
Embedding-based Authorship Identification of
Source Code
Asrita Venkata Mandalam, Abhishek

Department of Computer Science and Information Systems, Birla Institute of Technology and Science Pilani, Pilani,
Rajasthan India.

Abstract
Authorship analysis has played an important role in identifying the true writers of literary texts. Of late,
there is an increased interest in authorship identification of source codes. This is partially due to a rise in
anonymous malware, code injections, and digital forensics. This paper presents the system implemented
to identify authors of compilable source codes written using C++. The model was developed for the
track Authorship Identification of SOurce COde in Forum for Information Retrieval Evaluation, 2020.
The proposed work implements word embedding modeling along with convolutional neural networks
(CNN) to achieve an accuracy of 90.64%.

Keywords
Convolutional Neural Networks, Word Embeddings, Code Authorship Identification

1. Introduction

Authorship identification refers to analyzing a certain text, its features, and ultimately writing
style to determine the original author. This evaluation has heavy applications in forensic science,
plagiarism detection and accountability for published work. With the rise in online academic
tests, malware, and other code based plagiarism, source code authorship identification has
gained importance over time.
Different programmers have distinct styles of writing code. Features in C++ such as the

placement of a bracket after a function, header files included, iterator variables, and typedef
declarations are useful while distinguishing one author from another. A machine learning-based
authorship identification approach tries to automatically learn from the data the contribution
of different features towards the author identification.

In this paper, the proposed technique uses the data released by the Authorship Identification
of SOurce COde (AI-SOCO) [1] challenge from the Forum for Information Retrieval Evaluation,
2020 (FIRE 2020). The data consists of 100,000 source codes written using the C++ programming
language. This task aims to identify the author of each source code. The proposed work
uses feature extraction as it plays an important role in this task. The presented model uses a
combination of word embeddings and convolutional neural networks (CNN) for authorship
recognition.

Forum for Information Retrieval Evaluation, December 16-20, 2020, Hyderabad, India
email: f20171179@pilani.bits-pilani.ac.in (A. V. Mandalam); abhishek@pilani.bits-pilani.ac.in (Abhishek)
url: www.bits-pilani.ac.in/pilani/abhishek/profile (Abhishek)

© 2020 Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY
4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:f20171179@pilani.bits-pilani.ac.in
mailto:abhishek@pilani.bits-pilani.ac.in
www.bits-pilani.ac.in/pilani/abhishek/profile
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Related Work

Source code identification can be divided into binary code identification and programming
language based identification. This task focused on the latter. Frantzeskou et al. [2] used a byte
level n-gram approach to identify authors of source codes. It was noted that although they
managed to attain a high accuracy for 6 to 30 candidate authors, their method did poorly when
there were more authors, as noted by Abuhamad et al. [3].

Abuhamad et al. [4] used a TF-IDF-based representation along with recurrent neural networks
(RNN) to achieve high accuracies regardless of the number of authors. Caliskan-Islam et al. [5]
attained significantly higher accuracies than previous work done on the same dataset. They
created abstract syntax trees from the input source codes, used them to extract features and
fed those features to their classifier. In a more recent paper, Abuhamad et al. [3] described a
CNN-based approach to identifying authors of source codes. They tested their method on Java,
C++ and Python and proved that their method was not specific to any programming language.
They used the same dataset as Caliskan-Islam et al. and attained significantly higher accuracies.

3. Proposed Technique

Two different models were submitted. The first used a term frequency–inverse document
frequency (TF-IDF) vectorizer and a simple neural network (TFIDF_NN). The second used
Word2Vec [6] and CNN (W2V_CNN).

3.1. Feature Extraction

Feature extraction forms an integral part of large-scale authorship identification. At the same
time, eliminating unnecessary or misleading features helps improve the performance of the
model. Keeping the same in mind, all punctuation symbols were eliminated. The punctuation
used in the syntax is common to all of the codes as they were all written in the same language,
C++. Stopwords were not extracted as removing those features led to a reduction in the overall
accuracy.
For the TFIDF_NN approach, a TF-IDF vectorizer was used. It vectorized the preprocessed

data with a vocabulary of words consisting of the top 3000 features. Unigrams and bigrams
were extracted. In the W2V_CNN approach, the proposed model trained a continuous bag of
words (CBOW) and a skip-gram model on the train set of the dataset provided by the AI-SOCO
organizers to obtain two different sets of vectors. The vectors had a dimensionality of 150 and a
window size of 2. The rest of the parameters used their default values. Then, the word vectors
of both of the models were concatenated. After creating a sequential representation of the input
data and padding it to the average length of the data, an embedding matrix was made.

3.2. Classification

A different classifier was used for each approach. The TFIDF_NN model used a simple neural
network (NN) consisting of two dense layers and a dropout rate of 0.80. The dimensionality of

Figure 1: Structure of the model implemented by the W2V_CNN run.

the output space of both of the dense layers was 1000. To prevent overfitting, early stopping
was used to stop training when the validation loss showed no improvement after 5 epochs.

Although CNNs are predominantly used for image classification, their application has been
extended to language modelling tasks. The W2V_CNN model used a 1-D convolution layer
with activation as ReLU and 1000 output filters. The stride length of the convolution was set as
1. The embedding matrix created during feature extraction was used in the embedding layer of
this model. After using a 1-D maximum pooling layer to obtain the top features, a dropout layer
with a rate of 0.80 and batch normalization were used to combat overfitting. The input data was
shuffled before each epoch and early stopping was used to stop training the model when its
validation loss did not improve after 5 epochs. Figure 1 represents the discussed methodology.

4. Dataset

The models utilised the dataset provided by the organizers of AI-SOCO. Their well-balanced
dataset consisted of source codes collected from Codeforces. They chose 100 codes per user
and 1000 users making a total of 100,000 compilable C++ codes. The training, development and
testing sets had 50000, 25000 and 25000 codes respectively with an equal ratio of each user’s
codes. The data distribution is mentioned in Table 1.

Table 1
Distribution of Data

Dataset Training Development Testing

Per User 50 25 25
Total 50,000 25,000 25,000

Table 2
Results of different methods

Method Accuracy Precision Recall F1-Score

W2V_CNN_Ensemble 0.9064 0.9185 0.9064 0.9084
W2V_CNN 0.9027 0.9149 0.9027 0.9048
TFIDF_NN 0.8790 0.8911 0.8790 0.8811

tfidf_knn_baseline 0.6278 0.6796 0.6213 0.6274
char_logistic_baseline 0.2992 0.2881 0.2925 0.2574

random_baseline 0.0006 0.0006 0.0006 0.0006

5. Result

The highest scored run consisted of an ensemble of five W2V_CNN models. Each model had
different hyperparameters for the CNN. This included the length of the 1D convolution window
(either 1 or 2) and different dropout rates (ranging from 0.75 to 0.85). A result was assigned for
each test case based on whichever model had the highest confidence. It attained an accuracy
of 90.64%. A comparison of the accuracies achieved by the different tested methods has been
shown in Table 2. Both of the models surpassed the accuracy of the tfidf_knn baseline by a
margin of more than 25%. However, the presented models did not surpass the RoBERTa [7]
Baseline which achieved an accuracy of 92.88%.

6. Error Analysis

The presented model is unlike any previous work done in this field using CNNs [3] as it is much
simpler. As seen from other architectures, multiple convolutional layers were implemented
along with various filter sizes and depths. It led to overfitting on the train set and an abysmal
accuracy on the development set due to overfitting. To prevent this, the presented approach
used a simpler model, batch normalization, a high dropout rate, and early stopping.

To understand where the model was failing, the F1-scores for each user were checked. After
identifying the users that scored the lowest and highest, different features of the training set
were noted for each of them. In most competitions, users don’t waste time by typing out
commonly used data. Usually, they copy and paste the same set of header files, commonly used
functions and typedef allocated names. The analysis showed that the users with the higher
F1-scores had unique variable and function names. The users with a lower score had function
names such as i and j. Those function names were seen in almost all of the codes belonging
to that user in the training set but because it was common to many other users, it was not

considered to be a strong unique feature for any of them. For the users that scored the highest,
the names of identifiers defined by the #define directive was common across almost all of the 50
codes of that user in the training set. The same was not true for the users with a lower F1-score.

7. Conclusion

This paper presented an overview of the submission by team bits_nlp_2020 for the Authorship
Identification of SOurce COde (AI-SOCO) track of the Forum for Information Retrieval Eval-
uation (FIRE) 2020. By implementing a model using TF-IDF features and a simple NN, it was
noted that feature extraction played a major role while identifying authors. In the presented
work, the highest scoring model implemented word embeddings along with a CNN to achieve
an accuracy of 90.64%. For future work, the authors aim to expand their approach to multiple
languages. Tackling codes with multiple authors could be a direction for future work as well.

References

[1] A. Fadel, H. Musleh, I. Tuffaha, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, P. Rosso, Overview
of the PAN@FIRE 2020 task on Authorship Identification of SOurce COde (AI-SOCO), in:
Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE
2020), CEUR Workshop Proceedings, CEUR-WS.org, 2020.

[2] G. Frantzeskou, E. Stamatatos, S. Gritzalis, S. Katsikas, Source code author identification
based on n-gram author profiles, in: IFIP International Conference on Artificial Intelligence
Applications and Innovations, Springer, 2006, pp. 508–515.

[3] M. Abuhamad, J.-s. Rhim, T. AbuHmed, S. Ullah, S. Kang, D. Nyang, Code authorship
identification using convolutional neural networks, Future Generation Computer Systems
95 (2019) 104–115.

[4] M. Abuhamad, T. AbuHmed, A. Mohaisen, D. Nyang, Large-scale and language-oblivious
code authorship identification, in: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 101–114.

[5] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Yamaguchi, R. Greenstadt,
De-anonymizing programmers via code stylometry, in: 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 255–270.

[6] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in
vector space, arXiv preprint arXiv:1301.3781 (2013).

[7] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv preprint
arXiv:1907.11692 (2019).

	1 Introduction
	2 Related Work
	3 Proposed Technique
	3.1 Feature Extraction
	3.2 Classification

	4 Dataset
	5 Result
	6 Error Analysis
	7 Conclusion

