possibility of use of internal reserves and resources of the technologies used. For this, 

it is necessary to take into account human factor, interests of elements of the system. 

Often management does not know random interference and other factors that become 

known to staff in the process of production. This reduces effectiveness of the 

technology and makes the machine learning inefficient. 

The task of the theory was the synthesis of game-theoretic mechanisms of 

coordinated control in stochastic conditions, in which desire of elements to achieve 

own interests leads to an increase in technology effectiveness. The method for solving 

this problem by synthesizing the optimal learning mechanism for dichotomous 

ranking was proposed. This method includes construction of procedures for stochastic 

approximation of decision rule, ranking and stimulation. Thanks to this mechanism, 

Nash equilibrium arises which makes machine learning more efficient. 

This approach was illustrated by the example of machine learning to rank electrical 

efficiency of wagon-repairing aimed at achieving targets established by the program 

of increasing the energy efficiency of the Russian Railways. Further research will 

focus on the development of theoretical, algorithmic and methodological aspects of 

game theory and stochastic modeling with a focus on their application in a wide range 

of active organizational and technical systems. 
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